llama : add qwen2moe (#6074)

* support qwen2moe

* fix-review

* metal : support unary ops for nelements % 4 != 0

* metal : require contiguousness for float4 unary kernels

* metal : require contiguousness for float4 unary kernels (cont)

* fix-review

* names : for brevity "SHARED_EXP" -> "SHEXP"

* llama : reuse build_moe_ffn()

* llama : add model type name

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
Shijie 2024-04-16 23:40:48 +08:00 committed by GitHub
parent 8a56075b07
commit f4dea7da18
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 537 additions and 101 deletions

View File

@ -1700,6 +1700,105 @@ class Qwen2Model(Model):
model_arch = gguf.MODEL_ARCH.QWEN2 model_arch = gguf.MODEL_ARCH.QWEN2
@Model.register("Qwen2MoeForCausalLM")
class Qwen2MoeModel(Model):
model_arch = gguf.MODEL_ARCH.QWEN2MOE
def set_gguf_parameters(self):
super().set_gguf_parameters()
if (n_experts := self.hparams.get("num_experts")) is not None:
self.gguf_writer.add_expert_count(n_experts)
def write_tensors(self):
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
n_experts = self.hparams.get("num_experts")
experts = dict()
for name, data_torch in self.get_tensors():
# we don't need these
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
continue
old_dtype = data_torch.dtype
# convert any unsupported data types to float32
if data_torch.dtype not in (torch.float16, torch.float32):
data_torch = data_torch.to(torch.float32)
data = data_torch.squeeze().numpy()
# process the experts separately
if name.find("experts") != -1:
experts[name] = data
if len(experts) >= n_experts * 3:
# merge the experts into a single 3d tensor
for bid in range(block_count):
for w_name in ["down_proj", "gate_proj", "up_proj"]:
full = True
for xid in range(n_experts):
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
if ename not in experts:
full = False
break
if not full:
continue
datas = []
for xid in range(n_experts):
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
datas.append(experts[ename])
del experts[ename]
data = np.stack(datas, axis=0)
data_dtype = data.dtype
if self.ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
if self.ftype == 1 and data_dtype == np.float32:
data = data.astype(np.float16)
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data)
continue
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if self.ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data)
if len(experts) > 0:
raise ValueError(f"Unprocessed experts: {experts.keys()}")
@Model.register("GPT2LMHeadModel") @Model.register("GPT2LMHeadModel")
class GPT2Model(Model): class GPT2Model(Model):
model_arch = gguf.MODEL_ARCH.GPT2 model_arch = gguf.MODEL_ARCH.GPT2

