model: Add support for PhiMoE arch (#11003)

* model: support phimoe

* python linter

* doc: minor

Co-authored-by: ThiloteE <73715071+ThiloteE@users.noreply.github.com>

* doc: minor

Co-authored-by: ThiloteE <73715071+ThiloteE@users.noreply.github.com>

* doc: add phimoe as supported model

ggml-ci

---------

Co-authored-by: ThiloteE <73715071+ThiloteE@users.noreply.github.com>
This commit is contained in:
Pierrick Hymbert 2025-01-09 11:21:41 +01:00 committed by GitHub
parent be0e950c91
commit f8feb4b01a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
10 changed files with 208 additions and 31 deletions

View File

@ -69,6 +69,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- [x] [Qwen models](https://huggingface.co/models?search=Qwen/Qwen) - [x] [Qwen models](https://huggingface.co/models?search=Qwen/Qwen)
- [x] [PLaMo-13B](https://github.com/ggerganov/llama.cpp/pull/3557) - [x] [PLaMo-13B](https://github.com/ggerganov/llama.cpp/pull/3557)
- [x] [Phi models](https://huggingface.co/models?search=microsoft/phi) - [x] [Phi models](https://huggingface.co/models?search=microsoft/phi)
- [x] [PhiMoE](https://github.com/ggerganov/llama.cpp/pull/11003)
- [x] [GPT-2](https://huggingface.co/gpt2) - [x] [GPT-2](https://huggingface.co/gpt2)
- [x] [Orion 14B](https://github.com/ggerganov/llama.cpp/pull/5118) - [x] [Orion 14B](https://github.com/ggerganov/llama.cpp/pull/5118)
- [x] [InternLM2](https://huggingface.co/models?search=internlm2) - [x] [InternLM2](https://huggingface.co/models?search=internlm2)

View File

@ -2562,6 +2562,63 @@ class Phi3MiniModel(Model):
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32)) yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
@Model.register("PhiMoEForCausalLM")
class PhiMoeModel(Phi3MiniModel):
model_arch = gguf.MODEL_ARCH.PHIMOE
_experts: list[dict[str, Tensor]] | None = None
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
# process the experts separately
if name.find("block_sparse_moe.experts") != -1:
n_experts = self.hparams["num_local_experts"]
assert bid is not None
if self._experts is None:
self._experts = [{} for _ in range(self.block_count)]
self._experts[bid][name] = data_torch
if len(self._experts[bid]) >= n_experts * 3:
tensors: list[tuple[str, Tensor]] = []
# merge the experts into a single 3d tensor
for w_name in ["w1", "w2", "w3"]:
datas: list[Tensor] = []
for xid in range(n_experts):
ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
datas.append(self._experts[bid][ename])
del self._experts[bid][ename]
data_torch = torch.stack(datas, dim=0)
merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
new_name = self.map_tensor_name(merged_name)
tensors.append((new_name, data_torch))
return tensors
else:
return []
return [(self.map_tensor_name(name), data_torch)]
def prepare_tensors(self):
super().prepare_tensors()
if self._experts is not None:
# flatten `list[dict[str, Tensor]]` into `list[str]`
experts = [k for d in self._experts for k in d.keys()]
if len(experts) > 0:
raise ValueError(f"Unprocessed experts: {experts}")
@Model.register("PlamoForCausalLM") @Model.register("PlamoForCausalLM")
class PlamoModel(Model): class PlamoModel(Model):
model_arch = gguf.MODEL_ARCH.PLAMO model_arch = gguf.MODEL_ARCH.PLAMO

