mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-25 02:44:36 +00:00
Add an API example using server.cpp similar to OAI. (#2009)
* add api_like_OAI.py * add evaluated token count to server * add /v1/ endpoints binding
This commit is contained in:
parent
7ee76e45af
commit
f257fd2550
@ -190,3 +190,19 @@ Run with bash:
|
|||||||
```sh
|
```sh
|
||||||
bash chat.sh
|
bash chat.sh
|
||||||
```
|
```
|
||||||
|
|
||||||
|
### API like OAI
|
||||||
|
|
||||||
|
API example using Python Flask: [api_like_OAI.py](api_like_OAI.py)
|
||||||
|
This example must be used with server.cpp
|
||||||
|
|
||||||
|
```sh
|
||||||
|
python api_like_OAI.py
|
||||||
|
```
|
||||||
|
|
||||||
|
After running the API server, you can use it in Python by setting the API base URL.
|
||||||
|
```python
|
||||||
|
openai.api_base = "http://<Your api-server IP>:port"
|
||||||
|
```
|
||||||
|
|
||||||
|
Then you can utilize llama.cpp as an OpenAI's **chat.completion** or **text_completion** API
|
||||||
|
219
examples/server/api_like_OAI.py
Executable file
219
examples/server/api_like_OAI.py
Executable file
@ -0,0 +1,219 @@
|
|||||||
|
import argparse
|
||||||
|
from flask import Flask, jsonify, request, Response
|
||||||
|
import urllib.parse
|
||||||
|
import requests
|
||||||
|
import time
|
||||||
|
import json
|
||||||
|
|
||||||
|
|
||||||
|
app = Flask(__name__)
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(description="An example of using server.cpp with a similar API to OAI. It must be used together with server.cpp.")
|
||||||
|
parser.add_argument("--chat-prompt", type=str, help="the top prompt in chat completions(default: 'A chat between a curious user and an artificial intelligence assistant. The assistant follows the given rules no matter what.\\n')", default='A chat between a curious user and an artificial intelligence assistant. The assistant follows the given rules no matter what.\\n')
|
||||||
|
parser.add_argument("--user-name", type=str, help="USER name in chat completions(default: '\\nUSER: ')", default="\\nUSER: ")
|
||||||
|
parser.add_argument("--ai-name", type=str, help="ASSISTANT name in chat completions(default: '\\nASSISTANT: ')", default="\\nASSISTANT: ")
|
||||||
|
parser.add_argument("--system-name", type=str, help="SYSTEM name in chat completions(default: '\\nASSISTANT's RULE: ')", default="\\nASSISTANT's RULE: ")
|
||||||
|
parser.add_argument("--stop", type=str, help="the end of response in chat completions(default: '</s>')", default="</s>")
|
||||||
|
parser.add_argument("--llama-api", type=str, help="Set the address of server.cpp in llama.cpp(default: http://127.0.0.1:8080)", default='http://127.0.0.1:8080')
|
||||||
|
parser.add_argument("--api-key", type=str, help="Set the api key to allow only few user(default: NULL)", default="")
|
||||||
|
parser.add_argument("--host", type=str, help="Set the ip address to listen.(default: 127.0.0.1)", default='127.0.0.1')
|
||||||
|
parser.add_argument("--port", type=int, help="Set the port to listen.(default: 8081)", default=8081)
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
def is_present(json, key):
|
||||||
|
try:
|
||||||
|
buf = json[key]
|
||||||
|
except KeyError:
|
||||||
|
return False
|
||||||
|
return True
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
#convert chat to prompt
|
||||||
|
def convert_chat(messages):
|
||||||
|
prompt = "" + args.chat_prompt.replace("\\n", "\n")
|
||||||
|
|
||||||
|
system_n = args.system_name.replace("\\n", "\n")
|
||||||
|
user_n = args.user_name.replace("\\n", "\n")
|
||||||
|
ai_n = args.ai_name.replace("\\n", "\n")
|
||||||
|
stop = args.stop.replace("\\n", "\n")
|
||||||
|
|
||||||
|
|
||||||
|
for line in messages:
|
||||||
|
if (line["role"] == "system"):
|
||||||
|
prompt += f"{system_n}{line['content']}"
|
||||||
|
if (line["role"] == "user"):
|
||||||
|
prompt += f"{user_n}{line['content']}"
|
||||||
|
if (line["role"] == "assistant"):
|
||||||
|
prompt += f"{ai_n}{line['content']}{stop}"
|
||||||
|
prompt += ai_n.rstrip()
|
||||||
|
|
||||||
|
return prompt
|
||||||
|
|
||||||
|
