mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-24 10:24:35 +00:00
llama : fix pre-tokenization of non-special added tokens (#8228)
* llama : fix mpt and olmo pre-tokenizer * llama : pre-tokenize non-special user-defined tokens first * llama : fix detection of control-like user-defined tokens * convert_hf : identify which user-defined tokens are control tokens Only used in _set_vocab_gpt2() for now. * convert_hf : identify more added control tokens for SPM tokenziers This makes Gemma and Gemma-2 tokenize pretty much EVERYTHING correctly, including HTML tags and consecutive spaces, but it unfortunately requires model re-conversion. There seems to be a weird behavior of the HF tokenizer for Gemma, which prefers to use the 16-space token over more lengthy space tokens, while using the SentencePiece tokenizer does not do this. (the implementation in llama.cpp has the same behavior as SentencePiece) * llama : fix wrong pre-tokenization of byte tokens * llama : fix Viking pre-tokenizer regex The order was previously wrong, which caused errors in some tests. * llama : fix command-r detokenization * convert_hf : reduce usages of the UNKNOWN token type * llama : add UNKNOWN tokens in the special tokens cache * convert_hf : reduce usages of UNKNOWN for InternLM2 This makes the changes from #8321 more consistent with the other changes made here. * test-tokenizer-random : reduce potential confilcts with #8379 * test-tokenizer-random : add a failing edge case for falcon
This commit is contained in:
parent
17eb6aa8a9
commit
fa79495bb4
@ -373,6 +373,29 @@ class Model:
|
|||||||
except KeyError:
|
except KeyError:
|
||||||
raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
|
raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
|
||||||
|
|
||||||
|
def does_token_look_special(self, token: str | bytes) -> bool:
|
||||||
|
if isinstance(token, (bytes, bytearray)):
|
||||||
|
token_text = token.decode(encoding="utf-8")
|
||||||
|
elif isinstance(token, memoryview):
|
||||||
|
token_text = token.tobytes().decode(encoding="utf-8")
|
||||||
|
else:
|
||||||
|
token_text = token
|
||||||
|
|
||||||
|
# Some models mark some added tokens which ought to be control tokens as not special.
|
||||||
|
# (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
|
||||||
|
seems_special = token_text in (
|
||||||
|
"<pad>", # deepseek-coder
|
||||||
|
"<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
|
||||||
|
)
|
||||||
|
|
||||||
|
seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
|
||||||
|
seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
|
||||||
|
|
||||||
|
# TODO: should these be marked as UNUSED instead? (maybe not)
|
||||||
|
seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
|
||||||
|
|
||||||
|
return seems_special
|
||||||
|
|
||||||
# used for GPT-2 BPE and WordPiece vocabs
|
# used for GPT-2 BPE and WordPiece vocabs
|
||||||
def get_vocab_base(self) -> tuple[list[str], list[int], str]:
|
def get_vocab_base(self) -> tuple[list[str], list[int], str]:
|
||||||
tokens: list[str] = []
|
tokens: list[str] = []
|
||||||
@ -391,16 +414,18 @@ class Model:
|
|||||||
for i in range(vocab_size):
|
for i in range(vocab_size):
|
||||||
if i not in reverse_vocab:
|
if i not in reverse_vocab:
|
||||||
tokens.append(f"[PAD{i}]")
|
tokens.append(f"[PAD{i}]")
|
||||||
toktypes.append(gguf.TokenType.USER_DEFINED)
|
toktypes.append(gguf.TokenType.UNUSED)
|
||||||
elif reverse_vocab[i] in added_vocab:
|
|
||||||
tokens.append(reverse_vocab[i])
|
|
||||||
if tokenizer.added_tokens_decoder[i].special:
|
|
||||||
toktypes.append(gguf.TokenType.CONTROL)
|
|
||||||
else:
|
|
||||||
toktypes.append(gguf.TokenType.USER_DEFINED)
|
|
||||||
else:
|
else:
|
||||||
tokens.append(reverse_vocab[i])
|
token: str = reverse_vocab[i]
|
||||||
toktypes.append(gguf.TokenType.NORMAL)
|
if token in added_vocab:
|
||||||
|
if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
|
||||||
|
toktypes.append(gguf.TokenType.CONTROL)
|
||||||
|
else:
