mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-11-11 21:39:52 +00:00
feat: implemented sigmoid function (ggml/806)
* added sigmoid function * implemented metal kernel for sigmoid * implemented cuda kernel for sigmoid * added sigmoid unary op and incremented count
This commit is contained in:
parent
ef0d5e3ec9
commit
f5ef34e428
@ -2204,6 +2204,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
|||||||
case GGML_UNARY_OP_RELU:
|
case GGML_UNARY_OP_RELU:
|
||||||
ggml_cuda_op_relu(ctx, dst);
|
ggml_cuda_op_relu(ctx, dst);
|
||||||
break;
|
break;
|
||||||
|
case GGML_UNARY_OP_SIGMOID:
|
||||||
|
ggml_cuda_op_sigmoid(ctx, dst);
|
||||||
|
break;
|
||||||
case GGML_UNARY_OP_HARDSIGMOID:
|
case GGML_UNARY_OP_HARDSIGMOID:
|
||||||
ggml_cuda_op_hardsigmoid(ctx, dst);
|
ggml_cuda_op_hardsigmoid(ctx, dst);
|
||||||
break;
|
break;
|
||||||
@ -2716,6 +2719,7 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
|||||||
case GGML_UNARY_OP_GELU:
|
case GGML_UNARY_OP_GELU:
|
||||||
case GGML_UNARY_OP_SILU:
|
case GGML_UNARY_OP_SILU:
|
||||||
case GGML_UNARY_OP_RELU:
|
case GGML_UNARY_OP_RELU:
|
||||||
|
case GGML_UNARY_OP_SIGMOID:
|
||||||
case GGML_UNARY_OP_HARDSIGMOID:
|
case GGML_UNARY_OP_HARDSIGMOID:
|
||||||
case GGML_UNARY_OP_HARDSWISH:
|
case GGML_UNARY_OP_HARDSWISH:
|
||||||
case GGML_UNARY_OP_GELU_QUICK:
|
case GGML_UNARY_OP_GELU_QUICK:
|
||||||
|
@ -48,6 +48,15 @@ static __global__ void relu_f32(const float * x, float * dst, const int k) {
|
|||||||
dst[i] = fmaxf(x[i], 0);
|
dst[i] = fmaxf(x[i], 0);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static __global__ void sigmoid_f32(const float * x, float * dst, const int k) {
|
||||||
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
|
||||||
|
if (i >= k) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
dst[i] = 1.0f / (1.0f + expf(-x[i]));
|
||||||
|
}
|
||||||
|
|
||||||
static __global__ void hardsigmoid_f32(const float * x, float * dst, const int k) {
|
static __global__ void hardsigmoid_f32(const float * x, float * dst, const int k) {
|
||||||
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
|
||||||
@ -108,6 +117,11 @@ static void relu_f32_cuda(const float * x, float * dst, const int k, cudaStream_
|
|||||||
relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static void sigmoid_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
||||||
|
const int num_blocks = (k + CUDA_SIGMOID_BLOCK_SIZE - 1) / CUDA_SIGMOID_BLOCK_SIZE;
|
||||||
|
sigmoid_f32<<<num_blocks, CUDA_SIGMOID_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||||
|
}
|
||||||
|
|
||||||
static void hardsigmoid_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
static void hardsigmoid_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
||||||
const int num_blocks = (k + CUDA_HARDSIGMOID_BLOCK_SIZE - 1) / CUDA_HARDSIGMOID_BLOCK_SIZE;
|
const int num_blocks = (k + CUDA_HARDSIGMOID_BLOCK_SIZE - 1) / CUDA_HARDSIGMOID_BLOCK_SIZE;
|
||||||
hardsigmoid_f32<<<num_blocks, CUDA_HARDSIGMOID_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
hardsigmoid_f32<<<num_blocks, CUDA_HARDSIGMOID_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||||
@ -188,6 +202,18 @@ void ggml_cuda_op_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|||||||
relu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
relu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_op_sigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
float * dst_d = (float *)dst->data;
|
||||||
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
sigmoid_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
||||||
|
}
|
||||||
|
|
||||||
void ggml_cuda_op_hardsigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
void ggml_cuda_op_hardsigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
const ggml_tensor * src0 = dst->src[0];