View File

@ -41,8 +41,11 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_TANH, GGML_METAL_KERNEL_TYPE_TANH,
GGML_METAL_KERNEL_TYPE_RELU, GGML_METAL_KERNEL_TYPE_RELU,
GGML_METAL_KERNEL_TYPE_GELU, GGML_METAL_KERNEL_TYPE_GELU,
GGML_METAL_KERNEL_TYPE_GELU_4,
GGML_METAL_KERNEL_TYPE_GELU_QUICK, GGML_METAL_KERNEL_TYPE_GELU_QUICK,
GGML_METAL_KERNEL_TYPE_GELU_QUICK_4,
GGML_METAL_KERNEL_TYPE_SILU, GGML_METAL_KERNEL_TYPE_SILU,
GGML_METAL_KERNEL_TYPE_SILU_4,
GGML_METAL_KERNEL_TYPE_SOFT_MAX, GGML_METAL_KERNEL_TYPE_SOFT_MAX,
GGML_METAL_KERNEL_TYPE_SOFT_MAX_4, GGML_METAL_KERNEL_TYPE_SOFT_MAX_4,
GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF, GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF,
@ -473,8 +476,11 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TANH, tanh, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TANH, tanh, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RELU, relu, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RELU, relu, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU, gelu, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU, gelu, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_4, gelu_4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK, gelu_quick, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK, gelu_quick, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK_4, gelu_quick_4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU, silu, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU, silu, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU_4, silu_4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX, soft_max, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX, soft_max, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_4, soft_max_4, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_4, soft_max_4, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF, diag_mask_inf, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF, diag_mask_inf, true);
@ -1178,6 +1184,9 @@ static enum ggml_status ggml_metal_graph_compute(
} break; } break;
case GGML_OP_UNARY: case GGML_OP_UNARY:
switch (ggml_get_unary_op(gf->nodes[i])) { switch (ggml_get_unary_op(gf->nodes[i])) {
// we are not taking into account the strides, so for now require contiguous tensors
GGML_ASSERT(ggml_is_contiguous(src0));
case GGML_UNARY_OP_TANH: case GGML_UNARY_OP_TANH:
{ {
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_TANH].pipeline; id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_TANH].pipeline;
@ -1204,42 +1213,60 @@ static enum ggml_status ggml_metal_graph_compute(
} break; } break;
case GGML_UNARY_OP_GELU: case GGML_UNARY_OP_GELU:
{ {
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU].pipeline; int64_t n = ggml_nelements(dst);
id<MTLComputePipelineState> pipeline = nil;
if (n % 4 == 0) {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_4].pipeline;
n /= 4;
} else {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU].pipeline;
}
[encoder setComputePipelineState:pipeline]; [encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(dst); [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
GGML_ASSERT(n % 4 == 0);
[encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break; } break;
case GGML_UNARY_OP_GELU_QUICK: case GGML_UNARY_OP_GELU_QUICK:
{ {
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_QUICK].pipeline; int64_t n = ggml_nelements(dst);
id<MTLComputePipelineState> pipeline = nil;
if (n % 4 == 0) {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_QUICK_4].pipeline;
n /= 4;
} else {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_QUICK].pipeline;
}
[encoder setComputePipelineState:pipeline]; [encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(dst); [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
GGML_ASSERT(n % 4 == 0);
[encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break; } break;
case GGML_UNARY_OP_SILU: case GGML_UNARY_OP_SILU:
{ {
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SILU].pipeline; int64_t n = ggml_nelements(dst);
id<MTLComputePipelineState> pipeline = nil;
if (n % 4 == 0) {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SILU_4].pipeline;
n /= 4;
} else {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SILU].pipeline;
}
[encoder setComputePipelineState:pipeline]; [encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(dst); [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
GGML_ASSERT(n % 4 == 0);
[encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break; } break;
default: default:
{ {

View File

@ -242,6 +242,15 @@ constant float GELU_QUICK_COEF = -1.702f;
constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f; constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
kernel void kernel_gelu( kernel void kernel_gelu(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
device const float & x = src0[tpig];
dst[tpig] = 0.5f*x*(1.0f + precise::tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
}
kernel void kernel_gelu_4(
device const float4 * src0, device const float4 * src0,
device float4 * dst, device float4 * dst,
uint tpig[[thread_position_in_grid]]) { uint tpig[[thread_position_in_grid]]) {
@ -255,6 +264,15 @@ kernel void kernel_gelu(
} }
kernel void kernel_gelu_quick( kernel void kernel_gelu_quick(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
device const float & x = src0[tpig];
dst[tpig] = x*(1.0f/(1.0f+exp(GELU_QUICK_COEF*x)));
}
kernel void kernel_gelu_quick_4(
device const float4 * src0, device const float4 * src0,
device float4 * dst, device float4 * dst,
uint tpig[[thread_position_in_grid]]) { uint tpig[[thread_position_in_grid]]) {
@ -264,6 +282,14 @@ kernel void kernel_gelu_quick(
} }
kernel void kernel_silu( kernel void kernel_silu(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
device const float & x = src0[tpig];
dst[tpig] = x / (1.0f + exp(-x));
}
kernel void kernel_silu_4(
device const float4 * src0, device const float4 * src0,
device float4 * dst, device float4 * dst,
uint tpig[[thread_position_in_grid]]) { uint tpig[[thread_position_in_grid]]) {