|
||||||
|
token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
|
||||||
|
toktypes.append(gguf.TokenType.USER_DEFINED)
|
||||||
|
else:
|
||||||
|
toktypes.append(gguf.TokenType.NORMAL)
|
||||||
|
tokens.append(token)
|
||||||
|
|
||||||
return tokens, toktypes, tokpre
|
return tokens, toktypes, tokpre
|
||||||
|
|
||||||
@ -559,7 +584,7 @@ class Model:
|
|||||||
for i in range(vocab_size):
|
for i in range(vocab_size):
|
||||||
if i not in reverse_vocab:
|
if i not in reverse_vocab:
|
||||||
tokens.append(f"[PAD{i}]")
|
tokens.append(f"[PAD{i}]")
|
||||||
toktypes.append(gguf.TokenType.USER_DEFINED)
|
toktypes.append(gguf.TokenType.UNUSED)
|
||||||
elif reverse_vocab[i] in added_vocab:
|
elif reverse_vocab[i] in added_vocab:
|
||||||
tokens.append(reverse_vocab[i])
|
tokens.append(reverse_vocab[i])
|
||||||
toktypes.append(gguf.TokenType.CONTROL)
|
toktypes.append(gguf.TokenType.CONTROL)
|
||||||
@ -609,7 +634,7 @@ class Model:
|
|||||||
|
|
||||||
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
|
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
|
||||||
scores: list[float] = [-10000.0] * vocab_size
|
scores: list[float] = [-10000.0] * vocab_size
|
||||||
toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
|
toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
|
||||||
|
|
||||||
for token_id in range(tokenizer.vocab_size()):
|
for token_id in range(tokenizer.vocab_size()):
|
||||||
piece = tokenizer.IdToPiece(token_id)
|
piece = tokenizer.IdToPiece(token_id)
|
||||||
@ -644,6 +669,25 @@ class Model:
|
|||||||
scores[token_id] = -1000.0
|
scores[token_id] = -1000.0
|
||||||
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
|
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
|
||||||
|
|
||||||
|
tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
|
||||||
|
if tokenizer_config_file.is_file():
|
||||||
|
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
|
||||||
|
tokenizer_config_json = json.load(f)
|
||||||
|
added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
|
||||||
|
for token_id, token_data in added_tokens_decoder.items():
|
||||||
|
token_id = int(token_id)
|
||||||
|
token: str = token_data["content"]
|
||||||
|
if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
|
||||||
|
assert tokens[token_id] == token.encode("utf-8")
|
||||||
|
if token_data.get("special") or self.does_token_look_special(token):
|
||||||
|
toktypes[token_id] = SentencePieceTokenTypes.CONTROL
|
||||||
|
else:
|
||||||
|
token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
|
||||||
|
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
|
||||||
|
|
||||||
|
scores[token_id] = -1000.0
|
||||||
|
tokens[token_id] = token.encode("utf-8")
|
||||||
|
|
||||||
if vocab_size > len(tokens):
|
if vocab_size > len(tokens):
|
||||||
pad_count = vocab_size - len(tokens)
|
pad_count = vocab_size - len(tokens)
|
||||||
logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
|
logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
|
||||||
@ -1266,7 +1310,7 @@ class StableLMModel(Model):
|
|||||||
if (self.dir_model / "tokenizer.json").is_file():
|
if (self.dir_model / "tokenizer.json").is_file():
|
||||||
self._set_vocab_gpt2()
|
self._set_vocab_gpt2()
|
||||||
else:
|
else:
|
||||||
# StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
|
# StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
|
||||||
self._set_vocab_qwen()
|
self._set_vocab_qwen()
|
||||||
|
|
||||||
def set_gguf_parameters(self):
|
def set_gguf_parameters(self):
|
||||||
@ -1578,7 +1622,6 @@ class DbrxModel(Model):
|
|||||||
self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
|
self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
|
||||||
|
|
||||||
self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
|
self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
|
||||||
self.gguf_writer.add_file_type(self.ftype)
|
|
||||||
|
|
||||||
self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
|
