ggml : fix rope + llama minor optimizations (#3560)

* Minor fixes and fixed memleak

* Using const auto references in range-based loop C++17
This commit is contained in:
Herman Semenov 2023-10-20 10:02:12 +00:00 committed by GitHub
parent e78f3ef24a
commit f439e506e8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 7 additions and 7 deletions

View File

@ -399,7 +399,7 @@ namespace grammar_parser {
void print_grammar(FILE * file, const parse_state & state) { void print_grammar(FILE * file, const parse_state & state) {
try { try {
std::map<uint32_t, std::string> symbol_id_names; std::map<uint32_t, std::string> symbol_id_names;
for (auto kv : state.symbol_ids) { for (const auto & kv : state.symbol_ids) {
symbol_id_names[kv.second] = kv.first; symbol_id_names[kv.second] = kv.first;
} }
for (size_t i = 0, end = state.rules.size(); i < end; i++) { for (size_t i = 0, end = state.rules.size(); i < end; i++) {

View File

@ -1425,7 +1425,7 @@ void train_opt_callback(void * vdata, int accum_step, float * sched, bool * canc
int impr_plot = -(int)(1 + (opt->loss_before - opt->loss_after) * 10.0f + 0.5f); int impr_plot = -(int)(1 + (opt->loss_before - opt->loss_after) * 10.0f + 0.5f);
if (impr_plot > 0) impr_plot = 0; if (impr_plot > 0) impr_plot = 0;
if (std::isnan(opt->loss_before) || std::isnan(opt->loss_before)) impr_plot = 0; if (std::isnan(opt->loss_before) || std::isnan(opt->loss_after)) impr_plot = 0;
printf("%s: iter=%6d sample=%zu/%zu sched=%f loss=%f", printf("%s: iter=%6d sample=%zu/%zu sched=%f loss=%f",
__func__, opt->iter, std::min(1+train->shuffle_next_sample, train->shuffle_sample_count), train->shuffle_sample_count, __func__, opt->iter, std::min(1+train->shuffle_next_sample, train->shuffle_sample_count), train->shuffle_sample_count,
*sched, opt->loss_after); *sched, opt->loss_after);

3
ggml.c
View File

@ -13537,7 +13537,7 @@ static void ggml_compute_forward_rope_f16(
dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta); dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta); dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
} }
} if (!is_neox) { } else if (!is_neox) {
for (int64_t i0 = 0; i0 < ne0; i0 += 2) { for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
const float cos_theta = cosf(theta); const float cos_theta = cosf(theta);
const float sin_theta = sinf(theta); const float sin_theta = sinf(theta);
@ -19170,6 +19170,7 @@ void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
if (idx == -1) { if (idx == -1) {
fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i); fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
fclose(fout);
return; return;
} }

View File

@ -6324,7 +6324,6 @@ struct llm_tokenizer_bpe {
llm_symbol sym; llm_symbol sym;
size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset])); size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
sym.text = word.c_str() + offset; sym.text = word.c_str() + offset;
sym.n = 1;
sym.n = char_len; sym.n = char_len;
offset += sym.n; offset += sym.n;
sym.prev = index - 1; sym.prev = index - 1;
@ -7054,7 +7053,7 @@ static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_
std::vector<llama_grammar_candidate> rejects; std::vector<llama_grammar_candidate> rejects;
if (stack.empty()) { if (stack.empty()) {
for (auto tok : candidates) { for (const auto & tok : candidates) {
if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) { if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
rejects.push_back(tok); rejects.push_back(tok);
} }
@ -7065,7 +7064,7 @@ static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_
const llama_grammar_element * stack_pos = stack.back(); const llama_grammar_element * stack_pos = stack.back();
std::vector<llama_grammar_candidate> next_candidates; std::vector<llama_grammar_candidate> next_candidates;
for (auto tok : candidates) { for (const auto & tok : candidates) {
if (*tok.code_points == 0) { if (*tok.code_points == 0) {
// reached end of full codepoints in token, reject iff it ended in a partial sequence // reached end of full codepoints in token, reject iff it ended in a partial sequence
// that cannot satisfy this position in grammar // that cannot satisfy this position in grammar
@ -7091,7 +7090,7 @@ static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_
llama_grammar_advance_stack(rules, stack_after, next_stacks); llama_grammar_advance_stack(rules, stack_after, next_stacks);
auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates); auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
for (auto tok : next_rejects) { for (const auto & tok : next_rejects) {
rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 }); rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
} }