View File

@ -120,6 +120,7 @@ class MODEL_ARCH(IntEnum):
STABLELM = auto() STABLELM = auto()
QWEN = auto() QWEN = auto()
QWEN2 = auto() QWEN2 = auto()
QWEN2MOE = auto()
PHI2 = auto() PHI2 = auto()
PLAMO = auto() PLAMO = auto()
CODESHELL = auto() CODESHELL = auto()
@ -135,41 +136,45 @@ class MODEL_ARCH(IntEnum):
class MODEL_TENSOR(IntEnum): class MODEL_TENSOR(IntEnum):
TOKEN_EMBD = auto() TOKEN_EMBD = auto()
TOKEN_EMBD_NORM = auto() TOKEN_EMBD_NORM = auto()
TOKEN_TYPES = auto() TOKEN_TYPES = auto()
POS_EMBD = auto() POS_EMBD = auto()
OUTPUT = auto() OUTPUT = auto()
OUTPUT_NORM = auto() OUTPUT_NORM = auto()
ROPE_FREQS = auto() ROPE_FREQS = auto()
ATTN_Q = auto() ATTN_Q = auto()
ATTN_K = auto() ATTN_K = auto()
ATTN_V = auto() ATTN_V = auto()
ATTN_QKV = auto() ATTN_QKV = auto()
ATTN_OUT = auto() ATTN_OUT = auto()
ATTN_NORM = auto() ATTN_NORM = auto()
ATTN_NORM_2 = auto() ATTN_NORM_2 = auto()
ATTN_OUT_NORM = auto() ATTN_OUT_NORM = auto()
ATTN_ROT_EMBD = auto() ATTN_ROT_EMBD = auto()
FFN_GATE_INP = auto() FFN_GATE_INP = auto()
FFN_NORM = auto() FFN_GATE_INP_SHEXP = auto()
FFN_GATE = auto() FFN_NORM = auto()
FFN_DOWN = auto() FFN_GATE = auto()
FFN_UP = auto() FFN_DOWN = auto()
FFN_ACT = auto() FFN_UP = auto()
FFN_GATE_EXP = auto() FFN_ACT = auto()
FFN_DOWN_EXP = auto() FFN_GATE_EXP = auto()
FFN_UP_EXP = auto() FFN_DOWN_EXP = auto()
ATTN_Q_NORM = auto() FFN_UP_EXP = auto()
ATTN_K_NORM = auto() FFN_GATE_SHEXP = auto()
LAYER_OUT_NORM = auto() FFN_DOWN_SHEXP = auto()
SSM_IN = auto() FFN_UP_SHEXP = auto()
SSM_CONV1D = auto() ATTN_Q_NORM = auto()
SSM_X = auto() ATTN_K_NORM = auto()
SSM_DT = auto() LAYER_OUT_NORM = auto()
SSM_A = auto() SSM_IN = auto()
SSM_D = auto() SSM_CONV1D = auto()
SSM_OUT = auto() SSM_X = auto()
SSM_DT = auto()
SSM_A = auto()
SSM_D = auto()
SSM_OUT = auto()
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
@ -190,6 +195,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.STABLELM: "stablelm", MODEL_ARCH.STABLELM: "stablelm",
MODEL_ARCH.QWEN: "qwen", MODEL_ARCH.QWEN: "qwen",
MODEL_ARCH.QWEN2: "qwen2", MODEL_ARCH.QWEN2: "qwen2",
MODEL_ARCH.QWEN2MOE: "qwen2moe",
MODEL_ARCH.PHI2: "phi2", MODEL_ARCH.PHI2: "phi2",
MODEL_ARCH.PLAMO: "plamo", MODEL_ARCH.PLAMO: "plamo",
MODEL_ARCH.CODESHELL: "codeshell", MODEL_ARCH.CODESHELL: "codeshell",
@ -205,41 +211,45 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
} }
TENSOR_NAMES: dict[MODEL_TENSOR, str] = { TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.TOKEN_EMBD: "token_embd", MODEL_TENSOR.TOKEN_EMBD: "token_embd",
MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm", MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm",
MODEL_TENSOR.TOKEN_TYPES: "token_types", MODEL_TENSOR.TOKEN_TYPES: "token_types",
MODEL_TENSOR.POS_EMBD: "position_embd", MODEL_TENSOR.POS_EMBD: "position_embd",
MODEL_TENSOR.OUTPUT_NORM: "output_norm", MODEL_TENSOR.OUTPUT_NORM: "output_norm",
MODEL_TENSOR.OUTPUT: "output", MODEL_TENSOR.OUTPUT: "output",
MODEL_TENSOR.ROPE_FREQS: "rope_freqs", MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm", MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2", MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv", MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q", MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k", MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v", MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output", MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd", MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm", MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm", MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
MODEL_TENSOR.ATTN_OUT_NORM: "blk.{bid}.attn_output_norm", MODEL_TENSOR.ATTN_OUT_NORM: "blk.{bid}.attn_output_norm",
MODEL_TENSOR.FFN_GATE_INP: "blk.{bid}.ffn_gate_inp", MODEL_TENSOR.FFN_GATE_INP: "blk.{bid}.ffn_gate_inp",
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm", MODEL_TENSOR.FFN_GATE_INP_SHEXP: "blk.{bid}.ffn_gate_inp_shexp",
MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate", MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn", MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps", MODEL_TENSOR.FFN_GATE_SHEXP: "blk.{bid}.ffn_gate_shexp",
MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps", MODEL_TENSOR.FFN_DOWN_SHEXP: "blk.{bid}.ffn_down_shexp",
MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps", MODEL_TENSOR.FFN_UP_SHEXP: "blk.{bid}.ffn_up_shexp",
MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm", MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn",
MODEL_TENSOR.SSM_IN: "blk.{bid}.ssm_in", MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps",
MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d", MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps",
MODEL_TENSOR.SSM_X: "blk.{bid}.ssm_x", MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps",
MODEL_TENSOR.SSM_DT: "blk.{bid}.ssm_dt", MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm",
MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a", MODEL_TENSOR.SSM_IN: "blk.{bid}.ssm_in",
MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d", MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d",
MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out", MODEL_TENSOR.SSM_X: "blk.{bid}.ssm_x",
MODEL_TENSOR.SSM_DT: "blk.{bid}.ssm_dt",
MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a",
MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d",
MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
} }
MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
@ -474,6 +484,25 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN, MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP, MODEL_TENSOR.FFN_UP,
], ],
MODEL_ARCH.QWEN2MOE: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
MODEL_TENSOR.FFN_GATE_INP_SHEXP,
MODEL_TENSOR.FFN_GATE_SHEXP,
MODEL_TENSOR.FFN_DOWN_SHEXP,
MODEL_TENSOR.FFN_UP_SHEXP,
],
MODEL_ARCH.PLAMO: [ MODEL_ARCH.PLAMO: [
MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM, MODEL_TENSOR.OUTPUT_NORM,