self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
|
||||||
self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
|
self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
|
||||||
@ -1872,7 +1915,7 @@ class Phi3MiniModel(Model):
|
|||||||
|
|
||||||
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
|
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
|
||||||
scores: list[float] = [-10000.0] * vocab_size
|
scores: list[float] = [-10000.0] * vocab_size
|
||||||
toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
|
toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
|
||||||
|
|
||||||
for token_id in range(tokenizer.vocab_size()):
|
for token_id in range(tokenizer.vocab_size()):
|
||||||
|
|
||||||
@ -1917,7 +1960,7 @@ class Phi3MiniModel(Model):
|
|||||||
for token_id, foken_data in added_tokens_decoder.items():
|
for token_id, foken_data in added_tokens_decoder.items():
|
||||||
token_id = int(token_id)
|
token_id = int(token_id)
|
||||||
token = foken_data["content"].encode("utf-8")
|
token = foken_data["content"].encode("utf-8")
|
||||||
if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN:
|
if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
|
||||||
assert tokens[token_id] == token
|
assert tokens[token_id] == token
|
||||||
tokens[token_id] = token
|
tokens[token_id] = token
|
||||||
scores[token_id] = -1000.0
|
scores[token_id] = -1000.0
|
||||||
@ -1933,7 +1976,7 @@ class Phi3MiniModel(Model):
|
|||||||
for foken_data in added_tokens:
|
for foken_data in added_tokens:
|
||||||
token_id = int(foken_data["id"])
|
token_id = int(foken_data["id"])
|
||||||
token = foken_data["content"].encode("utf-8")
|
token = foken_data["content"].encode("utf-8")
|
||||||
if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN:
|
if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
|
||||||
assert tokens[token_id] == token
|
assert tokens[token_id] == token
|
||||||
tokens[token_id] = token
|
tokens[token_id] = token
|
||||||
scores[token_id] = -1000.0
|
scores[token_id] = -1000.0
|
||||||
@ -2145,7 +2188,7 @@ class InternLM2Model(Model):
|
|||||||
toktype = SentencePieceTokenTypes.BYTE
|
toktype = SentencePieceTokenTypes.BYTE
|
||||||
# take care of ununsed raw token
|
# take care of ununsed raw token
|
||||||
if piece.startswith('[UNUSED'):
|
if piece.startswith('[UNUSED'):
|
||||||
toktype = SentencePieceTokenTypes.UNKNOWN
|
toktype = SentencePieceTokenTypes.UNUSED
|
||||||
|
|
||||||
tokens.append(text)
|
tokens.append(text)
|
||||||
scores.append(score)
|
scores.append(score)
|
||||||
@ -2175,7 +2218,7 @@ class InternLM2Model(Model):
|
|||||||
if token == chat_eos_token:
|
if token == chat_eos_token:
|
||||||
chat_eos_token_id = token_id
|
chat_eos_token_id = token_id
|
||||||
token = token.encode("utf-8")
|
token = token.encode("utf-8")
|
||||||
if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN:
|
if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
|
||||||
assert(tokens[token_id] == token)
|
assert(tokens[token_id] == token)
|
||||||
tokens[token_id] = token
|
tokens[token_id] = token
|
||||||
scores[token_id] = -1000.0
|
scores[token_id] = -1000.0
|
||||||
@ -2194,7 +2237,7 @@ class InternLM2Model(Model):
|
|||||||
if token == chat_eos_token:
|
if token == chat_eos_token:
|
||||||
chat_eos_token_id = token_id
|
chat_eos_token_id = token_id
|
||||||
token = token.encode("utf-8")
|
token = token.encode("utf-8")
|
||||||
if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN:
|
if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
|
||||||
assert(tokens[token_id] == token)
|
assert(tokens[token_id] == token)
|
||||||
tokens[token_id] = token
|
tokens[token_id] = token
|
||||||
scores[token_id] = -1000.0
|
scores[token_id] = -1000.0
|
||||||
@ -2434,19 +2477,7 @@ class Gemma2Model(Model):
|
|||||||
model_arch = gguf.MODEL_ARCH.GEMMA2
|
model_arch = gguf.MODEL_ARCH.GEMMA2
|
||||||
|
|
||||||
def set_vocab(self):
|
def set_vocab(self):
|
||||||
tokens, scores, toktypes = self._create_vocab_sentencepiece()
