convert-gptneox-h5-to-gguf.py : map tensor names

This commit is contained in:
klosax 2023-08-09 00:50:11 +02:00 committed by GitHub
parent ece4fc185e
commit f4d137d98c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,6 +1,7 @@
# Quick and dirty HF gptneox--> gguf conversion # Quick and dirty HF gptneox--> gguf conversion
import gguf import gguf
import gguf_tensor_map as tmap
import os import os
import sys import sys
import struct import struct
@ -32,6 +33,7 @@ def bytes_to_unicode():
cs = [chr(n) for n in cs] cs = [chr(n) for n in cs]
return dict(zip(bs, cs)) return dict(zip(bs, cs))
if len(sys.argv) < 3: if len(sys.argv) < 3:
print("Usage: convert-h5-to-ggml.py dir-model ftype\n") print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
print(" ftype == 0 -> float32") print(" ftype == 0 -> float32")
@ -74,16 +76,17 @@ list_vars = model.state_dict()
gguf_writer = gguf.GGUFWriter.open(fname_out) gguf_writer = gguf.GGUFWriter.open(fname_out)
print("gguf: add metadata") print("gguf: get model metadata")
llm_arch = "gptneox" llm_arch = "gptneox"
block_count = hparams["num_hidden_layers"]
gguf_writer.add_name(last_dir) gguf_writer.add_name(last_dir)
gguf_writer.add_description("gguf test model") gguf_writer.add_description("gguf test model")
gguf_writer.add_architecture(llm_arch) gguf_writer.add_architecture(llm_arch)
gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"]) gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"])
gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"]) gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"])
gguf_writer.add_layer_count(llm_arch, hparams["num_hidden_layers"]) gguf_writer.add_layer_count(llm_arch, block_count)
gguf_writer.add_feed_forward_length(llm_arch, hparams["intermediate_size"]) gguf_writer.add_feed_forward_length(llm_arch, hparams["intermediate_size"])
gguf_writer.add_rope_dimension_count(llm_arch, int( hparams["rotary_pct"]*(hparams["hidden_size"]//hparams["num_attention_heads"])) ) gguf_writer.add_rope_dimension_count(llm_arch, int( hparams["rotary_pct"]*(hparams["hidden_size"]//hparams["num_attention_heads"])) )
gguf_writer.add_head_count(llm_arch, hparams["num_attention_heads"]) gguf_writer.add_head_count(llm_arch, hparams["num_attention_heads"])
@ -92,7 +95,7 @@ gguf_writer.add_layer_norm_eps(llm_arch, hparams["layer_norm_eps"])
# TOKENIZATION # TOKENIZATION
print("gguf: add tokenizer") print("gguf: get tokenizer metadata")
tokens: List[str] = [] tokens: List[str] = []
merges: List[str] = [] merges: List[str] = []
@ -102,7 +105,7 @@ if Path(dir_model + "/tokenizer.json").is_file():
# gpt2 tokenizer # gpt2 tokenizer
gguf_writer.add_tokenizer_model("gpt2") gguf_writer.add_tokenizer_model("gpt2")
print("gguf: adding gpt2 tokenizer merges") print("gguf: get gpt2 tokenizer merges")
with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f: with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
tokenizer_json = json.load(f) tokenizer_json = json.load(f)
@ -110,7 +113,7 @@ if Path(dir_model + "/tokenizer.json").is_file():
gguf_writer.add_token_merges(merges) gguf_writer.add_token_merges(merges)
print("gguf: adding gpt2 tokenizer vocab") print("gguf: get gpt2 tokenizer vocab")
vocab_size = len( tokenizer_json["model"]["vocab"] ) vocab_size = len( tokenizer_json["model"]["vocab"] )
@ -141,7 +144,7 @@ if Path(dir_model + "/tokenizer.json").is_file():
gguf_writer.add_token_list(tokens) gguf_writer.add_token_list(tokens)
if "added_tokens" in tokenizer_json and Path(dir_model + "/tokenizer_config.json").is_file(): if "added_tokens" in tokenizer_json and Path(dir_model + "/tokenizer_config.json").is_file():
print("gguf: adding special token ids") print("gguf: get special token ids")
with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f: with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f:
tokenizer_config = json.load(f) tokenizer_config = json.load(f)
@ -176,8 +179,10 @@ if Path(dir_model + "/tokenizer.json").is_file():
# TENSORS # TENSORS
tensor_map = tmap.get_tensor_map(block_count)
# tensor info # tensor info
print("gguf: add gguf tensor info") print("gguf: get tensor metadata")
for name in list_vars.keys(): for name in list_vars.keys():
data = list_vars[name].squeeze().numpy() data = list_vars[name].squeeze().numpy()
@ -186,6 +191,15 @@ for name in list_vars.keys():
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"): if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
continue continue
# map tensor names
if name.endswith(".weight") and name[:-7] in tensor_map:
name = tensor_map[name[:-7]] + ".weight"
elif name.endswith(".bias") and name[:-5] in tensor_map:
name = tensor_map[name[:-5]] + ".bias"
else:
print( "Can not map tensor '" + name + "'" )
sys.exit()
n_dims = len(data.shape) n_dims = len(data.shape)
# ftype == 0 -> float32, ftype == 1 -> float16 # ftype == 0 -> float32, ftype == 1 -> float16
@ -206,9 +220,9 @@ for name in list_vars.keys():
print("gguf: write header") print("gguf: write header")
gguf_writer.write_header_to_file() gguf_writer.write_header_to_file()
print("gguf: write key-values") print("gguf: write metadata")
gguf_writer.write_kv_data_to_file() gguf_writer.write_kv_data_to_file()
print("gguf: write tensor info") print("gguf: write tensor metadata")
gguf_writer.write_ti_data_to_file() gguf_writer.write_ti_data_to_file()
# tensor data # tensor data
@ -242,5 +256,5 @@ for name in list_vars.keys():
gguf_writer.close() gguf_writer.close()
print("gguf: conversion done, output file: " + fname_out) print("gguf: model successfully exported to '" + fname_out + "'" )
print("") print("")