mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 19:21:46 +00:00
server : add "/chat/completions" alias for "/v1/...` (#5722)
* Add "/chat/completions" as alias for "/v1/chat/completions" * merge to upstream master * minor : fix trailing whitespace --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
7c4263d426
commit
efc72253f7
@ -3211,87 +3211,88 @@ int main(int argc, char **argv)
|
||||
res.set_content(models.dump(), "application/json; charset=utf-8");
|
||||
});
|
||||
|
||||
const auto chat_completions = [&llama, &validate_api_key, &sparams](const httplib::Request &req, httplib::Response &res)
|
||||
{
|
||||
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
||||
if (!validate_api_key(req, res)) {
|
||||
return;
|
||||
}
|
||||
json data = oaicompat_completion_params_parse(llama.model, json::parse(req.body), sparams.chat_template);
|
||||
|
||||
// TODO: add mount point without "/v1" prefix -- how?
|
||||
svr.Post("/v1/chat/completions", [&llama, &validate_api_key, &sparams](const httplib::Request &req, httplib::Response &res)
|
||||
{
|
||||
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
||||
if (!validate_api_key(req, res)) {
|
||||
return;
|
||||
}
|
||||
json data = oaicompat_completion_params_parse(llama.model, json::parse(req.body), sparams.chat_template);
|
||||
const int task_id = llama.queue_tasks.get_new_id();
|
||||
llama.queue_results.add_waiting_task_id(task_id);
|
||||
llama.request_completion(task_id, data, false, false, -1);
|
||||
|
||||
const int task_id = llama.queue_tasks.get_new_id();
|
||||
llama.queue_results.add_waiting_task_id(task_id);
|
||||
llama.request_completion(task_id, data, false, false, -1);
|
||||
if (!json_value(data, "stream", false)) {
|
||||
std::string completion_text;
|
||||
task_result result = llama.queue_results.recv(task_id);
|
||||
|
||||
if (!json_value(data, "stream", false)) {
|
||||
std::string completion_text;
|
||||
task_result result = llama.queue_results.recv(task_id);
|
||||
if (!result.error && result.stop) {
|
||||
json oaicompat_result = format_final_response_oaicompat(data, result);
|
||||
|
||||
if (!result.error && result.stop) {
|
||||
json oaicompat_result = format_final_response_oaicompat(data, result);
|
||||
res.set_content(oaicompat_result.dump(-1, ' ', false,
|
||||
json::error_handler_t::replace),
|
||||
"application/json; charset=utf-8");
|
||||
} else {
|
||||
res.status = 500;
|
||||
res.set_content(result.result_json["content"], "text/plain; charset=utf-8");
|
||||
}
|
||||
llama.queue_results.remove_waiting_task_id(task_id);
|
||||
} else {
|
||||
const auto chunked_content_provider = [task_id, &llama](size_t, httplib::DataSink &sink) {
|
||||
while (true) {
|
||||
task_result llama_result = llama.queue_results.recv(task_id);
|
||||
if (!llama_result.error) {
|
||||
std::vector<json> result_array = format_partial_response_oaicompat( llama_result);
|
||||
|
||||
res.set_content(oaicompat_result.dump(-1, ' ', false,
|
||||
json::error_handler_t::replace),
|
||||
"application/json; charset=utf-8");
|
||||
} else {
|
||||
res.status = 500;
|
||||
res.set_content(result.result_json["content"], "text/plain; charset=utf-8");
|
||||
}
|
||||
llama.queue_results.remove_waiting_task_id(task_id);
|
||||
} else {
|
||||
const auto chunked_content_provider = [task_id, &llama](size_t, httplib::DataSink &sink) {
|
||||
while (true) {
|
||||
task_result llama_result = llama.queue_results.recv(task_id);
|
||||
if (!llama_result.error) {
|
||||
std::vector<json> result_array = format_partial_response_oaicompat( llama_result);
|
||||
|
||||
for (auto it = result_array.begin(); it != result_array.end(); ++it)
|
||||
{
|
||||
if (!it->empty()) {
|
||||
const std::string str =
|
||||
"data: " +
|
||||
it->dump(-1, ' ', false, json::error_handler_t::replace) +
|
||||
"\n\n";
|
||||
LOG_VERBOSE("data stream", {{"to_send", str}});
|
||||
if (!sink.write(str.c_str(), str.size())) {
|
||||
llama.queue_results.remove_waiting_task_id(task_id);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (llama_result.stop) {
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
for (auto it = result_array.begin(); it != result_array.end(); ++it)
|
||||
{
|
||||
if (!it->empty()) {
|
||||
const std::string str =
|
||||
"error: " +
|
||||
llama_result.result_json.dump(-1, ' ', false,
|
||||
json::error_handler_t::replace) +
|
||||
"data: " +
|
||||
it->dump(-1, ' ', false, json::error_handler_t::replace) +
|
||||
"\n\n";
|
||||
LOG_VERBOSE("data stream", {{"to_send", str}});
|
||||
if (!sink.write(str.c_str(), str.size())) {
|
||||
llama.queue_results.remove_waiting_task_id(task_id);
|
||||
return false;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
sink.done();
|
||||
llama.queue_results.remove_waiting_task_id(task_id);