|
self._set_vocab_sentencepiece()
|
||||||
# hack: This is required so that we can properly use start/end-of-turn for chat template
|
|
||||||
for i in range(108):
|
|
||||||
# including <unusedX>, <start_of_turn>, <end_of_turn>
|
|
||||||
toktypes[i] = SentencePieceTokenTypes.CONTROL
|
|
||||||
self.gguf_writer.add_tokenizer_model("llama")
|
|
||||||
self.gguf_writer.add_tokenizer_pre("default")
|
|
||||||
self.gguf_writer.add_token_list(tokens)
|
|
||||||
self.gguf_writer.add_token_scores(scores)
|
|
||||||
self.gguf_writer.add_token_types(toktypes)
|
|
||||||
|
|
||||||
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
|
|
||||||
special_vocab.add_to_gguf(self.gguf_writer)
|
|
||||||
|
|
||||||
self.gguf_writer.add_add_space_prefix(False)
|
self.gguf_writer.add_add_space_prefix(False)
|
||||||
|
|
||||||
@ -2770,7 +2801,7 @@ class ArcticModel(Model):
|
|||||||
|
|
||||||
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
|
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
|
||||||
scores: list[float] = [-10000.0] * vocab_size
|
scores: list[float] = [-10000.0] * vocab_size
|
||||||
toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
|
toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
|
||||||
|
|
||||||
for token_id in range(tokenizer.vocab_size()):
|
for token_id in range(tokenizer.vocab_size()):
|
||||||
|
|
||||||
@ -3025,7 +3056,7 @@ class T5Model(Model):
|
|||||||
|
|
||||||
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
|
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
|
||||||
scores: list[float] = [-10000.0] * vocab_size
|
scores: list[float] = [-10000.0] * vocab_size
|
||||||
toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
|
toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
|
||||||
|
|
||||||
for token_id in range(tokenizer.vocab_size()):
|
for token_id in range(tokenizer.vocab_size()):
|
||||||
piece = tokenizer.IdToPiece(token_id)
|
piece = tokenizer.IdToPiece(token_id)
|
||||||
@ -3243,15 +3274,14 @@ class ChatGLMModel(Model):
|
|||||||
if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
|
if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
|
||||||
score = tokenizer.tokenizer.sp_model.get_score(token_id)
|
score = tokenizer.tokenizer.sp_model.get_score(token_id)
|
||||||
|
|
||||||
if len(piece) == 0:
|
|
||||||
text = f"[PAD{token_id}]".encode("utf-8")
|
|
||||||
|
|
||||||
if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
|
if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
|
||||||
if piece in special_tokens:
|
if piece in special_tokens:
|
||||||
# show special tokens in prompt
|
toktype = SentencePieceTokenTypes.CONTROL
|
||||||
toktype = SentencePieceTokenTypes.USER_DEFINED
|
elif len(piece) == 0:
|
||||||
|
text = f"[PAD{token_id}]".encode("utf-8")
|
||||||
|
toktype = SentencePieceTokenTypes.UNUSED
|
||||||
else:
|
else:
|
||||||
toktype = SentencePieceTokenTypes.UNKNOWN
|
toktype = SentencePieceTokenTypes.USER_DEFINED
|
||||||
tokens.append(text)
|
tokens.append(text)
|
||||||
scores.append(score)
|
scores.append(score)
|
||||||
toktypes.append(toktype)
|
toktypes.append(toktype)
|
||||||
@ -3340,7 +3370,7 @@ class ChatGLMModel(Model):
|
|||||||
for i in range(vocab_size):
|
for i in range(vocab_size):
|
||||||
if i not in reverse_vocab:
|
if i not in reverse_vocab:
|
||||||
tokens.append(f"[PAD{i}]")
|
tokens.append(f"[PAD{i}]")
|
||||||
toktypes.append(gguf.TokenType.USER_DEFINED)
|
toktypes.append(gguf.TokenType.UNUSED)
|
||||||
elif reverse_vocab[i] in added_vocab:
|
elif reverse_vocab[i] in added_vocab:
|
||||||
tokens.append(reverse_vocab[i])
|
tokens.append(reverse_vocab[i])
|
||||||
if tokenizer.added_tokens_decoder[i].special:
|
if tokenizer.added_tokens_decoder[i].special:
|
||||||
|
@ -5419,6 +5419,7 @@ static void llm_load_vocab(
|
|||||||
} else if (
|
} else if (
|
||||||
tokenizer_pre == "command-r") {
|
tokenizer_pre == "command-r") {
|
||||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_COMMAND_R;
