mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-27 20:04:35 +00:00
Merge branch 'ggerganov:master' into master
This commit is contained in:
commit
f47fd17b73
@ -98,6 +98,8 @@ gguf_writer.add_embedding_length(hparams["d_model"])
|
||||
gguf_writer.add_block_count(block_count)
|
||||
gguf_writer.add_feed_forward_length(4 * hparams["d_model"])
|
||||
gguf_writer.add_head_count(hparams["n_heads"])
|
||||
if kv_n_heads := hparams["attn_config"].get("kv_n_heads"):
|
||||
gguf_writer.add_head_count_kv(kv_n_heads)
|
||||
gguf_writer.add_layer_norm_eps(1e-05)
|
||||
if hparams["attn_config"]["clip_qkv"] is not None:
|
||||
gguf_writer.add_clamp_kqv(hparams["attn_config"]["clip_qkv"])
|
||||
|
@ -529,13 +529,14 @@ static void init_lora(const struct my_llama_model * model, struct my_llama_lora
|
||||
set_param_lora(lora);
|
||||
|
||||
// measure data size
|
||||
struct ggml_allocr * alloc = NULL;
|
||||
alloc = ggml_allocr_new_measure(tensor_alignment);
|
||||
alloc_lora(alloc, lora);
|
||||
size_t size = 0;
|
||||
for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
size += GGML_PAD(ggml_nbytes(t), tensor_alignment);
|
||||
}
|
||||
|
||||
// allocate data
|
||||
lora->data.resize(ggml_allocr_max_size(alloc) + tensor_alignment);
|
||||
ggml_allocr_free(alloc);
|
||||
struct ggml_allocr * alloc = NULL;
|
||||
lora->data.resize(size + tensor_alignment);
|
||||
alloc = ggml_allocr_new(lora->data.data(), lora->data.size(), tensor_alignment);
|
||||
alloc_lora(alloc, lora);
|
||||
ggml_allocr_free(alloc);
|
||||
@ -1714,11 +1715,9 @@ int main(int argc, char ** argv) {
|
||||
struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx_input, GGML_TYPE_F32, n_vocab, n_tokens, n_batch);
|
||||
|
||||
// measure required memory for input tensors
|
||||
alloc = ggml_allocr_new_measure(tensor_alignment);
|
||||
ggml_allocr_alloc(alloc, tokens_input);
|
||||
ggml_allocr_alloc(alloc, target_probs);
|
||||
size_t max_input_size = ggml_allocr_max_size(alloc) + tensor_alignment;
|
||||
ggml_allocr_free(alloc);
|
||||
size_t max_input_size = GGML_PAD(ggml_nbytes(tokens_input), tensor_alignment) +
|
||||
GGML_PAD(ggml_nbytes(target_probs), tensor_alignment) +
|
||||
tensor_alignment;
|
||||
printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f));
|
||||
|
||||
// allocate input tensors
|
||||
|
@ -79,7 +79,13 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_backend_init(params.numa);
|
||||
|
||||
llama_model_params model_params = llama_model_default_params();
|
||||
llama_model_params model_params = llama_model_default_params();
|
||||
model_params.n_gpu_layers = params.n_gpu_layers;
|
||||
model_params.main_gpu = params.main_gpu;
|
||||
model_params.tensor_split = params.tensor_split;
|
||||
model_params.use_mmap = params.use_mmap;
|
||||
model_params.use_mlock = params.use_mlock;
|
||||
|
||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
||||
if (model == NULL) {
|
||||
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
||||
|
@ -19,7 +19,7 @@
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
#define CL_DMMV_BLOCK_SIZE 32
|
||||
#define CL_DMMV_LOCAL_SIZE 32
|
||||
|
||||
#ifndef K_QUANTS_PER_ITERATION
|
||||
#define K_QUANTS_PER_ITERATION 1
|
||||
@ -338,7 +338,7 @@ __kernel void dequantize_mul_mat_vec_q2_K(__global const struct block_q2_K * xx,
|
||||
const int row = get_group_id(0);
|
||||
|
||||
const int num_blocks_per_row = ncols / QK_K;
|
||||
const int ib0 = row*num_blocks_per_row;
|
||||
const int ib0 = row*num_blocks_per_row + get_global_offset(0);
|
||||
|
||||
__global const struct block_q2_K * x = xx + ib0;
|
||||
|
||||
@ -413,7 +413,7 @@ __kernel void dequantize_mul_mat_vec_q3_K(__global const struct block_q3_K * xx,
|
||||
const int row = get_group_id(0);
|
||||
|
||||
const int num_blocks_per_row = ncols / QK_K;
|
||||
const int ib0 = row*num_blocks_per_row;
|
||||
const int ib0 = row*num_blocks_per_row + get_global_offset(0);
|
||||
|
||||
__global const struct block_q3_K * x = xx + ib0;
|