View File

@ -28,7 +28,7 @@ The required steps to implement for an HF model are:
```python ```python
@Model.register("MyModelForCausalLM") @Model.register("MyModelForCausalLM")
class MyModel(Model): class MyModel(Model):
model_arch = gguf.MODEL_ARCH.GROK model_arch = gguf.MODEL_ARCH.MYMODEL
``` ```
2. Define the layout of the GGUF tensors in [constants.py](/gguf-py/gguf/constants.py) 2. Define the layout of the GGUF tensors in [constants.py](/gguf-py/gguf/constants.py)
@ -79,14 +79,14 @@ Depending on the model configuration, tokenizer, code and tensors layout, you wi
- `Model#set_vocab` - `Model#set_vocab`
- `Model#write_tensors` - `Model#write_tensors`
NOTE: Tensor names must end with `.weight` suffix, that is the convention and several tools like `quantize` expect this to proceed the weights. NOTE: Tensor names must end with `.weight` or `.bias` suffixes, that is the convention and several tools like `quantize` expect this to proceed the weights.
### 2. Define the model architecture in `llama.cpp` ### 2. Define the model architecture in `llama.cpp`
The model params and tensors layout must be defined in `llama.cpp`: The model params and tensors layout must be defined in `llama.cpp`:
1. Define a new `llm_arch` 1. Define a new `llm_arch`
2. Define the tensors layout in `LLM_TENSOR_NAMES` 2. Define the tensors layout in `LLM_TENSOR_NAMES`
3. Add any non standard metadata in `llm_load_hparams` 3. Add any non-standard metadata in `llm_load_hparams`
4. Create the tensors for inference in `llm_load_tensors` 4. Create the tensors for inference in `llm_load_tensors`
5. If the model has a RoPE operation, add the rope type in `llama_rope_type` 5. If the model has a RoPE operation, add the rope type in `llama_rope_type`
@ -96,9 +96,9 @@ NOTE: The dimensions in `ggml` are typically in the reverse order of the `pytorc
This is the funniest part, you have to provide the inference graph implementation of the new model architecture in `llama_build_graph`. This is the funniest part, you have to provide the inference graph implementation of the new model architecture in `llama_build_graph`.
Have a look at existing implementation like `build_llama`, `build_dbrx` or `build_bert`. Have a look at existing implementations like `build_llama`, `build_dbrx` or `build_bert`.
When implementing a new graph, please note that the underlying `ggml` backends might not support them all, support for missing backend operations can be added in another PR. Some `ggml` backends do not support all operations. Backend implementations can be added in a separate PR.
Note: to debug the inference graph: you can use [llama-eval-callback](/examples/eval-callback/). Note: to debug the inference graph: you can use [llama-eval-callback](/examples/eval-callback/).

View File

@ -244,6 +244,7 @@ class MODEL_ARCH(IntEnum):
QWEN2VL = auto() QWEN2VL = auto()
PHI2 = auto() PHI2 = auto()
PHI3 = auto() PHI3 = auto()
PHIMOE = auto()
PLAMO = auto() PLAMO = auto()
CODESHELL = auto() CODESHELL = auto()
ORION = auto() ORION = auto()
@ -428,6 +429,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.QWEN2VL: "qwen2vl", MODEL_ARCH.QWEN2VL: "qwen2vl",
MODEL_ARCH.PHI2: "phi2", MODEL_ARCH.PHI2: "phi2",
MODEL_ARCH.PHI3: "phi3", MODEL_ARCH.PHI3: "phi3",
MODEL_ARCH.PHIMOE: "phimoe",
MODEL_ARCH.PLAMO: "plamo", MODEL_ARCH.PLAMO: "plamo",
MODEL_ARCH.CODESHELL: "codeshell", MODEL_ARCH.CODESHELL: "codeshell",
MODEL_ARCH.ORION: "orion", MODEL_ARCH.ORION: "orion",
@ -940,6 +942,24 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN, MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP, MODEL_TENSOR.FFN_UP,
], ],
MODEL_ARCH.PHIMOE: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FACTORS_LONG,
MODEL_TENSOR.ROPE_FACTORS_SHORT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
],
MODEL_ARCH.CODESHELL: [ MODEL_ARCH.CODESHELL: [
MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.POS_EMBD, MODEL_TENSOR.POS_EMBD,