|
||||
return true;
|
||||
};
|
||||
|
||||
auto on_complete = [task_id, &llama](bool) {
|
||||
// cancel request
|
||||
llama.request_cancel(task_id);
|
||||
llama.queue_results.remove_waiting_task_id(task_id);
|
||||
};
|
||||
|
||||
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
|
||||
if (llama_result.stop) {
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
const std::string str =
|
||||
"error: " +
|
||||
llama_result.result_json.dump(-1, ' ', false,
|
||||
json::error_handler_t::replace) +
|
||||
"\n\n";
|
||||
LOG_VERBOSE("data stream", {{"to_send", str}});
|
||||
if (!sink.write(str.c_str(), str.size())) {
|
||||
llama.queue_results.remove_waiting_task_id(task_id);
|
||||
return false;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
});
|
||||
sink.done();
|
||||
llama.queue_results.remove_waiting_task_id(task_id);
|
||||
return true;
|
||||
};
|
||||
|
||||
auto on_complete = [task_id, &llama](bool) {
|
||||
// cancel request
|
||||
llama.request_cancel(task_id);
|
||||
llama.queue_results.remove_waiting_task_id(task_id);
|
||||
};
|
||||
|
||||
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
|
||||
}
|
||||
};
|
||||
|
||||
svr.Post("/chat/completions", chat_completions);
|
||||
svr.Post("/v1/chat/completions", chat_completions);
|
||||
|
||||
svr.Post("/infill", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res)
|
||||
{
|
||||
|
@ -54,6 +54,28 @@ Feature: Parallel
|
||||
| disabled | 128 |
|
||||
| enabled | 64 |
|
||||
|
||||
Scenario Outline: Multi users OAI completions compatibility no v1
|
||||
Given a system prompt You are a writer.
|
||||
And a model tinyllama-2
|
||||
Given a prompt:
|
||||
"""
|
||||
Write a very long book.
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
Write another a poem.
|
||||
"""
|
||||
And <n_predict> max tokens to predict
|
||||
And streaming is <streaming>
|
||||
Given concurrent OAI completions requests no v1
|
||||
Then the server is busy
|
||||
Then the server is idle
|
||||
Then all prompts are predicted with <n_predict> tokens
|
||||
Examples:
|
||||
| streaming | n_predict |
|
||||
| disabled | 128 |
|
||||
| enabled | 64 |
|
||||
|
||||
Scenario: Multi users with total number of tokens to predict exceeds the KV Cache size #3969
|
||||
Given a prompt:
|
||||
"""
|
||||
|
@ -231,6 +231,7 @@ async def step_oai_chat_completions(context, api_error):
|
||||
completion = await oai_chat_completions(context.prompts.pop(),
|
||||
context.system_prompt,
|
||||
context.base_url,
|
||||
'/v1/chat',
|
||||
False,
|
||||
model=context.model if hasattr(context, 'model') else None,
|
||||
|
||||
@ -288,6 +289,28 @@ async def step_oai_chat_completions(context):
|
||||
# user_prompt is inserted automatically
|
||||
context.system_prompt,
|
||||
context.base_url,
|
||||
'/v1/chat/completions',
|
||||
True, # async_client
|
||||
model=context.model
|
||||
if hasattr(context, 'model') else None,
|
||||
n_predict=context.n_predict
|
||||
if hasattr(context, 'n_predict') else None,
|
||||
enable_streaming=context.enable_streaming
|
||||
if hasattr(context, 'enable_streaming') else None,
|
||||
server_seed=context.server_seed
|
||||
if hasattr(context, 'server_seed') else None,
|
||||
user_api_key=context.user_api_key
|
||||
if hasattr(context, 'user_api_key') else None)
|
||||
|
||||
|
||||
@step(u'concurrent OAI completions requests no v1')
|
||||
@async_run_until_complete
|
||||
async def step_oai_chat_completions(context):
|
||||
await concurrent_requests(context, oai_chat_completions,
|
||||
# user_prompt is inserted automatically
|
||||
context.system_prompt,
|
||||
context.base_url,
|
||||
'/chat/completions',
|
||||
True, # async_client
|
||||
model=context.model
|
||||
if hasattr(context, 'model') else None,
|
||||
@ -497,6 +520,7 @@ async def request_completion(prompt,
|
||||
async def oai_chat_completions(user_prompt,
|
||||
system_prompt,
|
||||
base_url,
|
||||
base_path,
|
||||
async_client,
|
||||
debug=False,
|
||||
model=None,
|
||||
@ -537,7 +561,7 @@ async def oai_chat_completions(user_prompt,
|
||||
origin = 'llama.cpp'
|
||||
headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin}
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.post(f'{base_url}/v1/chat/completions',
|
||||
async with session.post(f'{base_url}{base_path}',
|
||||
json=payload,
|
||||
headers=headers) as response:
|
||||
if enable_streaming:
|
||||
@ -579,7 +603,7 @@ async def oai_chat_completions(user_prompt,
|
||||
else:
|
||||
try:
|
||||
openai.api_key = user_api_key
|
||||
openai.api_base = f'{base_url}/v1/chat'
|
||||
openai.api_base = f'{base_url}{base_path}'
|
||||
chat_completion = openai.Completion.create(
|
||||
messages=payload['messages'],
|
||||
model=model,
|
||||
|
Loading…
Reference in New Issue
Block a user