mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 19:21:46 +00:00
llama : add option for greedy sampling with probs (#3813)
* llama : add option for greedy sampling with probs * llama : add comment about llama_sample_token_greedy() missing probs * sampling : temp == 0.0 -> no probs, temp < 0.0 -> probs
This commit is contained in:
parent
177461104b
commit
ee1a0ec9cb
@ -224,6 +224,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
|||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
sparams.temp = std::stof(argv[i]);
|
sparams.temp = std::stof(argv[i]);
|
||||||
|
sparams.temp = std::max(sparams.temp, 0.0f);
|
||||||
} else if (arg == "--tfs") {
|
} else if (arg == "--tfs") {
|
||||||
if (++i >= argc) {
|
if (++i >= argc) {
|
||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
|
@ -167,8 +167,12 @@ llama_token llama_sampling_sample(
|
|||||||
llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar);
|
llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar);
|
||||||
}
|
}
|
||||||
|
|
||||||
if (temp <= 0) {
|
if (temp < 0.0) {
|
||||||
// greedy sampling
|
// greedy sampling, with probs
|
||||||
|
llama_sample_softmax(ctx_main, &cur_p);
|
||||||
|
id = cur_p.data[0].id;
|
||||||
|
} else if (temp == 0.0) {
|
||||||
|
// greedy sampling, no probs
|
||||||
id = llama_sample_token_greedy(ctx_main, &cur_p);
|
id = llama_sample_token_greedy(ctx_main, &cur_p);
|
||||||
} else {
|
} else {
|
||||||
if (mirostat == 1) {
|
if (mirostat == 1) {
|
||||||
|
@ -148,7 +148,7 @@ int main(int argc, char ** argv) {
|
|||||||
std::vector<seq_draft> drafts(n_seq_dft);
|
std::vector<seq_draft> drafts(n_seq_dft);
|
||||||
|
|
||||||
params.sparams.grammar.clear(); // the draft samplers will copy the target sampler's grammar
|
params.sparams.grammar.clear(); // the draft samplers will copy the target sampler's grammar
|
||||||
params.sparams.temp = std::max(0.01f, params.sparams.temp);
|
params.sparams.temp = -1.0f; // force greedy sampling with probs for the draft model
|
||||||
|
|
||||||
for (int s = 0; s < n_seq_dft; ++s) {
|
for (int s = 0; s < n_seq_dft; ++s) {
|
||||||
drafts[s].ctx_sampling = llama_sampling_init(params.sparams);
|
drafts[s].ctx_sampling = llama_sampling_init(params.sparams);
|
||||||
|
1
llama.h
1
llama.h
@ -658,6 +658,7 @@ extern "C" {
|
|||||||
float * mu);
|
float * mu);
|
||||||
|
|
||||||
/// @details Selects the token with the highest probability.
|
/// @details Selects the token with the highest probability.
|
||||||
|
/// Does not compute the token probabilities. Use llama_sample_softmax() instead.
|
||||||
LLAMA_API llama_token llama_sample_token_greedy(
|
LLAMA_API llama_token llama_sample_token_greedy(
|
||||||
struct llama_context * ctx,
|
struct llama_context * ctx,
|
||||||
llama_token_data_array * candidates);
|
llama_token_data_array * candidates);
|
||||||
|
Loading…
Reference in New Issue
Block a user