mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 19:50:17 +00:00
llama : fix F16/F32 downcast + improve names (#5980)
This commit is contained in:
parent
be858f6205
commit
ee35600b90
67
llama.cpp
67
llama.cpp
@ -11636,7 +11636,7 @@ static void llama_tensor_dequantize_internal(
|
|||||||
workers.clear();
|
workers.clear();
|
||||||
}
|
}
|
||||||
|
|
||||||
static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
|
static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
|
||||||
const std::string name = ggml_get_name(tensor);
|
const std::string name = ggml_get_name(tensor);
|
||||||
|
|
||||||
// TODO: avoid hardcoded tensor names - use the TN_* constants
|
// TODO: avoid hardcoded tensor names - use the TN_* constants
|
||||||
@ -11951,40 +11951,40 @@ static int32_t llama_tensor_quantize_internal(enum ggml_type new_type, const flo
|
|||||||
}
|
}
|
||||||
|
|
||||||
static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
|
static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
|
||||||
ggml_type quantized_type;
|
ggml_type default_type;
|
||||||
llama_ftype ftype = params->ftype;
|
llama_ftype ftype = params->ftype;
|
||||||
|
|
||||||
switch (params->ftype) {
|
switch (params->ftype) {
|
||||||
case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break;
|
case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
|
||||||
case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break;
|
case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
|
||||||
case LLAMA_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_TYPE_Q5_0; break;
|
case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
|
||||||
case LLAMA_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_TYPE_Q5_1; break;
|
case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
|
||||||
case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break;
|
case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
|
||||||
case LLAMA_FTYPE_MOSTLY_F16: quantized_type = GGML_TYPE_F16; break;
|
case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
|
||||||
case LLAMA_FTYPE_ALL_F32: quantized_type = GGML_TYPE_F32; break;
|
case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
|
||||||
|
|
||||||
// K-quants
|
// K-quants
|
||||||
case LLAMA_FTYPE_MOSTLY_Q2_K_S:
|
case LLAMA_FTYPE_MOSTLY_Q2_K_S:
|
||||||
case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break;
|
case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break;
|
||||||
case LLAMA_FTYPE_MOSTLY_IQ3_XS: quantized_type = GGML_TYPE_IQ3_S; break;
|
case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break;
|
||||||
case LLAMA_FTYPE_MOSTLY_Q3_K_S:
|
case LLAMA_FTYPE_MOSTLY_Q3_K_S:
|
||||||
case LLAMA_FTYPE_MOSTLY_Q3_K_M:
|
case LLAMA_FTYPE_MOSTLY_Q3_K_M:
|
||||||
case LLAMA_FTYPE_MOSTLY_Q3_K_L: quantized_type = GGML_TYPE_Q3_K; break;
|
case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break;
|
||||||
case LLAMA_FTYPE_MOSTLY_Q4_K_S:
|
case LLAMA_FTYPE_MOSTLY_Q4_K_S:
|
||||||
case LLAMA_FTYPE_MOSTLY_Q4_K_M: quantized_type = GGML_TYPE_Q4_K; break;
|
case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break;
|
||||||
case LLAMA_FTYPE_MOSTLY_Q5_K_S:
|
case LLAMA_FTYPE_MOSTLY_Q5_K_S:
|
||||||
case LLAMA_FTYPE_MOSTLY_Q5_K_M: quantized_type = GGML_TYPE_Q5_K; break;
|
case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break;
|
||||||
case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break;
|
case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
|
||||||
case LLAMA_FTYPE_MOSTLY_IQ2_XXS: quantized_type = GGML_TYPE_IQ2_XXS; break;
|
case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
|
||||||
case LLAMA_FTYPE_MOSTLY_IQ2_XS: quantized_type = GGML_TYPE_IQ2_XS; break;
|
case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
|
||||||
case LLAMA_FTYPE_MOSTLY_IQ2_S: quantized_type = GGML_TYPE_IQ2_XS; break;
|
case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
|
||||||
case LLAMA_FTYPE_MOSTLY_IQ2_M: quantized_type = GGML_TYPE_IQ2_S; break;
|
case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break;
|
||||||
case LLAMA_FTYPE_MOSTLY_IQ3_XXS: quantized_type = GGML_TYPE_IQ3_XXS; break;
|
case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
|
||||||
case LLAMA_FTYPE_MOSTLY_IQ1_S: quantized_type = GGML_TYPE_IQ1_S; break;
|
case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break;
|
||||||
case LLAMA_FTYPE_MOSTLY_IQ4_NL: quantized_type = GGML_TYPE_IQ4_NL; break;