View File

@ -208,10 +208,15 @@ class TensorNameMap:
MODEL_TENSOR.FFN_GATE_INP: ( MODEL_TENSOR.FFN_GATE_INP: (
"layers.{bid}.feed_forward.gate", # mixtral "layers.{bid}.feed_forward.gate", # mixtral
"model.layers.{bid}.block_sparse_moe.gate", # mixtral "model.layers.{bid}.block_sparse_moe.gate", # mixtral
"model.layers.{bid}.mlp.gate", # qwen2moe
"transformer.decoder_layer.{bid}.router", # Grok "transformer.decoder_layer.{bid}.router", # Grok
"transformer.blocks.{bid}.ffn.router.layer", # dbrx "transformer.blocks.{bid}.ffn.router.layer", # dbrx
), ),
MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
"model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
),
# Feed-forward up # Feed-forward up
MODEL_TENSOR.FFN_UP: ( MODEL_TENSOR.FFN_UP: (
"gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
@ -236,9 +241,14 @@ class TensorNameMap:
), ),
MODEL_TENSOR.FFN_UP_EXP: ( MODEL_TENSOR.FFN_UP_EXP: (
"layers.{bid}.feed_forward.experts.w3", # mixtral (merged) "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
"transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged) "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
"transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
"model.layers.{bid}.mlp.experts.up_proj", # qwen2moe (merged)
),
MODEL_TENSOR.FFN_UP_SHEXP: (
"model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
), ),
# AWQ-activation gate # AWQ-activation gate
@ -260,6 +270,11 @@ class TensorNameMap:
"layers.{bid}.feed_forward.experts.w1", # mixtral (merged) "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
"transformer.decoder_layer.{bid}.moe.linear", # Grok (merged) "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
"transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
"model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe (merged)
),
MODEL_TENSOR.FFN_GATE_SHEXP: (
"model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
), ),
# Feed-forward down # Feed-forward down
@ -285,9 +300,14 @@ class TensorNameMap:
), ),
MODEL_TENSOR.FFN_DOWN_EXP: ( MODEL_TENSOR.FFN_DOWN_EXP: (
"layers.{bid}.feed_forward.experts.w2", # mixtral (merged) "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
"transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged) "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
"transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
"model.layers.{bid}.mlp.experts.down_proj", # qwen2moe (merged)
),
MODEL_TENSOR.FFN_DOWN_SHEXP: (
"model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
), ),
MODEL_TENSOR.ATTN_Q_NORM: ( MODEL_TENSOR.ATTN_Q_NORM: (
@ -366,7 +386,7 @@ class TensorNameMap:
if tensor not in MODEL_TENSORS[arch]: if tensor not in MODEL_TENSORS[arch]:
continue continue
# TODO: make this configurable # TODO: make this configurable
n_experts = 8 n_experts = 60
for xid in range(n_experts): for xid in range(n_experts):
tensor_name = TENSOR_NAMES[tensor].format(bid = bid, xid = xid) tensor_name = TENSOR_NAMES[tensor].format(bid = bid, xid = xid)
self.mapping[tensor_name] = (tensor, tensor_name) self.mapping[tensor_name] = (tensor, tensor_name)

