convert_hf : identify more added control tokens for SPM tokenziers

This makes Gemma and Gemma-2 tokenize pretty much EVERYTHING correctly,
including HTML tags and consecutive spaces,
but it unfortunately requires model re-conversion.

There seems to be a weird behavior of the HF tokenizer for Gemma,
which prefers to use the 16-space token over more lengthy space tokens,
while using the SentencePiece tokenizer does not do this.
(the implementation in llama.cpp has the same behavior as SentencePiece)

* llama : fix wrong pre-tokenization of byte tokens
This commit is contained in:
Francis Couture-Harpin 2024-07-07 23:28:38 -04:00
parent 6e351e0425
commit f9d42c598b
3 changed files with 56 additions and 38 deletions

View File

@ -373,17 +373,28 @@ class Model:
except KeyError:
raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
def does_token_look_special(self, token: str) -> bool:
def does_token_look_special(self, token: str | bytes) -> bool:
if isinstance(token, (bytes, bytearray)):
token_text = token.decode(encoding="utf-8")
elif isinstance(token, memoryview):
token_text = token.tobytes().decode(encoding="utf-8")
else:
token_text = token
# Some models mark some added tokens which ought to be control tokens as not special.
# (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
is_known_special = token in (
seems_special = token_text in (
"<pad>", # deepseek-coder
"<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
)
# TODO: should these be marked as UNUSED instead?
is_known_special = is_known_special or (token.startswith("<unused") and token.endswith(">")) # gemma{,-2}
return is_known_special or (token.startswith(("<|", "<")) and token.endswith(("|>", ">")))
seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
seems_special = seems_special or (token_text.startswith("<") and token_text.endswith(">")) # deepseek-coder
# TODO: should these be marked as UNUSED instead? (maybe not)
seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
return seems_special
# used for GPT-2 BPE and WordPiece vocabs
def get_vocab_base(self) -> tuple[list[str], list[int], str]:
@ -403,17 +414,18 @@ class Model:
for i in range(vocab_size):
if i not in reverse_vocab:
tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.USER_DEFINED)
elif reverse_vocab[i] in added_vocab:
token: str = reverse_vocab[i]
tokens.append(token)
if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
toktypes.append(gguf.TokenType.CONTROL)
else:
toktypes.append(gguf.TokenType.USER_DEFINED)
toktypes.append(gguf.TokenType.UNUSED)
else:
tokens.append(reverse_vocab[i])
toktypes.append(gguf.TokenType.NORMAL)
token: str = reverse_vocab[i]
if token in added_vocab:
if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
toktypes.append(gguf.TokenType.CONTROL)
else:
token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
toktypes.append(gguf.TokenType.USER_DEFINED)
else:
toktypes.append(gguf.TokenType.NORMAL)
tokens.append(token)
return tokens, toktypes, tokpre
@ -572,7 +584,7 @@ class Model:
for i in range(vocab_size):
if i not in reverse_vocab:
tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.USER_DEFINED)
toktypes.append(gguf.TokenType.UNUSED)
elif reverse_vocab[i] in added_vocab:
tokens.append(reverse_vocab[i])
toktypes.append(gguf.TokenType.CONTROL)
@ -657,6 +669,25 @@ class Model:
scores[token_id] = -1000.0
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
if tokenizer_config_file.is_file():
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
tokenizer_config_json = json.load(f)
added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
for token_id, token_data in added_tokens_decoder.items():
token_id = int(token_id)
token: str = token_data["content"]
if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN:
assert tokens[token_id] == token.encode("utf-8")
if token_data.get("special") or self.does_token_look_special(token):
toktypes[token_id] = SentencePieceTokenTypes.CONTROL
else:
token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
scores[token_id] = -1000.0
tokens[token_id] = token.encode("utf-8")
if vocab_size > len(tokens):
pad_count = vocab_size - len(tokens)
logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
@ -1280,7 +1311,7 @@ class StableLMModel(Model):
if (self.dir_model / "tokenizer.json").is_file():
self._set_vocab_gpt2()
else:
# StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
# StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
self._set_vocab_qwen()
def set_gguf_parameters(self):
@ -1592,7 +1623,6 @@ class DbrxModel(Model):
self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
self.gguf_writer.add_file_type(self.ftype)
self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
@ -2412,19 +2442,7 @@ class Gemma2Model(Model):
model_arch = gguf.MODEL_ARCH.GEMMA2
def set_vocab(self):
tokens, scores, toktypes = self._create_vocab_sentencepiece()
# hack: This is required so that we can properly use start/end-of-turn for chat template
for i in range(108):
# including <unusedX>, <start_of_turn>, <end_of_turn>
toktypes[i] = SentencePieceTokenTypes.CONTROL
self.gguf_writer.add_tokenizer_model("llama")
self.gguf_writer.add_tokenizer_pre("default")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_scores(scores)
self.gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
special_vocab.add_to_gguf(self.gguf_writer)
self._set_vocab_sentencepiece()
self.gguf_writer.add_add_space_prefix(False)
@ -3318,7 +3336,7 @@ class ChatGLMModel(Model):
for i in range(vocab_size):
if i not in reverse_vocab:
tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.USER_DEFINED)
toktypes.append(gguf.TokenType.UNUSED)
elif reverse_vocab[i] in added_vocab:
tokens.append(reverse_vocab[i])
if tokenizer.added_tokens_decoder[i].special:

View File

@ -5640,7 +5640,7 @@ static void llm_load_vocab(
// build special tokens cache
{
for (llama_vocab::id id = 0; id < (llama_vocab::id)n_vocab; ++id) {
if (!(vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL)) {
if (vocab.id_to_token[id].attr & (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_USER_DEFINED)) {
vocab.cache_special_tokens.push_back(id);
}
}

View File

@ -20,7 +20,7 @@ from typing import Any, Iterator, cast
from typing_extensions import Buffer
import cffi
from transformers import AutoTokenizer
from transformers import AutoTokenizer, PreTrainedTokenizer
logger = logging.getLogger("test-tokenizer-random")
@ -129,7 +129,7 @@ class Tokenizer:
class TokenizerGroundtruth (Tokenizer):
def __init__(self, dir_tokenizer: str):
self.model = AutoTokenizer.from_pretrained(dir_tokenizer)
self.model: PreTrainedTokenizer = AutoTokenizer.from_pretrained(dir_tokenizer)
# guess BOS and EOS
ids = self.encode("a")
assert 1 <= len(ids) <= 3
@ -143,7 +143,7 @@ class TokenizerGroundtruth (Tokenizer):
self.vocab = list(sorted(self.vocab))
# tokens and lists
self.special_tokens = list(self.model.all_special_tokens)
self.added_tokens = list(self.model.added_tokens_encoder)
self.added_tokens = self.model.batch_decode(self.model.added_tokens_encoder.values(), skip_special_tokens=False)
self.bos_token = self.model.bos_token
self.eos_token = self.model.eos_token
@ -458,8 +458,8 @@ def compare_tokenizers(tokenizer1: TokenizerGroundtruth, tokenizer2: TokenizerLl
i = find_first_mismatch(ids1, ids2)
ids1 = list(ids1)[max(0, i - 2) : i + 5 + 1]
ids2 = list(ids2)[max(0, i - 2) : i + 5 + 1]
logger.error(" Expected: " + str(ids1))
logger.error(" Result: " + str(ids2))
logger.error(" Expected: " + str(ids1) + f" {[tokenizer1.decode([id]) for id in ids1]}")
logger.error(" Result: " + str(ids2) + f" {[tokenizer2.decode([id]) for id in ids2]}")
encode_errors += 1
logger.error(f" {encode_errors=}")
if decode_errors < MAX_ERRORS and not check_detokenizer(text, text1, text2):