From f83351f9a62a6262f1fc3d08f320033089cddfb5 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Thu, 6 Jun 2024 16:30:58 +0300 Subject: [PATCH] imatrix : migrate to gpt_params (#7771) * imatrix : migrate to gpt_params ggml-ci * imatrix : add --save-frequency cli arg * common : fix --no-ppl --- common/common.cpp | 75 ++++++++++- common/common.h | 99 +++++++------- examples/imatrix/README.md | 11 +- examples/imatrix/imatrix.cpp | 241 +++++++++++------------------------ examples/server/server.cpp | 2 +- 5 files changed, 213 insertions(+), 215 deletions(-) diff --git a/common/common.cpp b/common/common.cpp index c8df9a4ce..601bd2164 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -273,6 +273,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { } } catch (const std::invalid_argument & ex) { fprintf(stderr, "%s\n", ex.what()); + params = params_org; return false; } @@ -408,6 +409,20 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa } return true; } + if (arg == "--in-file") { + if (++i >= argc) { + invalid_param = true; + return true; + } + std::ifstream file(argv[i]); + if (!file) { + fprintf(stderr, "error: failed to open file '%s'\n", argv[i]); + invalid_param = true; + return true; + } + params.in_files.push_back(argv[i]); + return true; + } if (arg == "-n" || arg == "--predict" || arg == "--n-predict") { if (++i >= argc) { invalid_param = true; @@ -1081,7 +1096,15 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa return true; } if (arg == "-v" || arg == "--verbose") { - params.verbose = true; + params.verbosity = 1; + return true; + } + if (arg == "--verbosity") { + if (++i >= argc) { + invalid_param = true; + return true; + } + params.verbosity = std::stoi(argv[i]); return true; } if (arg == "--verbose-prompt") { @@ -1537,6 +1560,46 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa params.i_pos = std::stoi(argv[i]); return true; } + if (arg == "-o" || arg == "--output" || arg == "--output-file") { + if (++i >= argc) { + invalid_param = true; + return true; + } + params.out_file = argv[i]; + return true; + } + if (arg == "-ofreq" || arg == "--output-frequency") { + if (++i >= argc) { + invalid_param = true; + return true; + } + params.n_out_freq = std::stoi(argv[i]); + return true; + } + if (arg == "--save-frequency") { + if (++i >= argc) { + invalid_param = true; + return true; + } + params.n_save_freq = std::stoi(argv[i]); + return true; + } + if (arg == "--process-output") { + params.process_output = true; + return true; + } + if (arg == "--no-ppl") { + params.compute_ppl = false; + return true; + } + if (arg == "--chunk" || arg == "--from-chunk") { + if (++i >= argc) { + invalid_param = true; + return true; + } + params.i_chunk = std::stoi(argv[i]); + return true; + } #ifndef LOG_DISABLE_LOGS // Parse args for logging parameters if (log_param_single_parse(argv[i])) { @@ -1612,6 +1675,7 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param options.push_back({ "*", "-h, --help, --usage", "print usage and exit" }); options.push_back({ "*", " --version", "show version and build info" }); options.push_back({ "*", "-v, --verbose", "print verbose information" }); + options.push_back({ "*", " --verbosity N", "set specific verbosity level (default: %d)", params.verbosity }); options.push_back({ "*", " --verbose-prompt", "print a verbose prompt before generation (default: %s)", params.verbose_prompt ? "true" : "false" }); options.push_back({ "*", " --no-display-prompt", "don't print prompt at generation (default: %s)", !params.display_prompt ? "true" : "false" }); options.push_back({ "*", "-co, --color", "colorise output to distinguish prompt and user input from generations (default: %s)", params.use_color ? "true" : "false" }); @@ -1637,6 +1701,7 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param options.push_back({ "*", "-fa, --flash-attn", "enable Flash Attention (default: %s)", params.flash_attn ? "enabled" : "disabled" }); options.push_back({ "*", "-p, --prompt PROMPT", "prompt to start generation with (default: '%s')", params.prompt.c_str() }); options.push_back({ "*", "-f, --file FNAME", "a file containing the prompt (default: none)" }); + options.push_back({ "*", " --in-file FNAME", "an input file (repeat to specify multiple files)" }); options.push_back({ "*", "-bf, --binary-file FNAME", "binary file containing the prompt (default: none)" }); options.push_back({ "*", "-e, --escape", "process escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\) (default: %s)", params.escape ? "true" : "false" }); options.push_back({ "*", " --no-escape", "do not process escape sequences" }); @@ -1804,6 +1869,14 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param options.push_back({ "passkey", " --junk N", "number of times to repeat the junk text (default: %d)", params.n_junk }); options.push_back({ "passkey", " --pos N", "position of the passkey in the junk text (default: %d)", params.i_pos }); + options.push_back({ "imatrix" }); + options.push_back({ "imatrix", "-o, --output FNAME", "output file (default: '%s')", params.out_file.c_str() }); + options.push_back({ "imatrix", " --output-frequency N", "output the imatrix every N iterations (default: %d)", params.n_out_freq }); + options.push_back({ "imatrix", " --save-frequency N", "save an imatrix copy every N iterations (default: %d)", params.n_save_freq }); + options.push_back({ "imatrix", " --process-output", "collect data for the output tensor (default: %s)", params.process_output ? "true" : "false" }); + options.push_back({ "imatrix", " --no-ppl", "do not compute perplexity (default: %s)", params.compute_ppl ? "true" : "false" }); + options.push_back({ "imatrix", " --chunk N", "start processing the input from chunk N (default: %d)", params.i_chunk }); + options.push_back({ "bench" }); options.push_back({ "bench", "-pps", "is the prompt shared across parallel sequences (default: %s)", params.is_pp_shared ? "true" : "false" }); options.push_back({ "bench", "-npp n0,n1,...", "number of prompt tokens" }); diff --git a/common/common.h b/common/common.h index e0a08a61b..de6238e27 100644 --- a/common/common.h +++ b/common/common.h @@ -56,43 +56,42 @@ struct gpt_params { uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed int32_t n_threads = cpu_get_num_math(); - int32_t n_threads_draft = -1; - int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads) - int32_t n_threads_batch_draft = -1; - int32_t n_predict = -1; // new tokens to predict - int32_t n_ctx = 0; // context size - int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS) - int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS) - int32_t n_keep = 0; // number of tokens to keep from initial prompt - int32_t n_draft = 5; // number of tokens to draft during speculative decoding - int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited) - int32_t n_parallel = 1; // number of parallel sequences to decode - int32_t n_sequences = 1; // number of sequences to decode - float p_split = 0.1f; // speculative decoding split probability - int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default) - int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default) - llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs - int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors - float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs - int32_t n_beams = 0; // if non-zero then use beam search of given width. - int32_t grp_attn_n = 1; // group-attention factor - int32_t grp_attn_w = 512; // group-attention width - int32_t n_print = -1; // print token count every n tokens (-1 = disabled) - float rope_freq_base = 0.0f; // RoPE base frequency - float rope_freq_scale = 0.0f; // RoPE frequency scaling factor + int32_t n_threads_draft = -1; + int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads) + int32_t n_threads_batch_draft = -1; + int32_t n_predict = -1; // new tokens to predict + int32_t n_ctx = 0; // context size + int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS) + int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS) + int32_t n_keep = 0; // number of tokens to keep from initial prompt + int32_t n_draft = 5; // number of tokens to draft during speculative decoding + int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited) + int32_t n_parallel = 1; // number of parallel sequences to decode + int32_t n_sequences = 1; // number of sequences to decode + float p_split = 0.1f; // speculative decoding split probability + int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default) + int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default) + int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors + float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs + int32_t n_beams = 0; // if non-zero then use beam search of given width. + int32_t grp_attn_n = 1; // group-attention factor + int32_t grp_attn_w = 512; // group-attention width + int32_t n_print = -1; // print token count every n tokens (-1 = disabled) + float rope_freq_base = 