252
llama.cpp
View File

@ -105,7 +105,7 @@
#endif #endif
#define LLAMA_MAX_NODES 8192 #define LLAMA_MAX_NODES 8192
#define LLAMA_MAX_EXPERTS 16 #define LLAMA_MAX_EXPERTS 60
// //
@ -209,6 +209,7 @@ enum llm_arch {
LLM_ARCH_STABLELM, LLM_ARCH_STABLELM,
LLM_ARCH_QWEN, LLM_ARCH_QWEN,
LLM_ARCH_QWEN2, LLM_ARCH_QWEN2,
LLM_ARCH_QWEN2MOE,
LLM_ARCH_PHI2, LLM_ARCH_PHI2,
LLM_ARCH_PLAMO, LLM_ARCH_PLAMO,
LLM_ARCH_CODESHELL, LLM_ARCH_CODESHELL,
@ -242,6 +243,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_STABLELM, "stablelm" }, { LLM_ARCH_STABLELM, "stablelm" },
{ LLM_ARCH_QWEN, "qwen" }, { LLM_ARCH_QWEN, "qwen" },
{ LLM_ARCH_QWEN2, "qwen2" }, { LLM_ARCH_QWEN2, "qwen2" },
{ LLM_ARCH_QWEN2MOE, "qwen2moe" },
{ LLM_ARCH_PHI2, "phi2" }, { LLM_ARCH_PHI2, "phi2" },
{ LLM_ARCH_PLAMO, "plamo" }, { LLM_ARCH_PLAMO, "plamo" },
{ LLM_ARCH_CODESHELL, "codeshell" }, { LLM_ARCH_CODESHELL, "codeshell" },
@ -437,6 +439,7 @@ enum llm_tensor {
LLM_TENSOR_ATTN_OUT_NORM, LLM_TENSOR_ATTN_OUT_NORM,
LLM_TENSOR_ATTN_ROT_EMBD, LLM_TENSOR_ATTN_ROT_EMBD,
LLM_TENSOR_FFN_GATE_INP, LLM_TENSOR_FFN_GATE_INP,
LLM_TENSOR_FFN_GATE_INP_SHEXP,
LLM_TENSOR_FFN_NORM, LLM_TENSOR_FFN_NORM,
LLM_TENSOR_FFN_GATE, LLM_TENSOR_FFN_GATE,
LLM_TENSOR_FFN_DOWN, LLM_TENSOR_FFN_DOWN,
@ -448,6 +451,9 @@ enum llm_tensor {
LLM_TENSOR_FFN_DOWN_EXPS, // merged experts LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
LLM_TENSOR_FFN_GATE_EXPS, LLM_TENSOR_FFN_GATE_EXPS,
LLM_TENSOR_FFN_UP_EXPS, LLM_TENSOR_FFN_UP_EXPS,
LLM_TENSOR_FFN_DOWN_SHEXP,
LLM_TENSOR_FFN_GATE_SHEXP,
LLM_TENSOR_FFN_UP_SHEXP,
LLM_TENSOR_ATTN_Q_NORM, LLM_TENSOR_ATTN_Q_NORM,
LLM_TENSOR_ATTN_K_NORM, LLM_TENSOR_ATTN_K_NORM,
LLM_TENSOR_LAYER_OUT_NORM, LLM_TENSOR_LAYER_OUT_NORM,
@ -745,6 +751,28 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
}, },
}, },
{
LLM_ARCH_QWEN2MOE,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
{ LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
{ LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
{ LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
},
},
{ {
LLM_ARCH_PHI2, LLM_ARCH_PHI2,
{ {
@ -1731,6 +1759,7 @@ enum e_model {
MODEL_MEDIUM, MODEL_MEDIUM,
MODEL_LARGE, MODEL_LARGE,
MODEL_XL, MODEL_XL,
MODEL_A2_7B,
MODEL_8x7B, MODEL_8x7B,
MODEL_8x22B, MODEL_8x22B,
MODEL_16x12B, MODEL_16x12B,
@ -1917,6 +1946,12 @@ struct llama_layer {
struct ggml_tensor * ffn_down_exps; struct ggml_tensor * ffn_down_exps;
struct ggml_tensor * ffn_up_exps ; struct ggml_tensor * ffn_up_exps ;
// ff shared expert (shexp)
struct ggml_tensor * ffn_gate_inp_shexp;
struct ggml_tensor * ffn_gate_shexp;
struct ggml_tensor * ffn_down_shexp;
struct ggml_tensor * ffn_up_shexp;
// ff bias // ff bias
struct ggml_tensor * ffn_down_b; // b2 struct ggml_tensor * ffn_down_b; // b2
struct ggml_tensor * ffn_up_b; // b3 struct ggml_tensor * ffn_up_b; // b3
@ -3587,6 +3622,7 @@ static const char * llama_model_type_name(e_model type) {
case MODEL_MEDIUM: return "0.4B"; case MODEL_MEDIUM: return "0.4B";
case MODEL_LARGE: return "0.8B"; case MODEL_LARGE: return "0.8B";
case MODEL_XL: return "1.5B"; case MODEL_XL: return "1.5B";
case MODEL_A2_7B: return "A2.7B";
case MODEL_8x7B: return "8x7B"; case MODEL_8x7B: return "8x7B";
case MODEL_8x22B: return "8x22B"; case MODEL_8x22B: return "8x22B";
case MODEL_16x12B: return "16x12B"; case MODEL_16x12B: return "16x12B";
@ -3886,6 +3922,14 @@ static void llm_load_hparams(
default: model.type = e_model::MODEL_UNKNOWN; default: model.type = e_model::MODEL_UNKNOWN;
} }
} break; } break;
case LLM_ARCH_QWEN2MOE:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 24: model.type = e_model::MODEL_A2_7B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
