diff --git a/examples/llava/MobileVLM-README.md b/examples/llava/MobileVLM-README.md index 9eba791da..c1f361d17 100644 --- a/examples/llava/MobileVLM-README.md +++ b/examples/llava/MobileVLM-README.md @@ -1,11 +1,13 @@ # MobileVLM -Currently this implementation supports [MobileVLM-v1.7](https://huggingface.co/mtgv/MobileVLM-1.7B) variants. +Currently this implementation supports [MobileVLM-1.7B](https://huggingface.co/mtgv/MobileVLM-1.7B) / [MobileVLM_V2-1.7B](https://huggingface.co/mtgv/MobileVLM_V2-1.7B) variants. for more information, please go to [Meituan-AutoML/MobileVLM](https://github.com/Meituan-AutoML/MobileVLM) The implementation is based on llava, and is compatible with llava and mobileVLM. The usage is basically same as llava. +Notice: The overall process of model inference for both **MobilVLM** and **MobilVLM_V2** models is the same, but the process of model conversion is a little different. Therefore, using MobiVLM as an example, the different conversion step will be shown. + ## Usage Build with cmake or run `make llava-cli` to build it. @@ -34,7 +36,7 @@ git clone https://huggingface.co/openai/clip-vit-large-patch14-336 python ./examples/llava/llava-surgery.py -m path/to/MobileVLM-1.7B ``` -3. Use `convert-image-encoder-to-gguf.py` with `--projector-type ldp` to convert the LLaVA image encoder to GGUF: +3. Use `convert-image-encoder-to-gguf.py` with `--projector-type ldp` (for **V2** the arg is `--projector-type ldpv2`) to convert the LLaVA image encoder to GGUF: ```sh python ./examples/llava/convert-image-encoder-to-gguf \ @@ -44,6 +46,14 @@ python ./examples/llava/convert-image-encoder-to-gguf \ --projector-type ldp ``` +```sh +python ./examples/llava/convert-image-encoder-to-gguf \ + -m path/to/clip-vit-large-patch14-336 \ + --llava-projector path/to/MobileVLM-1.7B_V2/llava.projector \ + --output-dir path/to/MobileVLM-1.7B_V2 \ + --projector-type ldpv2 +``` + 4. Use `convert.py` to convert the LLaMA part of LLaVA to GGUF: ```sh diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp index 690bca2eb..6d7b4950f 100644 --- a/examples/llava/clip.cpp +++ b/examples/llava/clip.cpp @@ -119,6 +119,7 @@ static std::string format(const char * fmt, ...) { #define TN_LLAVA_PROJ "mm.%d.%s" #define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s" #define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s" +#define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s" #define TN_IMAGE_NEWLINE "model.image_newline" @@ -126,12 +127,14 @@ enum projector_type { PROJECTOR_TYPE_MLP, PROJECTOR_TYPE_MLP_NORM, PROJECTOR_TYPE_LDP, + PROJECTOR_TYPE_LDPV2, PROJECTOR_TYPE_UNKNOWN, }; static std::map PROJECTOR_TYPE_NAMES = { { PROJECTOR_TYPE_MLP, "mlp" }, { PROJECTOR_TYPE_LDP, "ldp" }, + { PROJECTOR_TYPE_LDPV2, "ldpv2"}, }; @@ -807,6 +810,29 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 } embeddings = block_1; } + else if (ctx->proj_type == PROJECTOR_TYPE_LDPV2) + { + int n_patch = 24; + struct ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings); + mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b); + mlp_0 = ggml_gelu(ctx0, mlp_0); + struct ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0); + mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b); + // mlp_2 ne = [2048, 576, 1, 1] + // // AVG Pool Layer 2*2, strides = 2 + mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 0, 2, 3)); + // mlp_2 ne = [576, 2048, 1, 1] + mlp_2 = ggml_reshape_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]); + // mlp_2 ne [24, 24, 2048, 1] + mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0); + // weight ne = [3, 3, 2048, 1] + struct ggml_tensor * peg_0 = ggml_conv_depthwise_2d(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1); + peg_0 = ggml_add(ctx0, peg_0, mlp_2); + peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3)); + peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b); + peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]); + embeddings = peg_0; + } else { GGML_ASSERT(false); } @@ -1177,7 +1203,18 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { vision_model.mm_model_block_2_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight")); vision_model.mm_model_block_2_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight")); vision_model.mm_model_block_2_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias")); - } else { + } + else if (new_clip->proj_type == PROJECTOR_TYPE_LDPV2) + { + // MobilVLM_V2 projection + vision_model.mm_model_mlp_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 0, "weight")); + vision_model.mm_model_mlp_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 0, "bias")); + vision_model.mm_model_mlp_2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 2, "weight")); + vision_model.mm_model_mlp_2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 2, "bias")); + vision_model.mm_model_peg_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "weight")); + vision_model.mm_model_peg_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "bias")); + } + else { std::string proj_type = PROJECTOR_TYPE_NAMES[new_clip->proj_type]; throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str())); } @@ -1966,6 +2003,9 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) { if (ctx->proj_type == PROJECTOR_TYPE_LDP) { return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0]; } + if (ctx->proj_type == PROJECTOR_TYPE_LDPV2) { + return ctx->vision_model.mm_model_peg_0_b->ne[0]; + } if (ctx->proj_type == PROJECTOR_TYPE_MLP) { return ctx->vision_model.mm_2_b->ne[0]; } diff --git a/examples/llava/convert-image-encoder-to-gguf.py b/examples/llava/convert-image-encoder-to-gguf.py index c69f89ac2..b00bf7c6d 100644 --- a/examples/llava/convert-image-encoder-to-gguf.py +++ b/examples/llava/convert-image-encoder-to-gguf.py @@ -1,6 +1,7 @@ import argparse import os import json +import re import torch import numpy as np @@ -38,9 +39,11 @@ def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_llava: b def get_tensor_name(name: str) -> str: if "projection" in name: return name - if "mm_projector" in name: - return name.replace("model.mm_projector", "mm") + name = name.replace("model.mm_projector", "mm") + name = re.sub(r'mm\.mlp\.mlp', 'mm.model.mlp', name, count=1) + name = re.sub(r'mm\.peg\.peg', 'mm.model.peg', name, count=1) + return name return name.replace("text_model", "t").replace("vision_model", "v").replace("encoder.layers", "blk").replace("embeddings.", "").replace("_proj", "").replace("self_attn.", "attn_").replace("layer_norm", "ln").replace("layernorm", "ln").replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("embedding", "embd").replace("final", "post").replace("layrnorm", "ln") @@ -83,7 +86,7 @@ ap.add_argument("--clip-model-is-vision", action="store_true", required=False, ap.add_argument("--clip-model-is-openclip", action="store_true", required=False, help="The clip model is from openclip (for ViT-SO400M type))") ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.") -ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp", choices=["mlp", "ldp"], default="mlp") +ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2"], default="mlp") ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None) # Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711 # Example --image_mean 0.5 0.5 0.5 --image_std 0.5 0.5 0.5