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
const float * src0_d = (const float *)src0->data;
|
const float * src0_d = (const float *)src0->data;
|
||||||
|
@ -4,6 +4,7 @@
|
|||||||
#define CUDA_SILU_BLOCK_SIZE 256
|
#define CUDA_SILU_BLOCK_SIZE 256
|
||||||
#define CUDA_TANH_BLOCK_SIZE 256
|
#define CUDA_TANH_BLOCK_SIZE 256
|
||||||
#define CUDA_RELU_BLOCK_SIZE 256
|
#define CUDA_RELU_BLOCK_SIZE 256
|
||||||
|
#define CUDA_SIGMOID_BLOCK_SIZE 256
|
||||||
#define CUDA_HARDSIGMOID_BLOCK_SIZE 256
|
#define CUDA_HARDSIGMOID_BLOCK_SIZE 256
|
||||||
#define CUDA_HARDSWISH_BLOCK_SIZE 256
|
#define CUDA_HARDSWISH_BLOCK_SIZE 256
|
||||||
#define CUDA_SQR_BLOCK_SIZE 256
|
#define CUDA_SQR_BLOCK_SIZE 256
|
||||||
@ -18,6 +19,8 @@ void ggml_cuda_op_tanh(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
|||||||
|
|
||||||
void ggml_cuda_op_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
void ggml_cuda_op_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||||
|
|
||||||
|
void ggml_cuda_op_sigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||||
|
|
||||||
void ggml_cuda_op_hardsigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
void ggml_cuda_op_hardsigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||||
|
|
||||||
void ggml_cuda_op_hardswish(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
void ggml_cuda_op_hardswish(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||||
|
15
ggml-metal.m
15
ggml-metal.m
@ -40,6 +40,7 @@ enum ggml_metal_kernel_type {
|
|||||||
GGML_METAL_KERNEL_TYPE_CLAMP,
|
GGML_METAL_KERNEL_TYPE_CLAMP,
|
||||||
GGML_METAL_KERNEL_TYPE_TANH,
|
GGML_METAL_KERNEL_TYPE_TANH,
|
||||||
GGML_METAL_KERNEL_TYPE_RELU,
|
GGML_METAL_KERNEL_TYPE_RELU,
|
||||||
|
GGML_METAL_KERNEL_TYPE_SIGMOID,
|
||||||
GGML_METAL_KERNEL_TYPE_GELU,
|
GGML_METAL_KERNEL_TYPE_GELU,
|
||||||
GGML_METAL_KERNEL_TYPE_GELU_4,
|
GGML_METAL_KERNEL_TYPE_GELU_4,
|
||||||
GGML_METAL_KERNEL_TYPE_GELU_QUICK,
|
GGML_METAL_KERNEL_TYPE_GELU_QUICK,
|
||||||
@ -493,6 +494,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CLAMP, clamp, true);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CLAMP, clamp, true);
|
||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TANH, tanh, true);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TANH, tanh, true);
|
||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RELU, relu, true);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RELU, relu, true);
|
||||||
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SIGMOID, sigmoid, true);
|
||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU, gelu, true);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU, gelu, true);
|
||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_4, gelu_4, true);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_4, gelu_4, true);
|
||||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK, gelu_quick, true);
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK, gelu_quick, true);
|
||||||
@ -730,6 +732,7 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const
|
|||||||
switch (ggml_get_unary_op(op)) {
|
switch (ggml_get_unary_op(op)) {
|
||||||
case GGML_UNARY_OP_TANH:
|
case GGML_UNARY_OP_TANH:
|
||||||
case GGML_UNARY_OP_RELU:
|
case GGML_UNARY_OP_RELU:
|
||||||
|
case GGML_UNARY_OP_SIGMOID:
|
||||||
case GGML_UNARY_OP_GELU:
|
case GGML_UNARY_OP_GELU:
|
||||||
case GGML_UNARY_OP_GELU_QUICK:
|
case GGML_UNARY_OP_GELU_QUICK:
|
||||||
case GGML_UNARY_OP_SILU:
|
case GGML_UNARY_OP_SILU:
|
||||||
@ -1237,6 +1240,18 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||||||
|
|
||||||
const int64_t n = ggml_nelements(dst);
|
const int64_t n = ggml_nelements(dst);
|
||||||
|
|
||||||
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||||
|
} break;
|
||||||
|