case LLM_ARCH_PHI2: case LLM_ARCH_PHI2:
{ {
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
@ -5156,6 +5200,54 @@ static bool llm_load_tensors(
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
} }
} break; } break;
case LLM_ARCH_QWEN2MOE:
{
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
// output
{
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
}
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
// optional bias tensors
layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
GGML_ASSERT(hparams.n_expert > 0);
GGML_ASSERT(hparams.n_expert_used > 0);
// MoE branch
auto n_ff_exp = n_ff / hparams.n_expert_used;
layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
// Shared expert branch
layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd});
layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff});
layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff, n_embd});
layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff});
}
} break;
case LLM_ARCH_PHI2: case LLM_ARCH_PHI2:
{ {
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
@ -6532,7 +6624,7 @@ struct llm_build_context {
LLM_NORM_RMS, cb, il); LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il); cb(cur, "ffn_norm", il);
cur = build_moe_ffn(cur, n_tokens, LLM_FFN_SILU, il); cur = build_moe_ffn(cur, n_tokens, LLM_FFN_SILU, true, il);
} }
cur = ggml_add(ctx0, cur, ffn_inp); cur = ggml_add(ctx0, cur, ffn_inp);
@ -6565,7 +6657,7 @@ struct llm_build_context {
} }
// REVIEW: will be replaced by https://github.com/ggerganov/llama.cpp/pull/6505 // REVIEW: will be replaced by https://github.com/ggerganov/llama.cpp/pull/6505
ggml_tensor * build_moe_ffn(ggml_tensor * cur, int32_t n_tokens, llm_ffn_op_type type_op, int il) { ggml_tensor * build_moe_ffn(ggml_tensor * cur, int32_t n_tokens, llm_ffn_op_type type_op, bool norm_w, int il) {
ggml_tensor * logits = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp, cur); // [n_tokens, num_experts] ggml_tensor * logits = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp, cur); // [n_tokens, num_experts]
cb(logits, "ffn_moe_logits", il); cb(logits, "ffn_moe_logits", il);
@ -6582,11 +6674,13 @@ struct llm_build_context {
weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens); // [n_tokens, num_experts_per_tok] weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens); // [n_tokens, num_experts_per_tok]
ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights); if (norm_w) {
cb(weights_sum, "ffn_moe_weights_sum", il); ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights);
cb(weights_sum, "ffn_moe_weights_sum", il);
weights = ggml_div(ctx0, weights, weights_sum); // [n_tokens, num_experts_per_tok] weights = ggml_div(ctx0, weights, weights_sum); // [n_tokens, num_experts_per_tok]
cb(weights, "ffn_moe_weights_norm", il); cb(weights, "ffn_moe_weights_norm", il);
}
// compute expert outputs // compute expert outputs
ggml_tensor * moe_out = nullptr; ggml_tensor * moe_out = nullptr;
@ -7083,7 +7177,7 @@ struct llm_build_context {
LLM_NORM_RMS, cb, il); LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il); cb(cur, "ffn_norm", il);
cur = build_moe_ffn(cur, n_tokens, LLM_FFN_GELU, il); cur = build_moe_ffn(cur, n_tokens, LLM_FFN_GELU, true, il);
// Grok // Grok
// if layer_out_norm is present then apply it before adding the input // if layer_out_norm is present then apply it before adding the input
@ -7219,7 +7313,7 @@ struct llm_build_context {
LLM_NORM, cb, il); LLM_NORM, cb, il);
cb(cur, "attn_out_norm", il); cb(cur, "attn_out_norm", il);
cur = build_moe_ffn(cur, n_tokens, LLM_FFN_SILU, il); cur = build_moe_ffn(cur, n_tokens, LLM_FFN_SILU, true, il);
