mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-24 02:14:35 +00:00
build : fix most gcc and clang warnings (#2861)
* fix most gcc and clang warnings * baby-llama : remove commented opt_params_adam * fix some MinGW warnings * fix more MinGW warnings
This commit is contained in:
parent
d8d6977f48
commit
ef15649972
@ -403,6 +403,7 @@ if (LLAMA_ALL_WARNINGS)
|
||||
-Wpointer-arith
|
||||
-Wmissing-prototypes
|
||||
-Werror=implicit-int
|
||||
-Wno-unused-function
|
||||
)
|
||||
set(cxx_flags
|
||||
-Wall
|
||||
@ -412,6 +413,10 @@ if (LLAMA_ALL_WARNINGS)
|
||||
-Wno-unused-function
|
||||
-Wno-multichar
|
||||
)
|
||||
if (CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
|
||||
# g++ only
|
||||
set(cxx_flags ${cxx_flags} -Wno-format-truncation)
|
||||
endif()
|
||||
else()
|
||||
# todo : msvc
|
||||
endif()
|
||||
|
7
Makefile
7
Makefile
@ -91,9 +91,14 @@ endif # LLAMA_DISABLE_LOGS
|
||||
|
||||
# warnings
|
||||
CFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wdouble-promotion -Wshadow -Wstrict-prototypes -Wpointer-arith \
|
||||
-Wmissing-prototypes -Werror=implicit-int
|
||||
-Wmissing-prototypes -Werror=implicit-int -Wno-unused-function
|
||||
CXXFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wno-multichar
|
||||
|
||||
ifeq '' '$(findstring clang++,$(CXX))'
|
||||
# g++ only
|
||||
CXXFLAGS += -Wno-format-truncation
|
||||
endif
|
||||
|
||||
# OS specific
|
||||
# TODO: support Windows
|
||||
ifeq ($(UNAME_S),Linux)
|
||||
|
@ -24,7 +24,9 @@
|
||||
|
||||
#if defined(_WIN32)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#define NOMINMAX
|
||||
#ifndef NOMINMAX
|
||||
# define NOMINMAX
|
||||
#endif
|
||||
#include <codecvt>
|
||||
#include <locale>
|
||||
#include <windows.h>
|
||||
@ -1027,7 +1029,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
|
||||
dump_string_yaml_multiline(stream, "grammar", params.grammar.c_str());
|
||||
fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n");
|
||||
fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false");
|
||||
fprintf(stream, "hellaswag_tasks: %ld # default: 400\n", params.hellaswag_tasks);
|
||||
fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks);
|
||||
|
||||
const auto logit_bias_eos = params.logit_bias.find(llama_token_eos(lctx));
|
||||
const bool ignore_eos = logit_bias_eos != params.logit_bias.end() && logit_bias_eos->second == -INFINITY;
|
||||
|
@ -235,6 +235,7 @@ namespace console {
|
||||
|
||||
int estimateWidth(char32_t codepoint) {
|
||||
#if defined(_WIN32)
|
||||
(void)codepoint;
|
||||
return 1;
|
||||
#else
|
||||
return wcwidth(codepoint);
|
||||
|
@ -1617,15 +1617,10 @@ int main(int argc, char ** argv) {
|
||||
|
||||
float error_before_opt = ggml_get_f32_1d(e, 0);
|
||||
|
||||
struct ggml_opt_params opt_params_adam = ggml_opt_default_params(GGML_OPT_ADAM);
|
||||
struct ggml_opt_params opt_params_lbfgs = ggml_opt_default_params(GGML_OPT_LBFGS);
|
||||
opt_params_adam.print_forward_graph = false;
|
||||
opt_params_adam.print_backward_graph = false;
|
||||
opt_params_lbfgs.print_forward_graph = false;
|
||||
opt_params_lbfgs.print_backward_graph = false;
|
||||
opt_params_adam.adam.n_iter = 16;
|
||||
opt_params_lbfgs.lbfgs.n_iter = 16;
|
||||
// ggml_opt(ctx0, opt_params_adam, e);
|
||||
ggml_opt(ctx0, opt_params_lbfgs, e);
|
||||
//
|
||||
ggml_build_forward_expand(&gf, e);
|
||||
|
@ -22,7 +22,9 @@
|
||||
#include <unistd.h>
|
||||
#elif defined (_WIN32)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#define NOMINMAX
|
||||
#ifndef NOMINMAX
|
||||
# define NOMINMAX
|
||||
#endif
|
||||
#include <windows.h>
|
||||
#include <signal.h>
|
||||
#endif
|
||||
@ -73,7 +75,7 @@ void beam_search_callback(void * callback_data_ptr, llama_beams_state beams_stat
|
||||
assert(0u < beams_state.n_beams);
|
||||