||||
|
||||
@ -489,7 +489,7 @@ __kernel void dequantize_mul_mat_vec_q4_K(__global const struct block_q4_K * xx,
|
||||
|
||||
const int row = get_group_id(0);
|
||||
const int num_blocks_per_row = ncols / QK_K;
|
||||
const int ib0 = row*num_blocks_per_row;
|
||||
const int ib0 = row*num_blocks_per_row + get_global_offset(0);
|
||||
|
||||
const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; // 0...15
|
||||
const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION;
|
||||
@ -562,7 +562,7 @@ __kernel void dequantize_mul_mat_vec_q5_K(__global const struct block_q5_K * xx,
|
||||
|
||||
const int row = get_group_id(0);
|
||||
const int num_blocks_per_row = ncols / QK_K;
|
||||
const int ib0 = row*num_blocks_per_row;
|
||||
const int ib0 = row*num_blocks_per_row + get_global_offset(0);
|
||||
|
||||
const int tid = get_local_id(0)/2; // 0...15
|
||||
const int ix = get_local_id(0)%2;
|
||||
@ -641,7 +641,7 @@ __kernel void dequantize_mul_mat_vec_q6_K(__global const struct block_q6_K * xx,
|
||||
const int row = get_group_id(0);
|
||||
|
||||
const int num_blocks_per_row = ncols / QK_K;
|
||||
const int ib0 = row*num_blocks_per_row;
|
||||
const int ib0 = row*num_blocks_per_row + get_global_offset(0);
|
||||
|
||||
__global const struct block_q6_K * x = xx + ib0;
|
||||
|
||||
@ -745,19 +745,21 @@ __kernel void KERNEL_NAME(__global X_TYPE* x, __global float* y) {
|
||||
|
||||
std::string dequant_mul_mat_vec_template = MULTILINE_QUOTE(
|
||||
__kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float* y, __global float* dst, const int ncols) {
|
||||
const int block_size = get_local_size(0);
|
||||
const int local_size = get_local_size(0);
|
||||
const int row = get_group_id(0);
|
||||
const int tid = get_local_id(0);
|
||||
|
||||
const uint qk = QUANT_K;
|
||||
const uint qr = QUANT_R;
|
||||
|
||||
const int col_step = local_size * 2;
|
||||
const int y_offset = qr == 1 ? 1 : qk/2;
|
||||
|
||||
x += get_global_offset(0);
|
||||
|
||||
tmp[tid] = 0;
|
||||
|
||||
for (int i = 0; i < ncols/block_size; i += 2) {
|
||||
const int col = i*block_size + 2*tid;
|
||||
for (int col = tid*2; col < ncols; col += col_step) {
|
||||
const int ib = (row*ncols + col)/qk; // block index
|
||||
const int iqs = (col%qk)/qr; // quant index
|
||||
const int iybs = col - col%qk; // y block start index
|
||||
@ -773,7 +775,7 @@ __kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float
|
||||
|
||||
// sum up partial sums and write back result
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
for (int s=block_size/2; s>0; s>>=1) {
|
||||
for (int s=local_size/2; s>0; s>>=1) {
|
||||
if (tid < s) {
|
||||
tmp[tid] += tmp[tid + s];
|
||||
}
|
||||
@ -1704,7 +1706,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
||||
const int nb2 = dst->nb[2];
|
||||
const int nb3 = dst->nb[3];
|
||||
const ggml_type type = src0->type;
|
||||
const bool mul_mat_vec = ne11 == 1;
|
||||
const bool mul_mat_vec = ne11 == 1 && ne00%2 == 0;
|
||||
|
||||
const int64_t r2 = ne12 / ne02;
|
||||
const int64_t r3 = ne13 / ne03;
|
||||
@ -1737,7 +1739,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
||||
GGML_ASSERT(to_fp32_cl != nullptr);
|
||||
|
||||
const size_t global_denom = ggml_cl_global_denom(type);
|
||||
const size_t local = ggml_cl_local_size(type);
|
||||
const size_t local = mul_mat_vec ? CL_DMMV_LOCAL_SIZE : ggml_cl_local_size(type);
|
||||
|
||||
size_t ev_idx = 0;
|
||||
std::vector<cl_event> events;
|
||||
@ -1770,8 +1772,8 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, events.data() + ev_idx++));
|
||||
|
||||
// compute
|
||||
const size_t global = ne01 * CL_DMMV_BLOCK_SIZE;
|
||||
const size_t local = CL_DMMV_BLOCK_SIZE;
|
||||
const size_t global = ne01 * local;
|
||||
const size_t offset = src0->backend == GGML_BACKEND_GPU ? (i03 * ne02 + i02) * x_bps : 0;
|
||||
const cl_int ncols = ne00;
|
||||
events.emplace_back();
|
||||
CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q));