|
case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
|
||||||
case LLAMA_FTYPE_MOSTLY_IQ4_XS: quantized_type = GGML_TYPE_IQ4_XS; break;
|
case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
|
||||||
case LLAMA_FTYPE_MOSTLY_IQ3_S: quantized_type = GGML_TYPE_IQ3_S; break;
|
case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
|
||||||
case LLAMA_FTYPE_MOSTLY_IQ3_M: quantized_type = GGML_TYPE_IQ3_S; break;
|
case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
|
||||||
|
|
||||||
default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
|
default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
|
||||||
}
|
}
|
||||||
@ -12125,23 +12125,26 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|||||||
// do not quantize Mamba's small yet 2D weights
|
// do not quantize Mamba's small yet 2D weights
|
||||||
// NOTE: can't use LLM_TN here because the layer number is not known
|
// NOTE: can't use LLM_TN here because the layer number is not known
|
||||||
quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
|
quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
|
||||||
quantize &= name.find("ssm_x.weight") == std::string::npos;
|
quantize &= name.find("ssm_x.weight") == std::string::npos;
|
||||||
quantize &= name.find("ssm_dt.weight") == std::string::npos;
|
quantize &= name.find("ssm_dt.weight") == std::string::npos;
|
||||||
|
|
||||||
enum ggml_type new_type;
|
enum ggml_type new_type;
|
||||||
void * new_data;
|
void * new_data;
|
||||||
size_t new_size;
|
size_t new_size;
|
||||||
|
|
||||||
if (quantize) {
|
if (quantize) {
|
||||||
new_type = quantized_type;
|
new_type = default_type;
|
||||||
if (!params->pure) {
|
|
||||||
new_type = get_k_quant_type(qs, new_type, tensor, ftype);
|
// get more optimal quantization type based on the tensor shape, layer, etc.
|
||||||
|
if (!params->pure && ggml_is_quantized(default_type)) {
|
||||||
|
new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
|
||||||
}
|
}
|
||||||
|
|
||||||
// If we've decided to quantize to the same type the tensor is already
|
// If we've decided to quantize to the same type the tensor is already
|
||||||
// in then there's nothing to do.
|
// in then there's nothing to do.
|
||||||
quantize = tensor->type != new_type;
|
quantize = tensor->type != new_type;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (!quantize) {
|
if (!quantize) {
|
||||||
new_type = tensor->type;
|
new_type = tensor->type;
|
||||||
new_data = tensor->data;
|
new_data = tensor->data;
|
||||||
@ -12187,7 +12190,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|||||||
f32_data = (float *) f32_conv_buf.data();
|
f32_data = (float *) f32_conv_buf.data();
|
||||||
}
|
}
|
||||||
|
|
||||||
LLAMA_LOG_INFO("quantizing to %s .. ", ggml_type_name(new_type));
|
LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
|
||||||
fflush(stdout);
|
fflush(stdout);
|
||||||
|
|
||||||
if (work.size() < nelements * 4) {
|
if (work.size() < nelements * 4) {
|
||||||
@ -12235,7 +12238,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|||||||
LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
|
LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
|
||||||
|
|
||||||
if (qs.n_fallback > 0) {
|
if (qs.n_fallback > 0) {
|
||||||
LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) incompatible with k-quants and required fallback quantization\n",
|
LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
|
||||||
__func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
|
__func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
2
llama.h
2
llama.h
@ -278,7 +278,7 @@ extern "C" {
|
|||||||
bool allow_requantize; // allow quantizing non-f32/f16 tensors
|
bool allow_requantize; // allow quantizing non-f32/f16 tensors
|
||||||
bool quantize_output_tensor; // quantize output.weight
|
bool quantize_output_tensor; // quantize output.weight
|
||||||
bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
|
bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
|
||||||
bool pure; // disable k-quant mixtures and quantize all tensors to the same type
|
bool pure; // quantize all tensors to the default type
|
||||||
void * imatrix; // pointer to importance matrix data
|
void * imatrix; // pointer to importance matrix data
|
||||||
} llama_model_quantize_params;
|
} llama_model_quantize_params;
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user