0.0f; // RoPE base frequency + float rope_freq_scale = 0.0f; // RoPE frequency scaling factor float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor - float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor + float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor float yarn_beta_fast = 32.0f; // YaRN low correction dim - float yarn_beta_slow = 1.0f; // YaRN high correction dim - int32_t yarn_orig_ctx = 0; // YaRN original context length + float yarn_beta_slow = 1.0f; // YaRN high correction dim + int32_t yarn_orig_ctx = 0; // YaRN original context length float defrag_thold = -1.0f; // KV cache defragmentation threshold - std::string rpc_servers = ""; // comma separated list of RPC servers ggml_backend_sched_eval_callback cb_eval = nullptr; void * cb_eval_user_data = nullptr; ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED; + enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED; enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings @@ -114,7 +113,9 @@ struct gpt_params { std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding std::string logits_file = ""; // file for saving *all* logits + std::string rpc_servers = ""; // comma separated list of RPC servers + std::vector in_files; // all input files std::vector antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts) std::vector kv_overrides; @@ -124,23 +125,24 @@ struct gpt_params { std::vector control_vectors; // control vector with user defined scale + int32_t verbosity = 0; int32_t control_vector_layer_start = -1; // layer range for control vector int32_t control_vector_layer_end = -1; // layer range for control vector - int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used. - int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line - // (which is more convenient to use for plotting) - // - bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt - size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score + int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used. + int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line + // (which is more convenient to use for plotting) + // + bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt + size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score - bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt - size_t winogrande_tasks= 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed + bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt + size_t winogrande_tasks = 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed - bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt - size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed + bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt + size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed - bool kl_divergence = false; // compute KL divergence + bool kl_divergence = false; // compute KL divergence bool usage = false; // print usage bool use_color = false; // use color to distinguish generations and inputs @@ -163,7 +165,6 @@ struct gpt_params { bool logits_all = false; // return logits for all tokens in the batch bool use_mmap = true; // use mmap for faster loads bool use_mlock = false; // use mlock to keep model in memory - bool verbose = false; bool verbose_prompt = false; // print prompt tokens before generation bool display_prompt = true; // print prompt before generation bool infill = false; // use infill mode @@ -180,10 +181,10 @@ struct gpt_params { std::vector image; // path to image file(s) // server params - int32_t port = 8080; - int32_t timeout_read = 600; - int32_t timeout_write = timeout_read; - int32_t n_threads_http = -1; + int32_t port = 8080; // server listens on this network port + int32_t timeout_read = 600; // http read timeout in seconds + int32_t timeout_write = timeout_read; // http write timeout in seconds + int32_t n_threads_http = -1; // number of threads to use for http server (-1 = use n_threads) std::string hostname = "127.0.0.1"; std::string public_path = ""; @@ -219,6 +220,16 @@ struct gpt_params { // passkey params int32_t n_junk = 250; // number of times to repeat the junk text int32_t i_pos = -1; // position of the passkey in the junk text + + // imatrix params + std::string out_file = "imatrix.dat"; // save the resulting imatrix to this file + + int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations + int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations + int32_t i_chunk = 0; // start processing from this chunk + + bool