def make_postData(body, chat=False, stream=False):
|
||||||
|
postData = {}
|
||||||
|
if (chat):
|
||||||
|
postData["prompt"] = convert_chat(body["messages"])
|
||||||
|
else:
|
||||||
|
postData["prompt"] = body["prompt"]
|
||||||
|
if(is_present(body, "temperature")): postData["temperature"] = body["temperature"]
|
||||||
|
if(is_present(body, "top_k")): postData["top_k"] = body["top_k"]
|
||||||
|
if(is_present(body, "top_p")): postData["top_p"] = body["top_p"]
|
||||||
|
if(is_present(body, "max_tokens")): postData["n_predict"] = body["max_tokens"]
|
||||||
|
if(is_present(body, "presence_penalty")): postData["presence_penalty"] = body["presence_penalty"]
|
||||||
|
if(is_present(body, "frequency_penalty")): postData["frequency_penalty"] = body["frequency_penalty"]
|
||||||
|
if(is_present(body, "repeat_penalty")): postData["repeat_penalty"] = body["repeat_penalty"]
|
||||||
|
if(is_present(body, "mirostat")): postData["mirostat"] = body["mirostat"]
|
||||||
|
if(is_present(body, "mirostat_tau")): postData["mirostat_tau"] = body["mirostat_tau"]
|
||||||
|
if(is_present(body, "mirostat_eta")): postData["mirostat_eta"] = body["mirostat_eta"]
|
||||||
|
if(is_present(body, "seed")): postData["seed"] = body["seed"]
|
||||||
|
if(is_present(body, "logit_bias")): postData["logit_bias"] = [[int(token), body["logit_bias"][token]] for token in body["logit_bias"].keys()]
|
||||||
|
if (args.stop != ""):
|
||||||
|
postData["stop"] = [args.stop]
|
||||||
|
else:
|
||||||
|
postData["stop"] = []
|
||||||
|
if(is_present(body, "stop")): postData["stop"] += body["stop"]
|
||||||
|
postData["n_keep"] = -1
|
||||||
|
postData["stream"] = stream
|
||||||
|
|
||||||
|
return postData
|
||||||
|
|
||||||
|
def make_resData(data, chat=False, promptToken=[]):
|
||||||
|
resData = {
|
||||||
|
"id": "chatcmpl" if (chat) else "cmpl",
|
||||||
|
"object": "chat.completion" if (chat) else "text_completion",
|
||||||
|
"created": int(time.time()),
|
||||||
|
"truncated": data["truncated"],
|
||||||
|
"model": "LLaMA_CPP",
|
||||||
|
"usage": {
|
||||||
|
"prompt_tokens": data["tokens_evaluated"],
|
||||||
|
"completion_tokens": data["tokens_predicted"],
|
||||||
|
"total_tokens": data["tokens_evaluated"] + data["tokens_predicted"]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (len(promptToken) != 0):
|
||||||
|
resData["promptToken"] = promptToken
|
||||||
|
if (chat):
|
||||||
|
#only one choice is supported
|
||||||
|
resData["choices"] = [{
|
||||||
|
"index": 0,
|
||||||
|
"message": {
|
||||||
|
"role": "assistant",
|
||||||
|
"content": data["content"],
|
||||||
|
},
|
||||||
|
"finish_reason": "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length"
|
||||||
|
}]
|
||||||
|
else:
|
||||||
|
#only one choice is supported
|
||||||
|
resData["choices"] = [{
|
||||||
|
"text": data["content"],
|
||||||
|
"index": 0,
|
||||||
|
"logprobs": None,
|
||||||
|
"finish_reason": "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length"
|
||||||
|
}]
|
||||||
|
return resData
|
||||||
|
|
||||||
|
def make_resData_stream(data, chat=False, time_now = 0, start=False):
|
||||||
|
resData = {
|
||||||
|
"id": "chatcmpl" if (chat) else "cmpl",
|
||||||
|
"object": "chat.completion.chunk" if (chat) else "text_completion.chunk",
|
||||||
|
"created": time_now,
|
||||||
|
"model": "LLaMA_CPP",
|
||||||
|
"choices": [
|
||||||
|
{
|
||||||
|
"finish_reason": None,
|
||||||
|
"index": 0
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
if (chat):
|
||||||
|
if (start):
|
||||||
|
resData["choices"][0]["delta"] = {
|
||||||
|
"role": "assistant"
|
||||||
|
}
|
||||||
|
else:
|
||||||
|
resData["choices"][0]["delta"] = {
|
||||||
|
"content": data["content"]
|
||||||
|
}
|
||||||
|
if (data["stop"]):
|
||||||
|
resData["choices"][0]["finish_reason"] = "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length"
|
||||||
|
else:
|
||||||
|
resData["choices"][0]["text"] = data["content"]
|
||||||
|
if (data["stop"]):
|
||||||
|
resData["choices"][0]["finish_reason"] = "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length"
|
||||||