|
||||
@ -1779,7 +1781,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
||||
CL_CHECK(clSetKernelArg(*dmmv, 2, sizeof(cl_mem), &d_Y));
|
||||
CL_CHECK(clSetKernelArg(*dmmv, 3, sizeof(cl_mem), &d_D));
|
||||
CL_CHECK(clSetKernelArg(*dmmv, 4, sizeof(cl_int), &ncols));
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, NULL, &global, &local, events.size() - 1, events.data(), events.data() + ev_idx++));
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, &offset, &global, &local, events.size() - 1, events.data(), events.data() + ev_idx++));
|
||||
} else { // general dequantization kernel + CLBlast matrix matrix multiplication
|
||||
// convert src0 to fp32 on device
|
||||
const size_t global = x_ne / global_denom;
|
||||
|
34
ggml.c
34
ggml.c
@ -5494,6 +5494,39 @@ struct ggml_tensor * ggml_view_tensor(
|
||||
return result;
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_get_first_tensor(struct ggml_context * ctx) {
|
||||
struct ggml_object * obj = ctx->objects_begin;
|
||||
|
||||
char * const mem_buffer = ctx->mem_buffer;
|
||||
|
||||
while (obj != NULL) {
|
||||
if (obj->type == GGML_OBJECT_TENSOR) {
|
||||
return (struct ggml_tensor *)(mem_buffer + obj->offs);
|
||||
}
|
||||
|
||||
obj = obj->next;
|
||||
}
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_get_next_tensor(struct ggml_context * ctx, struct ggml_tensor * tensor) {
|
||||
struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
|
||||
obj = obj->next;
|
||||
|
||||
char * const mem_buffer = ctx->mem_buffer;
|
||||
|
||||
while (obj != NULL) {
|
||||
if (obj->type == GGML_OBJECT_TENSOR) {
|
||||
return (struct ggml_tensor *)(mem_buffer + obj->offs);
|
||||
}
|
||||
|
||||
obj = obj->next;
|
||||
}
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
|
||||
struct ggml_object * obj = ctx->objects_begin;
|
||||
|
||||
@ -8647,6 +8680,7 @@ void ggml_set_param(
|
||||
|
||||
GGML_ASSERT(tensor->grad == NULL);
|
||||
tensor->grad = ggml_dup_tensor(ctx, tensor);
|
||||
ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
|
||||
}
|
||||
|
||||
// ggml_compute_forward_dup
|
||||
|
3
ggml.h
3
ggml.h
@ -704,6 +704,9 @@ extern "C" {
|
||||
GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
|
||||
GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
|
||||
|
||||
// Context tensor enumeration and lookup
|
||||
GGML_API struct ggml_tensor * ggml_get_first_tensor(struct ggml_context * ctx);
|
||||
GGML_API struct ggml_tensor * ggml_get_next_tensor (struct ggml_context * ctx, struct ggml_tensor * tensor);
|
||||
GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
|
||||
|
@ -2839,8 +2839,8 @@ static void llm_load_tensors(
|
||||
auto & layer = model.layers[i];
|
||||
|
||||
layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
|
||||
layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, 3*n_embd}, backend_split);
|
||||
layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
|
||||
layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
|
||||
layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
|
||||
|
||||
layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
|
||||
|
||||
@ -5368,7 +5368,7 @@ static struct ggml_cgraph * llm_build_mpt(
|
||||
const int64_t n_layer = hparams.n_layer;
|
||||
const int64_t n_ctx = cparams.n_ctx;
|
||||
const int64_t n_head = hparams.n_head;
|
||||
const int64_t n_head_kv = hparams.n_head_kv; // == n_head for MPT, as there's no MQA/GQA
|
||||
const int64_t n_head_kv = hparams.n_head_kv;
|
||||
const int64_t n_embd_head = hparams.n_embd_head();
|
||||
const int64_t n_embd_gqa = hparams.n_embd_gqa();
|
||||
|
||||
@ -5721,7 +5721,6 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
//
|
||||
// - lctx: llama context
|
||||
// - batch: batch to evaluate
|
||||
// - n_threads: number of threads to use
|
||||
//
|
||||
// return 0 on success
|
||||
// return positive int on warning
|
||||
|
Loading…
Reference in New Issue
Block a user