process_output = false; // collect data for the output tensor + bool compute_ppl = true; // whether to compute perplexity }; void gpt_params_handle_model_default(gpt_params & params); diff --git a/examples/imatrix/README.md b/examples/imatrix/README.md index 458c01b87..866ca9f56 100644 --- a/examples/imatrix/README.md +++ b/examples/imatrix/README.md @@ -6,16 +6,19 @@ More information is available here: https://github.com/ggerganov/llama.cpp/pull/ ## Usage ``` -./imatrix -m -f [-o ] [--verbosity ] - [-ofreq num_chunks] [-ow <0 or 1>] [other common params] +./imatrix \ + -m model.gguf -f some-text.txt [-o imatrix.dat] [--process-output] [--verbosity 1] \ + [--no-ppl] [--chunk 123] [--output-frequency 10] [--save-frequency 0] \ + [--in-file imatrix-prev-0.dat --in-file imatrix-prev-1.dat ...] ``` Here `-m` with a model name and `-f` with a file containing training data (such as e.g. `wiki.train.raw`) are mandatory. The parameters in square brackets are optional and have the following meaning: * `-o` (or `--output-file`) specifies the name of the file where the computed data will be stored. If missing `imatrix.dat` is used. * `--verbosity` specifies the verbosity level. If set to `0`, no output other than the perplexity of the processed chunks will be generated. If set to `1`, each time the results are saved a message is written to `stderr`. If `>=2`, a message is output each time data is collected for any tensor. Default verbosity level is `1`. -* `-ofreq` (or `--output-frequency`) specifies how often the so far computed result is saved to disk. Default is 10 (i.e., every 10 chunks) -* `-ow` (or `--output-weight`) specifies if data will be collected for the `output.weight` tensor. My experience is that it is better to not utilize the importance matrix when quantizing `output.weight`, so this is set to `false` by default. +* `--output-frequency` specifies how often the so far computed result is saved to disk. Default is 10 (i.e., every 10 chunks) +* `--save-frequency` specifies how often to save a copy of the imatrix in a separate file. Default is 0 (i.e., never) +* `--process-output` specifies if data will be collected for the `output.weight` tensor. My experience is that it is better to not utilize the importance matrix when quantizing `output.weight`, so this is set to `false` by default. For faster computation, make sure to use GPU offloading via the `-ngl` argument diff --git a/examples/imatrix/imatrix.cpp b/examples/imatrix/imatrix.cpp index e050c09d2..38420041c 100644 --- a/examples/imatrix/imatrix.cpp +++ b/examples/imatrix/imatrix.cpp @@ -17,39 +17,37 @@ #pragma warning(disable: 4244 4267) // possible loss of data #endif +static void print_usage(int argc, char ** argv, const gpt_params & params) { + gpt_params_print_usage(argc, argv, params); + + LOG_TEE("\nexample usage:\n"); + LOG_TEE("\n %s \\\n" + " -m model.gguf -f some-text.txt [-o imatrix.dat] [--process-output] [--verbosity 1] \\\n" + " [--no-ppl] [--chunk 123] [--output-frequency 10] [--save-frequency 0] \\\n" + " [--in-file imatrix-prev-0.dat --in-file imatrix-prev-1.dat ...]\n" , argv[0]); + LOG_TEE("\n"); +} + struct Stats { std::vector values; std::vector counts; int ncall = 0; }; -struct StatParams { - std::string dataset; - std::string ofile = "imatrix.dat"; - int n_output_frequency = 10; - int verbosity = 1; - int keep_every = 0; - bool collect_output_weight = false; -}; - class IMatrixCollector { public: IMatrixCollector() = default; - void set_parameters(StatParams&& params) { m_params = std::move(params); } + void set_params(gpt_params params) { m_params = std::move(params); } bool collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data); - void save_imatrix() const; - bool load_imatrix(const char * file_name, bool add); - static bool load_imatrix(const char * file_name, std::unordered_map& imatrix); + void save_imatrix(int ncall = -1) const; + bool load_imatrix(const char * file_name); private: std::unordered_map m_stats; - StatParams m_params; + gpt_params m_params; std::mutex m_mutex; int m_last_call = 0; std::vector m_src1_data; std::vector m_ids; // the expert ids from ggml_mul_mat_id - // - void save_imatrix(const char * file_name, const char * dataset) const; - void keep_imatrix(int ncall) const; }; // remove any prefix and suffixes from the name @@ -85,7 +83,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * if (t->op != GGML_OP_MUL_MAT) return false; // why are small batches ignored (<16 tokens)? if (src1->ne[1] < 16 || src1->type != GGML_TYPE_F32) return false; - if (!