|
|
||||||
|
return resData
|
||||||
|
|
||||||
|
|
||||||
|
@app.route('/chat/completions', methods=['POST'])
|
||||||
|
@app.route('/v1/chat/completions', methods=['POST'])
|
||||||
|
def chat_completions():
|
||||||
|
if (args.api_key != "" and request.headers["Authorization"].split()[1] != args.api_key):
|
||||||
|
return Response(status=403)
|
||||||
|
body = request.get_json()
|
||||||
|
stream = False
|
||||||
|
tokenize = False
|
||||||
|
if(is_present(body, "stream")): stream = body["stream"]
|
||||||
|
if(is_present(body, "tokenize")): tokenize = body["tokenize"]
|
||||||
|
postData = make_postData(body, chat=True, stream=stream)
|
||||||
|
|
||||||
|
promptToken = []
|
||||||
|
if (tokenize):
|
||||||
|
tokenData = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/tokenize"), data=json.dumps({"content": postData["prompt"]})).json()
|
||||||
|
promptToken = tokenData["tokens"]
|
||||||
|
|
||||||
|
if (not stream):
|
||||||
|
data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData))
|
||||||
|
print(data.json())
|
||||||
|
resData = make_resData(data.json(), chat=True, promptToken=promptToken)
|
||||||
|
return jsonify(resData)
|
||||||
|
else:
|
||||||
|
def generate():
|
||||||
|
data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData), stream=True)
|
||||||
|
time_now = int(time.time())
|
||||||
|
resData = make_resData_stream({}, chat=True, time_now=time_now, start=True)
|
||||||
|
yield 'data: {}\n'.format(json.dumps(resData))
|
||||||
|
for line in data.iter_lines():
|
||||||
|
if line:
|
||||||
|
decoded_line = line.decode('utf-8')
|
||||||
|
resData = make_resData_stream(json.loads(decoded_line[6:]), chat=True, time_now=time_now)
|
||||||
|
yield 'data: {}\n'.format(json.dumps(resData))
|
||||||
|
return Response(generate(), mimetype='text/event-stream')
|
||||||
|
|
||||||
|
|
||||||
|
@app.route('/completions', methods=['POST'])
|
||||||
|
@app.route('/v1/completions', methods=['POST'])
|
||||||
|
def completion():
|
||||||
|
if (args.api_key != "" and request.headers["Authorization"].split()[1] != args.api_key):
|
||||||
|
return Response(status=403)
|
||||||
|
body = request.get_json()
|
||||||
|
stream = False
|
||||||
|
tokenize = False
|
||||||
|
if(is_present(body, "stream")): stream = body["stream"]
|
||||||
|
if(is_present(body, "tokenize")): tokenize = body["tokenize"]
|
||||||
|
postData = make_postData(body, chat=False, stream=stream)
|
||||||
|
|
||||||
|
promptToken = []
|
||||||
|
if (tokenize):
|
||||||
|
tokenData = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/tokenize"), data=json.dumps({"content": postData["prompt"]})).json()
|
||||||
|
promptToken = tokenData["tokens"]
|
||||||
|
|
||||||
|
if (not stream):
|
||||||
|
data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData))
|
||||||
|
print(data.json())
|
||||||
|
resData = make_resData(data.json(), chat=False, promptToken=promptToken)
|
||||||
|
return jsonify(resData)
|
||||||
|
else:
|
||||||
|
def generate():
|
||||||
|
data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData), stream=True)
|
||||||
|
time_now = int(time.time())
|
||||||
|
for line in data.iter_lines():
|
||||||
|
if line:
|
||||||
|
decoded_line = line.decode('utf-8')
|
||||||
|
resData = make_resData_stream(json.loads(decoded_line[6:]), chat=False, time_now=time_now)
|
||||||
|
yield 'data: {}\n'.format(json.dumps(resData))
|
||||||
|
return Response(generate(), mimetype='text/event-stream')
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
app.run(args.host, port=args.port)
|
@ -158,6 +158,7 @@ struct llama_server_context {
|
|||||||
std::string generated_text;
|
std::string generated_text;
|
||||||
std::vector<completion_token_output> generated_token_probs;
|
std::vector<completion_token_output> generated_token_probs;
|
||||||
|
|
||||||
|
size_t num_prompt_tokens = 0;
|
||||||
size_t num_tokens_predicted = 0;
|
size_t num_tokens_predicted = 0;
|
||||||
size_t n_past = 0;
|
size_t n_past = 0;
|
||||||
size_t n_remain = 0;
|
size_t n_remain = 0;
|
||||||
@ -195,6 +196,7 @@ struct llama_server_context {
|