|
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_COMMAND_R;
|
||||||
|
vocab.tokenizer_clean_spaces = false;
|
||||||
} else if (
|
} else if (
|
||||||
tokenizer_pre == "qwen2") {
|
tokenizer_pre == "qwen2") {
|
||||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2;
|
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2;
|
||||||
@ -5652,7 +5653,7 @@ static void llm_load_vocab(
|
|||||||
// build special tokens cache
|
// build special tokens cache
|
||||||
{
|
{
|
||||||
for (llama_vocab::id id = 0; id < (llama_vocab::id)n_vocab; ++id) {
|
for (llama_vocab::id id = 0; id < (llama_vocab::id)n_vocab; ++id) {
|
||||||
if (!(vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL)) {
|
if (vocab.id_to_token[id].attr & (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_USER_DEFINED | LLAMA_TOKEN_ATTR_UNKNOWN)) {
|
||||||
vocab.cache_special_tokens.push_back(id);
|
vocab.cache_special_tokens.push_back(id);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -15411,17 +15412,6 @@ struct llm_tokenizer_bpe {
|
|||||||
"[0-9][0-9][0-9]",
|
"[0-9][0-9][0-9]",
|
||||||
};
|
};
|
||||||
break;
|
break;
|
||||||
case LLAMA_VOCAB_PRE_TYPE_MPT:
|
|
||||||
// TODO: MPT pre-tokenization regexes are unknown
|
|
||||||
// the following are close, but not exact. run the following:
|
|
||||||
// ./bin/test-tokenizer-0 ../models/ggml-vocab-mpt.gguf
|
|
||||||
GGML_ASSERT("MPT pre-tokenization regexes are unknown - fixes needed");
|
|
||||||
regex_exprs = {
|
|
||||||
"\\s?\\p{L}+",
|
|
||||||
"\\s?\\p{P}+",
|
|
||||||
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
|
|
||||||
};
|
|
||||||
break;
|
|
||||||
case LLAMA_VOCAB_PRE_TYPE_STARCODER:
|
case LLAMA_VOCAB_PRE_TYPE_STARCODER:
|
||||||
case LLAMA_VOCAB_PRE_TYPE_REFACT:
|
case LLAMA_VOCAB_PRE_TYPE_REFACT:
|
||||||
case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
|
case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
|
||||||
@ -15431,6 +15421,7 @@ struct llm_tokenizer_bpe {
|
|||||||
};
|
};
|
||||||
break;
|
break;
|
||||||
case LLAMA_VOCAB_PRE_TYPE_GPT2:
|
case LLAMA_VOCAB_PRE_TYPE_GPT2:
|
||||||
|
case LLAMA_VOCAB_PRE_TYPE_MPT:
|
||||||
case LLAMA_VOCAB_PRE_TYPE_OLMO:
|
case LLAMA_VOCAB_PRE_TYPE_OLMO:
|
||||||
case LLAMA_VOCAB_PRE_TYPE_JAIS:
|
case LLAMA_VOCAB_PRE_TYPE_JAIS:
|
||||||
regex_exprs = {
|
regex_exprs = {
|
||||||
@ -15457,8 +15448,8 @@ struct llm_tokenizer_bpe {
|
|||||||
break;
|
break;
|
||||||
case LLAMA_VOCAB_PRE_TYPE_VIKING:
|
case LLAMA_VOCAB_PRE_TYPE_VIKING:
|
||||||
regex_exprs = {
|
regex_exprs = {
|
||||||
"\\p{N}",
|
|
||||||
" ?[^(\\s|.,!?…。,、।۔،)]+",
|
" ?[^(\\s|.,!?…。,、।۔،)]+",
|
||||||
|
"\\p{N}",
|
||||||
};
|
};
|
||||||
break;
|
break;
|
||||||
default:
|
default:
|
||||||
@ -16178,12 +16169,20 @@ struct fragment_buffer_variant {
|
|||||||
|
|
||||||
// #define PRETOKENIZERDEBUG
|
// #define PRETOKENIZERDEBUG
|
||||||
|
|
||||||
static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer) {
|
static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer, bool parse_special) {
|
||||||
// for each special token
|
// for each special token
|
||||||
for (const llama_vocab::id special_id : vocab.cache_special_tokens) {
|
for (const llama_vocab::id special_id : vocab.cache_special_tokens) {
|
||||||
const auto & data = vocab.id_to_token[special_id];
|
const auto & data = vocab.id_to_token[special_id];
|
||||||
const auto & special_token = data.text;
|
const auto & special_token = data.text;
|
||||||
|
|
||||||
|
if (!parse_special && (data.attr & (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_UNKNOWN))) {
|
||||||
|
// Ignore control and unknown tokens when parse_special == false
|
||||||
|
continue;
|
||||||
|
// User-defined tokens are still pre-tokenized before everything else
|
||||||
|
// ref: https://github.com/huggingface/tokenizers/blob/fdd26ba9a3f0c133427aab0423888cbde91362d7/tokenizers/src/tokenizer/mod.rs#L726
|
||||||
|
// This is mostly relevant for neox-style tokenizers (mpt, olmo, stablelm, etc.)