(wname.substr(0, 4) == "blk." || (m_params.collect_output_weight && wname == "output.weight"))) return false; + if (!(wname.substr(0, 4) == "blk." || (m_params.process_output && wname == "output.weight"))) return false; return true; } @@ -158,16 +156,16 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * } if (e.ncall > m_last_call) { m_last_call = e.ncall; - if (m_last_call % m_params.n_output_frequency == 0) { + if (m_last_call % m_params.n_out_freq == 0) { save_imatrix(); } - if (m_params.keep_every > 0 && m_last_call%m_params.keep_every == 0) { - keep_imatrix(m_last_call); + if (m_params.n_save_freq > 0 && m_last_call%m_params.n_save_freq == 0) { + save_imatrix(m_last_call); } } } } else { - auto& e = m_stats[wname]; + auto & e = m_stats[wname]; if (e.values.empty()) { e.values.resize(src1->ne[0], 0); e.counts.resize(src1->ne[0], 0); @@ -189,11 +187,11 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * } if (e.ncall > m_last_call) { m_last_call = e.ncall; - if (m_last_call % m_params.n_output_frequency == 0) { + if (m_last_call % m_params.n_out_freq == 0) { save_imatrix(); } - if (m_params.keep_every > 0 && m_last_call%m_params.keep_every == 0) { - keep_imatrix(m_last_call); + if (m_params.n_save_freq > 0 && m_last_call%m_params.n_save_freq == 0) { + save_imatrix(m_last_call); } } } @@ -201,19 +199,17 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * return true; } -void IMatrixCollector::save_imatrix() const { - save_imatrix(m_params.ofile.empty() ? "imatrix.dat" : m_params.ofile.c_str(), m_params.dataset.c_str()); -} +void IMatrixCollector::save_imatrix(int ncall) const { + auto fname = m_params.out_file; + if (fname.empty()) { + fname = "imatrix.dat"; + } -void IMatrixCollector::keep_imatrix(int ncall) const { - auto file_name = m_params.ofile; - if (file_name.empty()) file_name = "imatrix.dat"; - file_name += ".at_"; - file_name += std::to_string(ncall); - save_imatrix(file_name.c_str(), m_params.dataset.c_str()); -} + if (ncall > 0) { + fname += ".at_"; + fname += std::to_string(ncall); + } -void IMatrixCollector::save_imatrix(const char * fname, const char * dataset) const { std::ofstream out(fname, std::ios::binary); int n_entries = m_stats.size(); out.write((const char *) &n_entries, sizeof(n_entries)); @@ -236,26 +232,28 @@ void IMatrixCollector::save_imatrix(const char * fname, const char * dataset) co // Write the number of call the matrix was computed with out.write((const char *) &m_last_call, sizeof(m_last_call)); - // Write the dataset name at the end of the file to later on specify it in quantize - int n_dataset = strlen(dataset); - out.write((const char *) &n_dataset, sizeof(n_dataset)); - out.write(dataset, n_dataset); + // Write the input filename at the end of the file to later on specify it in quantize + { + int len = m_params.prompt_file.size(); + out.write((const char *) &len, sizeof(len)); + out.write(m_params.prompt_file.c_str(), len); + } if (m_params.verbosity > 0) { - fprintf(stderr, "\n%s: stored collected data after %d chunks in %s\n", __func__, m_last_call, fname); + fprintf(stderr, "\n%s: stored collected data after %d chunks in %s\n", __func__, m_last_call, fname.c_str()); } } -bool IMatrixCollector::load_imatrix(const char * imatrix_file, std::unordered_map& imatrix_data) { - std::ifstream in(imatrix_file, std::ios::binary); +bool IMatrixCollector::load_imatrix(const char * fname) { + std::ifstream in(fname, std::ios::binary); if (!in) { - printf("%s: failed to open %s\n",__func__,imatrix_file); + printf("%s: failed to open %s\n",__func__, fname); return false; } int n_entries; in.read((char*)&n_entries, sizeof(n_entries)); if (in.fail() || n_entries < 1) { - printf("%s: no data in file %s\n", __func__, imatrix_file); + printf("%s: no data in file %s\n", __func__, fname); return false; } for (int i = 0; i < n_entries; ++i) { @@ -263,23 +261,22 @@ bool IMatrixCollector::load_imatrix(const char * imatrix_file, std::unordered_ma std::vector name_as_vec(len+1); in.read((char *)name_as_vec.data(), len); if (in.fail()) { - printf("%s: failed reading name for entry %d from %s\n",__func__,i+1,imatrix_file); + printf("%s: failed reading name for entry %d from %s\n",__func__,i+1, fname); return false; } name_as_vec[len] = 0; std::string name{name_as_vec.data()}; - auto& e = imatrix_data[std::move(name)]; + auto & e = m_stats[std::move(name)]; int ncall; in.read((char*)&ncall, sizeof(ncall)); int nval; in.read((char *)&nval, sizeof(nval)); if (in.fail() || nval < 1) { printf("%s: failed reading number of values for entry %d\n",__func__,i); - imatrix_data = {}; + m_stats = {}; return false; } - // When re-called from load_imatrix() with add set, this will already be created. if (e.values.empty()) { e.values.resize(nval, 0); e.counts.resize(nval, 0); @@ -289,7 +286,7 @@ bool IMatrixCollector::load_imatrix(const char * imatrix_file, std::unordered_ma in.read((char*)tmp.data(), nval*sizeof(float)); if (in.fail()) { printf("%s: failed reading data for entry %d\n",__func__,i); - imatrix_data = {}; + m_stats = {}; return false; } @@ -304,13 +301,6 @@ bool IMatrixCollector::load_imatrix(const char * imatrix_file, std::unordered_ma return true; } -bool IMatrixCollector::load_imatrix(const char * file_name, bool add) { - if (!add) { - m_stats.clear(); - } - return load_imatrix(file_name, m_stats); -} - static IMatrixCollector g_collector; static bool ik_collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) { @@ -324,7 +314,7 @@ struct results_log_softmax { float prob; }; -static std::vector softmax(const std::vector& logits) { +static std::vector softmax(const std::vector & logits) { std::vector probs(logits.size()); float max_logit = logits[0]; for (float v : logits) { @@ -358,8 +348,7 @@ static results_log_softmax log_softmax(int n_vocab, const float * logits, int to static void process_logits( int n_vocab, const float * logits, const int * tokens, int n_token, std::vector & workers, - double & nll, double & nll2, float * logit_history, float * prob_history -) { + double & nll, double & nll2, float * logit_history, float * prob_history) { std::mutex mutex; int counter = 0; auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () { @@ -391,8 +380,7 @@ static void process_logits( } } -static bool compute_imatrix(llama_context * ctx, const gpt_params & params, bool compute_ppl, int from_chunk) { - +static bool compute_imatrix(llama_context * ctx, const gpt_params & params) { const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx)); GGML_ASSERT(llama_add_eos_token(llama_get_model(ctx)) != 1); const int n_ctx = llama_n_ctx(ctx); @@ -405,13 +393,13 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params, bool auto tim2 = std::chrono::high_resolution_clock::now(); fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast(tim2-tim1).count()); - if (from_chunk > 0) { - if (size_t((from_chunk + 2)*n_ctx) >= tokens.size()) { - fprintf(stderr, "%s: there will be not enough tokens left after removing %d chunks\n", __func__, from_chunk); + if (params.i_chunk > 0) { + if (size_t((params.i_chunk + 2)*n_ctx) >= tokens.size()) { + fprintf(stderr, "%s: there will be not enough tokens left after removing %d chunks\n", __func__, params.i_chunk); return false; } - fprintf(stderr, "%s: removing initial %d chunks (%d tokens)\n", __func__, from_chunk, from_chunk*n_ctx); - tokens.erase(tokens.begin(), tokens.begin() + from_chunk*n_ctx); + fprintf(stderr, "%s: removing initial %d chunks (%d tokens)\n", __func__, params.i_chunk, params.i_chunk*n_ctx); + tokens.erase(tokens.begin(), tokens.begin() + params.i_chunk*n_ctx); } if (int(tokens.size()) < 2*n_ctx) { @@ -424,7 +412,7 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params, bool std::vector logit_history; std::vector prob_history; - if (compute_ppl) { + if (params.compute_ppl) { logit_history.resize(tokens.size()); prob_history.resize(tokens.size()); } @@ -446,7 +434,7 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params, bool const int num_batches = (n_ctx + n_batch - 1) / n_batch; std::vector logits; - if (compute_ppl && num_batches > 1) { + if (params.compute_ppl && num_batches > 1) { logits.reserve((size_t)n_ctx * n_vocab); } @@ -482,7 +470,7 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params, bool // restore the original token in case it was set to BOS tokens[batch_start] = token_org; - if (compute_ppl && num_batches > 1) { + if (params.compute_ppl && num_batches > 1) { const auto * batch_logits = llama_get_logits(ctx); logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab); } @@ -501,7 +489,7 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params, bool fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0); } - if (compute_ppl) { + if (params.compute_ppl) { const int first = n_ctx/2; const auto all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx); process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first, @@ -516,7 +504,7 