|||||||
|
|
||||||
void rewind() {
|
void rewind() {
|
||||||
params.antiprompt.clear();
|
params.antiprompt.clear();
|
||||||
|
num_prompt_tokens = 0;
|
||||||
num_tokens_predicted = 0;
|
num_tokens_predicted = 0;
|
||||||
generated_text = "";
|
generated_text = "";
|
||||||
generated_text.reserve(params.n_ctx);
|
generated_text.reserve(params.n_ctx);
|
||||||
@ -226,17 +228,18 @@ struct llama_server_context {
|
|||||||
void loadPrompt() {
|
void loadPrompt() {
|
||||||
params.prompt.insert(0, 1, ' '); // always add a first space
|
params.prompt.insert(0, 1, ' '); // always add a first space
|
||||||
std::vector<llama_token> prompt_tokens = ::llama_tokenize(ctx, params.prompt, true);
|
std::vector<llama_token> prompt_tokens = ::llama_tokenize(ctx, params.prompt, true);
|
||||||
|
num_prompt_tokens = prompt_tokens.size();
|
||||||
|
|
||||||
if (params.n_keep < 0) {
|
if (params.n_keep < 0) {
|
||||||
params.n_keep = (int)prompt_tokens.size();
|
params.n_keep = (int)num_prompt_tokens;
|
||||||
}
|
}
|
||||||
params.n_keep = std::min(params.n_ctx - 4, params.n_keep);
|
params.n_keep = std::min(params.n_ctx - 4, params.n_keep);
|
||||||
|
|
||||||
// if input prompt is too big, truncate like normal
|
// if input prompt is too big, truncate like normal
|
||||||
if (prompt_tokens.size() >= (size_t)params.n_ctx) {
|
if (num_prompt_tokens>= (size_t)params.n_ctx) {
|
||||||
const int n_left = (params.n_ctx - params.n_keep) / 2;
|
const int n_left = (params.n_ctx - params.n_keep) / 2;
|
||||||
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep);
|
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep);
|
||||||
const int erased_blocks = (prompt_tokens.size() - params.n_keep - n_left - 1) / n_left;
|
const int erased_blocks = (num_prompt_tokens - params.n_keep - n_left - 1) / n_left;
|
||||||
new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end());
|
new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end());
|
||||||
std::copy(prompt_tokens.end() - params.n_ctx, prompt_tokens.end(), last_n_tokens.begin());
|
std::copy(prompt_tokens.end() - params.n_ctx, prompt_tokens.end(), last_n_tokens.begin());
|
||||||
|
|
||||||
@ -250,7 +253,7 @@ struct llama_server_context {
|
|||||||
truncated = true;
|
truncated = true;
|
||||||
prompt_tokens = new_tokens;
|
prompt_tokens = new_tokens;
|
||||||
} else {
|
} else {
|
||||||
const size_t ps = prompt_tokens.size();
|
const size_t ps = num_prompt_tokens;
|
||||||
std::fill(last_n_tokens.begin(), last_n_tokens.end() - ps, 0);
|
std::fill(last_n_tokens.begin(), last_n_tokens.end() - ps, 0);
|
||||||
std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps);
|
std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps);
|
||||||
}
|
}
|
||||||
@ -258,7 +261,7 @@ struct llama_server_context {
|
|||||||
// compare the evaluated prompt with the new prompt
|
// compare the evaluated prompt with the new prompt
|
||||||
n_past = common_part(embd, prompt_tokens);
|
n_past = common_part(embd, prompt_tokens);
|
||||||
embd = prompt_tokens;
|
embd = prompt_tokens;
|
||||||
if (n_past == prompt_tokens.size()) {
|
if (n_past == num_prompt_tokens) {
|
||||||
// we have to evaluate at least 1 token to generate logits.
|
// we have to evaluate at least 1 token to generate logits.
|
||||||
n_past--;
|
n_past--;
|
||||||
}
|
}
|
||||||
@ -763,6 +766,7 @@ static json format_final_response(llama_server_context & llama, const std::strin
|
|||||||
{ "stop", true },
|
{ "stop", true },
|
||||||
{ "model", llama.params.model_alias },
|
{ "model", llama.params.model_alias },
|
||||||
{ "tokens_predicted", llama.num_tokens_predicted },
|
{ "tokens_predicted", llama.num_tokens_predicted },
|
||||||
|
{ "tokens_evaluated", llama.num_prompt_tokens },
|
||||||
{ "generation_settings", format_generation_settings(llama) },
|
{ "generation_settings", format_generation_settings(llama) },
|
||||||
{ "prompt", llama.params.prompt },
|
{ "prompt", llama.params.prompt },
|
||||||
{ "truncated", llama.truncated },
|
{ "truncated", llama.truncated },
|
||||||
|
Loading…
Reference in New Issue
Block a user