View File

@ -55,7 +55,7 @@ class TensorNameMap:
# Output # Output
MODEL_TENSOR.OUTPUT: ( MODEL_TENSOR.OUTPUT: (
"embed_out", # gptneox "embed_out", # gptneox
"lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2 "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2 phimoe
"output", # llama-pth bloom internlm2 "output", # llama-pth bloom internlm2
"word_embeddings_for_head", # persimmon "word_embeddings_for_head", # persimmon
"lm_head.linear", # phi2 "lm_head.linear", # phi2
@ -68,7 +68,7 @@ class TensorNameMap:
MODEL_TENSOR.OUTPUT_NORM: ( MODEL_TENSOR.OUTPUT_NORM: (
"gpt_neox.final_layer_norm", # gptneox "gpt_neox.final_layer_norm", # gptneox
"transformer.ln_f", # gpt2 gpt-j falcon jais exaone "transformer.ln_f", # gpt2 gpt-j falcon jais exaone
"model.norm", # llama-hf baichuan internlm2 olmoe olmo2 "model.norm", # llama-hf baichuan internlm2 olmoe olmo2 phimoe
"norm", # llama-pth "norm", # llama-pth
"transformer.norm_f", # mpt dbrx "transformer.norm_f", # mpt dbrx
"ln_f", # refact bloom qwen gpt2 "ln_f", # refact bloom qwen gpt2
@ -108,7 +108,7 @@ class TensorNameMap:
"transformer.h.{bid}.input_layernorm", # falcon7b "transformer.h.{bid}.input_layernorm", # falcon7b
"h.{bid}.input_layernorm", # bloom "h.{bid}.input_layernorm", # bloom
"transformer.h.{bid}.ln_mlp", # falcon40b "transformer.h.{bid}.ln_mlp", # falcon40b
"model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe "model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe phimoe
"layers.{bid}.attention_norm", # llama-pth "layers.{bid}.attention_norm", # llama-pth
"language_model.encoder.layers.{bid}.input_layernorm", # persimmon "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
"model.layers.{bid}.ln1", # yi "model.layers.{bid}.ln1", # yi
@ -152,7 +152,7 @@ class TensorNameMap:
# Attention query # Attention query
MODEL_TENSOR.ATTN_Q: ( MODEL_TENSOR.ATTN_Q: (
"model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2 "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2 phimoe
"model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom "model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom
"layers.{bid}.attention.wq", # llama-pth "layers.{bid}.attention.wq", # llama-pth
"encoder.layer.{bid}.attention.self.query", # bert "encoder.layer.{bid}.attention.self.query", # bert
@ -165,7 +165,7 @@ class TensorNameMap:
# Attention key # Attention key
MODEL_TENSOR.ATTN_K: ( MODEL_TENSOR.ATTN_K: (
"model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2 "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2 phimoe
"model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom "model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom
"layers.{bid}.attention.wk", # llama-pth "layers.{bid}.attention.wk", # llama-pth
"encoder.layer.{bid}.attention.self.key", # bert "encoder.layer.{bid}.attention.self.key", # bert
@ -179,7 +179,7 @@ class TensorNameMap:
# Attention value # Attention value
MODEL_TENSOR.ATTN_V: ( MODEL_TENSOR.ATTN_V: (
"model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 phimoe
"layers.{bid}.attention.wv", # llama-pth "layers.{bid}.attention.wv", # llama-pth
"encoder.layer.{bid}.attention.self.value", # bert "encoder.layer.{bid}.attention.self.value", # bert
"transformer.h.{bid}.attn.v_proj", # gpt-j "transformer.h.{bid}.attn.v_proj", # gpt-j
@ -197,7 +197,7 @@ class TensorNameMap:
"transformer.blocks.{bid}.attn.out_proj", # mpt "transformer.blocks.{bid}.attn.out_proj", # mpt
"transformer.h.{bid}.self_attention.dense", # falcon "transformer.h.{bid}.self_attention.dense", # falcon
"h.{bid}.self_attention.dense", # bloom "h.{bid}.self_attention.dense", # bloom
"model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 phimoe
"model.layers.{bid}.self_attn.linear_attn", # deci "model.layers.{bid}.self_attn.linear_attn", # deci
"layers.{bid}.attention.wo", # llama-pth "layers.{bid}.attention.wo", # llama-pth
"encoder.layer.{bid}.attention.output.dense", # bert "encoder.layer.{bid}.attention.output.dense", # bert
@ -242,7 +242,7 @@ class TensorNameMap:
"transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
"h.{bid}.post_attention_layernorm", # bloom "h.{bid}.post_attention_layernorm", # bloom
"transformer.blocks.{bid}.norm_2", # mpt "transformer.blocks.{bid}.norm_2", # mpt
"model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe "model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe phimoe
"layers.{bid}.ffn_norm", # llama-pth "layers.{bid}.ffn_norm", # llama-pth
"language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
"model.layers.{bid}.ln2", # yi "model.layers.{bid}.ln2", # yi
@ -265,7 +265,7 @@ class TensorNameMap:
MODEL_TENSOR.FFN_GATE_INP: ( MODEL_TENSOR.FFN_GATE_INP: (
"layers.{bid}.feed_forward.gate", # mixtral "layers.{bid}.feed_forward.gate", # mixtral
"model.layers.{bid}.block_sparse_moe.gate", # mixtral "model.layers.{bid}.block_sparse_moe.gate", # mixtral phimoe
"model.layers.{bid}.mlp.gate", # qwen2moe olmoe "model.layers.{bid}.mlp.gate", # qwen2moe olmoe
"transformer.decoder_layer.{bid}.router", # Grok "transformer.decoder_layer.{bid}.router", # Grok
"transformer.blocks.{bid}.ffn.router.layer", # dbrx "transformer.blocks.{bid}.ffn.router.layer", # dbrx
@ -310,10 +310,11 @@ class TensorNameMap:
), ),
MODEL_TENSOR.FFN_UP_EXP: ( MODEL_TENSOR.FFN_UP_EXP: (
"layers.{bid}.feed_forward.experts.w3", # mixtral (merged) "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
"transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged) "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
"transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
"model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged) "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged)
"model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
), ),
MODEL_TENSOR.FFN_UP_SHEXP: ( MODEL_TENSOR.FFN_UP_SHEXP: (
@ -342,10 +343,11 @@ class TensorNameMap:
), ),
MODEL_TENSOR.FFN_GATE_EXP: ( MODEL_TENSOR.FFN_GATE_EXP: (
"layers.{bid}.feed_forward.experts.w1", # mixtral (merged) "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
"transformer.decoder_layer.{bid}.moe.linear", # Grok (merged) "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
"transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
"model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged) "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged)
"model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged)
), ),
MODEL_TENSOR.FFN_GATE_SHEXP: ( MODEL_TENSOR.FFN_GATE_SHEXP: (
@ -387,6 +389,7 @@ class TensorNameMap:
"transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
"model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged) "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged)
"model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe "model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
"model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged)
), ),
MODEL_TENSOR.FFN_DOWN_SHEXP: ( MODEL_TENSOR.FFN_DOWN_SHEXP: (