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params, bool } printf("\n"); - if (compute_ppl) { + if (params.compute_ppl) { nll2 /= count; nll /= count; const double ppl = exp(nll); @@ -533,109 +521,32 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params, bool } int main(int argc, char ** argv) { - StatParams sparams; - std::string prev_result_file; - std::string combine_files; - bool compute_ppl = true; - int from_chunk = 0; - std::vector args; - args.push_back(argv[0]); - int iarg = 1; - for (; iarg < argc-1; ++iarg) { - std::string arg{argv[iarg]}; - if (arg == "-o" || arg == "--output-file") { - sparams.ofile = argv[++iarg]; - } - else if (arg == "-ofreq" || arg == "--output-frequency") { - sparams.n_output_frequency = std::stoi(argv[++iarg]); - } - else if (arg == "-ow" || arg == "--output-weight") { - sparams.collect_output_weight = std::stoi(argv[++iarg]); - } - else if (arg == "--verbosity") { - sparams.verbosity = std::stoi(argv[++iarg]); - } else if (arg == "--no-ppl") { - compute_ppl = false; - } else if (arg == "--keep-imatrix") { - sparams.keep_every = std::stoi(argv[++iarg]); - } else if (arg == "--continue-from") { - prev_result_file = argv[++iarg]; - } else if (arg == "--combine") { - combine_files = argv[++iarg]; - } - else if (arg == "--from-chunk") { - from_chunk = std::stoi(argv[++iarg]); - } else { - args.push_back(argv[iarg]); - } - } - if (iarg < argc) { - std::string arg{argv[iarg]}; - if (arg == "--no-ppl") { - compute_ppl = false; - } else { - args.push_back(argv[iarg]); - } - } - gpt_params params; - params.n_batch = 512; + + params.n_ctx = 512; + params.logits_all = true; + params.verbosity = 1; if (!gpt_params_parse(argc, argv, params)) { - gpt_params_print_usage(argc, argv, params); + print_usage(argc, argv, params); return 1; } - params.logits_all = true; params.n_batch = std::min(params.n_batch, params.n_ctx); - print_build_info(); + g_collector.set_params(params); - if (params.seed == LLAMA_DEFAULT_SEED) { - params.seed = time(NULL); - } - - fprintf(stderr, "%s: seed = %u\n", __func__, params.seed); - - std::mt19937 rng(params.seed); - - sparams.dataset = params.prompt_file; - g_collector.set_parameters(std::move(sparams)); - - if (!combine_files.empty()) { - std::vector files; - size_t pos = 0; - while (true) { - auto new_pos = combine_files.find(',', pos); - if (new_pos != std::string::npos) { - files.emplace_back(combine_files.substr(pos, new_pos - pos)); - pos = new_pos + 1; - } else { - files.emplace_back(combine_files.substr(pos)); - break; - } - } - if (files.size() < 2) { - fprintf(stderr, "You must provide at least two comma separated files to use --combine\n"); + for (const auto & in_file : params.in_files) { + printf("%s : loading imatrix from '%s'\n", __func__, in_file.c_str()); + if (!g_collector.load_imatrix(in_file.c_str())) { + fprintf(stderr, "%s : failed to load %s\n", __func__, in_file.c_str()); return 1; } - printf("Combining the following %d files\n", int(files.size())); - for (auto& file : files) { - printf(" %s\n", file.c_str()); - if (!g_collector.load_imatrix(file.c_str(), true)) { - fprintf(stderr, "Failed to load %s\n", file.c_str()); - return 1; - } - } + } + + if (params.in_files.size() > 1) { + printf("%s : saving combined imatrix to '%s'\n", __func__, params.out_file.c_str()); g_collector.save_imatrix(); - return 0; - } - - if (!prev_result_file.empty()) { - if (!g_collector.load_imatrix(prev_result_file.c_str(), false)) { - fprintf(stderr, "=============== Failed to load %s\n", prev_result_file.c_str()); - return 1; - } } llama_backend_init(); @@ -650,6 +561,7 @@ int main(int argc, char ** argv) { // init llama_model * model; llama_context * ctx; + std::tie(model, ctx) = llama_init_from_gpt_params(params); if (model == nullptr || ctx == nullptr) { fprintf(stderr, "%s : failed to init\n", __func__); @@ -668,8 +580,7 @@ int main(int argc, char ** argv) { fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str()); } - bool OK = compute_imatrix(ctx, params, compute_ppl, from_chunk); - if (!OK) { + if (!compute_imatrix(ctx, params)) { return 1; } diff --git a/examples/server/server.cpp b/examples/server/server.cpp index d581cad95..74da81dad 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -2360,7 +2360,7 @@ int main(int argc, char ** argv) { // TODO: not great to use extern vars server_log_json = params.log_json; - server_verbose = params.verbose; + server_verbose = params.verbosity > 0; // struct that contains llama context and inference server_context ctx_server;