case GGML_UNARY_OP_SIGMOID:
|
||||||
|
{
|
||||||
|
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SIGMOID].pipeline;
|
||||||
|
|
||||||
|
[encoder setComputePipelineState:pipeline];
|
||||||
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||||
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||||
|
|
||||||
|
const int64_t n = ggml_nelements(dst);
|
||||||
|
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||||
} break;
|
} break;
|
||||||
case GGML_UNARY_OP_GELU:
|
case GGML_UNARY_OP_GELU:
|
||||||
|
@ -229,6 +229,13 @@ kernel void kernel_relu(
|
|||||||
dst[tpig] = max(0.0f, src0[tpig]);
|
dst[tpig] = max(0.0f, src0[tpig]);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
kernel void kernel_sigmoid(
|
||||||
|
device const float * src0,
|
||||||
|
device float * dst,
|
||||||
|
uint tpig[[thread_position_in_grid]]) {
|
||||||
|
dst[tpig] = 1.0f / (1.0f + exp(-src0[tpig]));
|
||||||
|
}
|
||||||
|
|
||||||
kernel void kernel_tanh(
|
kernel void kernel_tanh(
|
||||||
device const float * src0,
|
device const float * src0,
|
||||||
device float * dst,
|
device float * dst,
|
||||||
|
73
ggml.c
73
ggml.c
@ -1949,6 +1949,7 @@ inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) {
|
|||||||
inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
|
inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
|
||||||
inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
|
inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
|
||||||
inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
|
inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
|
||||||
|
inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
|
||||||
// TODO: optimize performance
|
// TODO: optimize performance
|
||||||
inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
|
inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
|
||||||
inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
|
inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
|
||||||
@ -2329,6 +2330,7 @@ static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
|
|||||||
"TANH",
|
"TANH",
|
||||||
"ELU",
|
"ELU",
|
||||||
"RELU",
|
"RELU",
|
||||||
|
"SIGMOID",
|
||||||
"GELU",
|
"GELU",
|
||||||
"GELU_QUICK",
|
"GELU_QUICK",
|
||||||
"SILU",
|
"SILU",
|
||||||
@ -2336,7 +2338,7 @@ static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
|
|||||||
"HARDSIGMOID",
|
"HARDSIGMOID",
|
||||||
};
|
};
|
||||||
|
|
||||||
static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
|
static_assert(GGML_UNARY_OP_COUNT == 13, "GGML_UNARY_OP_COUNT != 13");
|
||||||
|
|
||||||
|
|
||||||
static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
|
static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
|
||||||
@ -4561,6 +4563,20 @@ struct ggml_tensor * ggml_leaky_relu(
|
|||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// ggml_sigmoid
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_sigmoid(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a) {
|
||||||
|
return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_sigmoid_inplace(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a) {
|
||||||
|
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
|
||||||
|
}
|
||||||
|
|
||||||
// ggml_gelu
|
// ggml_gelu
|
||||||
|
|
||||||
struct ggml_tensor * ggml_gelu(
|
struct ggml_tensor * ggml_gelu(
|
||||||
@ -10852,6 +10868,52 @@ static void ggml_compute_forward_relu(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// ggml_compute_forward_sigmoid
|
||||||
|
|
||||||
|
static void ggml_compute_forward_sigmoid_f32(
|
||||||
|
const struct ggml_compute_params * params,
|
||||||
|
struct ggml_tensor * dst) {
|
||||||
|
|
||||||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||||||
|
|
||||||
|
assert(params->ith == 0);
|
||||||
|