const llama_token * tokens = beams_state.beam_views[0].tokens;
|
||||
std::copy(tokens, tokens + n, callback_data.response.end() - n);
|
||||
printf("%lu", n);
|
||||
printf("%zu", n);
|
||||
}
|
||||
fflush(stdout);
|
||||
#if 1 // DEBUG: print current beams for this iteration
|
||||
@ -145,7 +147,7 @@ int main(int argc, char ** argv)
|
||||
|
||||
if (tokens_list.size() > max_tokens_list_size)
|
||||
{
|
||||
fprintf( stderr , "%s: error: prompt too long (%lu tokens, max %lu)\n" ,
|
||||
fprintf( stderr , "%s: error: prompt too long (%zu tokens, max %zu)\n" ,
|
||||
__func__ , tokens_list.size() , max_tokens_list_size );
|
||||
return 1;
|
||||
}
|
||||
|
@ -17,6 +17,8 @@
|
||||
#include "completion.js.hpp"
|
||||
#include "json-schema-to-grammar.mjs.hpp"
|
||||
|
||||
#include <cstddef>
|
||||
|
||||
#ifndef SERVER_VERBOSE
|
||||
#define SERVER_VERBOSE 1
|
||||
#endif
|
||||
@ -1038,7 +1040,7 @@ static json format_timings(llama_server_context &llama)
|
||||
{
|
||||
const auto timings = llama_get_timings(llama.ctx);
|
||||
|
||||
assert(timings.n_eval == llama.num_tokens_predicted);
|
||||
assert(timings.n_eval == ptrdiff_t(llama.num_tokens_predicted));
|
||||
|
||||
return json{
|
||||
{"prompt_n", timings.n_p_eval},
|
||||
@ -1239,7 +1241,7 @@ void beam_search_callback(void * callback_data, llama_beams_state beams_state) {
|
||||
const llama_token * tokens = beams_state.beam_views[0].tokens;
|
||||
const auto map = [](llama_token tok) { return completion_token_output{{},tok}; };
|
||||
std::transform(tokens, tokens + n, llama.generated_token_probs.end() - n, map);
|
||||
printf("%lu", n);
|
||||
printf("%zu", n);
|
||||
}
|
||||
fflush(stdout);
|
||||
#if 0 // DEBUG: print current beams for this iteration
|
||||
@ -1548,7 +1550,7 @@ int main(int argc, char **argv)
|
||||
|
||||
svr.set_exception_handler([](const Request &, Response &res, std::exception_ptr ep)
|
||||
{
|
||||
const auto * fmt = "500 Internal Server Error\n%s";
|
||||
const char fmt[] = "500 Internal Server Error\n%s";
|
||||
char buf[BUFSIZ];
|
||||
try {
|
||||
std::rethrow_exception(std::move(ep));
|
||||
|
@ -183,13 +183,9 @@ static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t
|
||||
int ntry, float alpha) {
|
||||
float min = x[0];
|
||||
float max = x[0];
|
||||
float sum_x = 0;
|
||||
float sum_x2 = 0;
|
||||
for (int i = 1; i < n; ++i) {
|
||||
if (x[i] < min) min = x[i];
|
||||
if (x[i] > max) max = x[i];
|
||||
sum_x += x[i];
|
||||
sum_x2 += x[i]*x[i];
|
||||
}
|
||||
if (max == min) {
|
||||
for (int i = 0; i < n; ++i) L[i] = 0;
|
||||
@ -2060,7 +2056,7 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
|
||||
__m256 acc = _mm256_setzero_ps();
|
||||
|
||||
uint32_t *aux;
|
||||
const uint32_t *aux;
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
|
||||
@ -2070,7 +2066,7 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
const int8_t * restrict q8 = y[i].qs;
|
||||
|
||||
// Set up scales
|
||||
aux = (uint32_t *)x[i].scales;
|
||||
aux = (const uint32_t *)x[i].scales;
|
||||
__m128i scales128 = _mm_set_epi32(
|
||||
((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
|
||||
((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
|
||||
|
@ -3600,7 +3600,7 @@ static void llama_grammar_advance_stack(
|
||||
std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
|
||||
|
||||
if (stack.empty()) {
|
||||
new_stacks.push_back(stack);
|
||||
new_stacks.emplace_back(stack);
|
||||
return;
|
||||
}
|
||||
|
||||
@ -3637,7 +3637,7 @@ static void llama_grammar_advance_stack(
|
||||
}
|
||||
case LLAMA_GRETYPE_CHAR:
|
||||
case LLAMA_GRETYPE_CHAR_NOT:
|
||||
new_stacks.push_back(stack);
|
||||
new_stacks.emplace_back(stack);
|
||||
break;
|
||||
default:
|
||||
// end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
|
||||
|
Loading…
Reference in New Issue
Block a user