cur = ggml_add(ctx0, cur, ffn_inp); cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il); cb(cur, "ffn_out", il);
@ -8434,6 +8528,141 @@ struct llm_build_context {
return gf; return gf;
} }
struct ggml_cgraph * build_qwen2moe() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
// mutable variable, needed during the last layer of the computation to skip unused tokens
int32_t n_tokens = this->n_tokens;
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
// inp_pos - contains the positions
struct ggml_tensor * inp_pos = build_inp_pos();
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
// norm
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm", il);
// self_attention
{
// compute Q and K and RoPE them
struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
Qcur = ggml_rope_custom(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
Kcur = ggml_rope_custom(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
model.layers[il].wo, model.layers[il].bo,
Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
n_tokens = n_outputs;
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// MoE branch
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);
ggml_tensor * moe_out = build_moe_ffn(cur, n_tokens, LLM_FFN_SILU, false, il);
// FFN shared expert
{
ggml_tensor * cur_gate_inp = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp_shexp, cur);
cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
// sigmoid
ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
cb(cur_gate, "ffn_shexp_gate", il);
ggml_tensor * cur_ffn = llm_build_ffn(ctx0, cur,
model.layers[il].ffn_up_shexp, NULL,
model.layers[il].ffn_gate_shexp, NULL,
model.layers[il].ffn_down_shexp, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(cur_ffn, "ffn_shexp", il);
ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
cb(ffn_shexp_out, "ffn_shexp_out", il);
moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
cb(moe_out, "ffn_out", il);
cur = moe_out;
}
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams,
model.output_norm, NULL,
LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
cur = ggml_mul_mat(ctx0, model.output, cur);
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
struct ggml_cgraph * build_phi2() { struct ggml_cgraph * build_phi2() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
@ -9917,6 +10146,10 @@ static struct ggml_cgraph * llama_build_graph(
{ {
result = llm.build_qwen2(); result = llm.build_qwen2();
} break; } break;
case LLM_ARCH_QWEN2MOE:
{
result = llm.build_qwen2moe();
} break;
case LLM_ARCH_PHI2: case LLM_ARCH_PHI2:
{ {
result = llm.build_phi2(); result = llm.build_phi2();
@ -14834,6 +15067,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
case LLM_ARCH_STABLELM: case LLM_ARCH_STABLELM:
case LLM_ARCH_QWEN: case LLM_ARCH_QWEN:
case LLM_ARCH_QWEN2: case LLM_ARCH_QWEN2:
case LLM_ARCH_QWEN2MOE:
case LLM_ARCH_PHI2: case LLM_ARCH_PHI2:
case LLM_ARCH_GEMMA: case LLM_ARCH_GEMMA:
case LLM_ARCH_STARCODER2: case LLM_ARCH_STARCODER2:

View File

@ -1878,6 +1878,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
// unary ops // unary ops
for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) { for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
test_cases.emplace_back(new test_unary((ggml_unary_op) op)); test_cases.emplace_back(new test_unary((ggml_unary_op) op));
test_cases.emplace_back(new test_unary((ggml_unary_op) op, GGML_TYPE_F32, { 7, 13, 19, 23 }));
} }
test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, false)); test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, false));