View File

@ -27,6 +27,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_QWEN2VL, "qwen2vl" }, { LLM_ARCH_QWEN2VL, "qwen2vl" },
{ LLM_ARCH_PHI2, "phi2" }, { LLM_ARCH_PHI2, "phi2" },
{ LLM_ARCH_PHI3, "phi3" }, { LLM_ARCH_PHI3, "phi3" },
{ LLM_ARCH_PHIMOE, "phimoe" },
{ LLM_ARCH_PLAMO, "plamo" }, { LLM_ARCH_PLAMO, "plamo" },
{ LLM_ARCH_CODESHELL, "codeshell" }, { LLM_ARCH_CODESHELL, "codeshell" },
{ LLM_ARCH_ORION, "orion" }, { LLM_ARCH_ORION, "orion" },
@ -584,6 +585,27 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
}, },
}, },
{
LLM_ARCH_PHIMOE,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ROPE_FACTORS_LONG, "rope_factors_long" },
{ LLM_TENSOR_ROPE_FACTORS_SHORT, "rope_factors_short" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
},
},
{ {
LLM_ARCH_PLAMO, LLM_ARCH_PLAMO,
{ {

View File

@ -31,6 +31,7 @@ enum llm_arch {
LLM_ARCH_QWEN2VL, LLM_ARCH_QWEN2VL,
LLM_ARCH_PHI2, LLM_ARCH_PHI2,
LLM_ARCH_PHI3, LLM_ARCH_PHI3,
LLM_ARCH_PHIMOE,
LLM_ARCH_PLAMO, LLM_ARCH_PLAMO,
LLM_ARCH_CODESHELL, LLM_ARCH_CODESHELL,
LLM_ARCH_ORION, LLM_ARCH_ORION,

View File

@ -76,6 +76,7 @@ const char * llm_type_name(llm_type type) {
case MODEL_8x7B: return "8x7B"; case MODEL_8x7B: return "8x7B";
case MODEL_8x22B: return "8x22B"; case MODEL_8x22B: return "8x22B";
case MODEL_16x12B: return "16x12B"; case MODEL_16x12B: return "16x12B";
case MODEL_16x3_8B: return "16x3.8B";
case MODEL_10B_128x3_66B: return "10B+128x3.66B"; case MODEL_10B_128x3_66B: return "10B+128x3.66B";
case MODEL_57B_A14B: return "57B.A14B"; case MODEL_57B_A14B: return "57B.A14B";
case MODEL_27B: return "27B"; case MODEL_27B: return "27B";
@ -661,6 +662,15 @@ void llm_load_hparams(llama_model_loader & ml, llama_model & model) {
throw std::runtime_error("invalid value for sliding_window"); throw std::runtime_error("invalid value for sliding_window");
} }
} break; } break;
case LLM_ARCH_PHIMOE:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 32: model.type = e_model::MODEL_16x3_8B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
case LLM_ARCH_PLAMO: case LLM_ARCH_PLAMO:
{ {
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@ -2094,6 +2104,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
case LLM_ARCH_OLMOE: case LLM_ARCH_OLMOE:
case LLM_ARCH_PHI2: case LLM_ARCH_PHI2:
case LLM_ARCH_PHI3: case LLM_ARCH_PHI3:
case LLM_ARCH_PHIMOE:
case LLM_ARCH_GEMMA: case LLM_ARCH_GEMMA:
case LLM_ARCH_GEMMA2: case LLM_ARCH_GEMMA2:
case LLM_ARCH_STARCODER2: case LLM_ARCH_STARCODER2:

View File

@ -73,6 +73,7 @@ enum llm_type {
MODEL_8x7B, MODEL_8x7B,
MODEL_8x22B, MODEL_8x22B,
MODEL_16x12B, MODEL_16x12B,
MODEL_16x3_8B,
MODEL_10B_128x3_66B, MODEL_10B_128x3_66B,
MODEL_57B_A14B, MODEL_57B_A14B,
MODEL_27B, MODEL_27B,

View File

@ -1212,6 +1212,50 @@ static bool llm_load_tensors(
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff }, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff }, 0);
layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
}
} break;
case LLM_ARCH_PHIMOE:
{
const int64_t n_embd_head = n_embd / n_head;
model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
// output
model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
model.output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, 0);
model.output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), { n_vocab }, 0);
for (int i = 0; i < n_layer; ++i) {
auto & layer = model.layers[i];
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), { n_embd }, 0);
layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, llama_model_loader::TENSOR_NOT_REQUIRED);
if (layer.wqkv == nullptr) {
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
}
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, 0);
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), { n_embd }, 0);
layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0)); layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0)); layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
} }
@ -6266,7 +6310,7 @@ struct llm_build_context {
struct ggml_tensor* attn_norm_output = llm_build_norm(ctx0, inpL, hparams, struct ggml_tensor* attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm, model.layers[il].attn_norm,
NULL, model.layers[il].attn_norm_b,
LLM_NORM_RMS, cb, il); LLM_NORM_RMS, cb, il);
cb(attn_norm_output, "attn_norm", il); cb(attn_norm_output, "attn_norm", il);
@ -6281,8 +6325,7 @@ struct llm_build_context {
Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd))); Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd))); Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa))); Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
} } else {
else {
Qcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq); Qcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
Kcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk); Kcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
Vcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv); Vcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
@ -6326,14 +6369,12 @@ struct llm_build_context {
residual = cur; residual = cur;
cur = llm_build_norm(ctx0, cur, hparams, cur = llm_build_norm(ctx0, cur, hparams,
model.layers[il].ffn_norm, NULL, model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
LLM_NORM_RMS, cb, il); LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il); cb(cur, "ffn_norm", il);
// FF // feed-forward network
// special-case: the up and gate tensors are merged into a single tensor if (model.layers[il].ffn_gate_inp == nullptr) {
// TOOD: support into llm_build_ffn
{
cur = llm_build_ffn(ctx0, lctx, cur, cur = llm_build_ffn(ctx0, lctx, cur,
model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_up, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL,
@ -6341,6 +6382,20 @@ struct llm_build_context {
NULL, NULL,
LLM_FFN_SWIGLU, LLM_FFN_SEQ, cb, il); LLM_FFN_SWIGLU, LLM_FFN_SEQ, cb, il);
cb(cur, "ffn_out", il); cb(cur, "ffn_out", il);
} else {
// MoE branch
cur = llm_build_moe_ffn(ctx0, lctx, cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, true,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
cb, il);
cb(cur, "ffn_moe_out", il);
} }
cur = ggml_add(ctx0, residual, cur); cur = ggml_add(ctx0, residual, cur);
@ -6353,11 +6408,16 @@ struct llm_build_context {
cur = llm_build_norm(ctx0, inpL, hparams, cur = llm_build_norm(ctx0, inpL, hparams,
model.output_norm, model.output_norm,
NULL, model.output_norm_b,
LLM_NORM_RMS, cb, -1); LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1); cb(cur, "result_norm", -1);
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur); cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
if (model.output_b != nullptr) {
cb(cur, "result_output_no_bias", -1);
cur = ggml_add(ctx0, cur, model.output_b);
}
cb(cur, "result_output", -1); cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur); ggml_build_forward_expand(gf, cur);
@ -10536,6 +10596,7 @@ static struct ggml_cgraph * llama_build_graph(
result = llm.build_phi2(); result = llm.build_phi2();
} break; } break;
case LLM_ARCH_PHI3: case LLM_ARCH_PHI3:
case LLM_ARCH_PHIMOE:
{ {
result = llm.build_phi3(); result = llm.build_phi3();
} break; } break;