assert(ggml_are_same_shape(src0, dst));
|
||||||
|
|
||||||
|
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int n = ggml_nrows(src0);
|
||||||
|
const int nc = src0->ne[0];
|
||||||
|
|
||||||
|
assert(dst->nb[0] == sizeof(float));
|
||||||
|
assert(src0->nb[0] == sizeof(float));
|
||||||
|
|
||||||
|
for (int i = 0; i < n; i++) {
|
||||||
|
ggml_vec_sigmoid_f32(nc,
|
||||||
|
(float *) ((char *) dst->data + i*( dst->nb[1])),
|
||||||
|
(float *) ((char *) src0->data + i*(src0->nb[1])));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_compute_forward_sigmoid(
|
||||||
|
const struct ggml_compute_params * params,
|
||||||
|
struct ggml_tensor * dst) {
|
||||||
|
|
||||||
|
const struct ggml_tensor * src0 = dst->src[0];
|
||||||
|
|
||||||
|
switch (src0->type) {
|
||||||
|
case GGML_TYPE_F32:
|
||||||
|
{
|
||||||
|
ggml_compute_forward_sigmoid_f32(params, dst);
|
||||||
|
} break;
|
||||||
|
default:
|
||||||
|
{
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
} break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
// ggml_compute_forward_gelu
|
// ggml_compute_forward_gelu
|
||||||
|
|
||||||
static void ggml_compute_forward_gelu_f32(
|
static void ggml_compute_forward_gelu_f32(
|
||||||
@ -16617,6 +16679,10 @@ static void ggml_compute_forward_unary(
|
|||||||
{
|
{
|
||||||
ggml_compute_forward_relu(params, dst);
|
ggml_compute_forward_relu(params, dst);
|
||||||
} break;
|
} break;
|
||||||
|
case GGML_UNARY_OP_SIGMOID:
|
||||||
|
{
|
||||||
|
ggml_compute_forward_sigmoid(params, dst);
|
||||||
|
} break;
|
||||||
case GGML_UNARY_OP_GELU:
|
case GGML_UNARY_OP_GELU:
|
||||||
{
|
{
|
||||||
ggml_compute_forward_gelu(params, dst);
|
ggml_compute_forward_gelu(params, dst);
|
||||||
@ -18601,6 +18667,10 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
|
|||||||
zero_table);
|
zero_table);
|
||||||
}
|
}
|
||||||
} break;
|
} break;
|
||||||
|
case GGML_UNARY_OP_SIGMOID:
|
||||||
|
{
|
||||||
|
GGML_ASSERT(false); // TODO: not implemented
|
||||||
|
} break;
|
||||||
case GGML_UNARY_OP_GELU:
|
case GGML_UNARY_OP_GELU:
|
||||||
{
|
{
|
||||||
GGML_ASSERT(false); // TODO: not implemented
|
GGML_ASSERT(false); // TODO: not implemented
|
||||||
@ -19130,6 +19200,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_
|
|||||||
case GGML_UNARY_OP_TANH:
|
case GGML_UNARY_OP_TANH:
|
||||||
case GGML_UNARY_OP_ELU:
|
case GGML_UNARY_OP_ELU:
|
||||||
case GGML_UNARY_OP_RELU:
|
case GGML_UNARY_OP_RELU:
|
||||||
|
case GGML_UNARY_OP_SIGMOID:
|
||||||
case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
|
case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
|
||||||
case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
|
case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
|
||||||
{
|
{
|
||||||
|
9
ggml.h
9
ggml.h
@ -519,6 +519,7 @@ extern "C" {
|
|||||||
GGML_UNARY_OP_TANH,
|
GGML_UNARY_OP_TANH,
|
||||||
GGML_UNARY_OP_ELU,
|
GGML_UNARY_OP_ELU,
|
||||||
GGML_UNARY_OP_RELU,
|
GGML_UNARY_OP_RELU,
|
||||||
|
GGML_UNARY_OP_SIGMOID,
|
||||||
GGML_UNARY_OP_GELU,
|
GGML_UNARY_OP_GELU,
|
||||||
GGML_UNARY_OP_GELU_QUICK,
|
GGML_UNARY_OP_GELU_QUICK,
|
||||||
GGML_UNARY_OP_SILU,
|
GGML_UNARY_OP_SILU,
|
||||||
@ -1073,6 +1074,14 @@ extern "C" {
|
|||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a);
|
struct ggml_tensor * a);
|
||||||
|
|
||||||
|
GGML_API struct ggml_tensor * ggml_sigmoid(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a);
|
||||||
|
|
||||||
|
GGML_API struct ggml_tensor * ggml_sigmoid_inplace(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a);
|
||||||
|
|
||||||
GGML_API struct ggml_tensor * ggml_gelu(
|
GGML_API struct ggml_tensor * ggml_gelu(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a);
|
struct ggml_tensor * a);
|
||||||
|
Loading…
Reference in New Issue
Block a user