|
||||||
|
}
|
||||||
|
|
||||||
// for each text fragment
|
// for each text fragment
|
||||||
std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
|
std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
|
||||||
while (it != buffer.end()) {
|
while (it != buffer.end()) {
|
||||||
@ -16296,7 +16295,7 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
|
|||||||
|
|
||||||
if (!raw_text.empty()) {
|
if (!raw_text.empty()) {
|
||||||
fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
|
fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
|
||||||
if (parse_special) tokenizer_st_partition(vocab, fragment_buffer);
|
tokenizer_st_partition(vocab, fragment_buffer, parse_special);
|
||||||
}
|
}
|
||||||
|
|
||||||
switch (vocab.type) {
|
switch (vocab.type) {
|
||||||
|
@ -195,7 +195,7 @@ int main(int argc, char **argv) {
|
|||||||
const bool add_special = false;
|
const bool add_special = false;
|
||||||
|
|
||||||
for (const auto & test_kv : k_tests) {
|
for (const auto & test_kv : k_tests) {
|
||||||
const std::vector<llama_token> res = llama_tokenize(ctx, test_kv.first, add_special, true);
|
const std::vector<llama_token> res = llama_tokenize(ctx, test_kv.first, add_special, false);
|
||||||
|
|
||||||
printf("\n");
|
printf("\n");
|
||||||
printf("src: '%s'\n", test_kv.first.c_str());
|
printf("src: '%s'\n", test_kv.first.c_str());
|
||||||
@ -253,7 +253,7 @@ int main(int argc, char **argv) {
|
|||||||
{
|
{
|
||||||
const auto t_start = ggml_time_us();
|
const auto t_start = ggml_time_us();
|
||||||
|
|
||||||
res = llama_tokenize(ctx, text, add_special, true);
|
res = llama_tokenize(ctx, text, add_special, false);
|
||||||
|
|
||||||
const auto t_end = ggml_time_us();
|
const auto t_end = ggml_time_us();
|
||||||
|
|
||||||
|
@ -20,7 +20,7 @@ from typing import Any, Iterator, cast
|
|||||||
from typing_extensions import Buffer
|
from typing_extensions import Buffer
|
||||||
|
|
||||||
import cffi
|
import cffi
|
||||||
from transformers import AutoTokenizer
|
from transformers import AutoTokenizer, PreTrainedTokenizer
|
||||||
|
|
||||||
|
|
||||||
logger = logging.getLogger("test-tokenizer-random")
|
logger = logging.getLogger("test-tokenizer-random")
|
||||||
@ -129,7 +129,7 @@ class Tokenizer:
|
|||||||
class TokenizerGroundtruth (Tokenizer):
|
class TokenizerGroundtruth (Tokenizer):
|
||||||
|
|
||||||
def __init__(self, dir_tokenizer: str):
|
def __init__(self, dir_tokenizer: str):
|
||||||
self.model = AutoTokenizer.from_pretrained(dir_tokenizer)
|
self.model: PreTrainedTokenizer = AutoTokenizer.from_pretrained(dir_tokenizer)
|
||||||
# guess BOS and EOS
|
# guess BOS and EOS
|
||||||
ids = self.encode("a")
|
ids = self.encode("a")
|
||||||
assert 1 <= len(ids) <= 3
|
assert 1 <= len(ids) <= 3
|
||||||
@ -143,7 +143,7 @@ class TokenizerGroundtruth (Tokenizer):
|
|||||||
self.vocab = list(sorted(self.vocab))
|
self.vocab = list(sorted(self.vocab))
|
||||||
# tokens and lists
|
# tokens and lists
|
||||||
self.special_tokens = list(self.model.all_special_tokens)
|
self.special_tokens = list(self.model.all_special_tokens)
|
||||||
self.added_tokens = list(self.model.added_tokens_encoder)
|
self.added_tokens = self.model.batch_decode(self.model.added_tokens_encoder.values(), skip_special_tokens=False)
|
||||||
self.bos_token = self.model.bos_token
|
self.bos_token = self.model.bos_token
|
||||||
self.eos_token = self.model.eos_token
|
self.eos_token = self.model.eos_token
|
||||||
|
|
||||||
@ -232,6 +232,7 @@ def generator_custom_text_edge_cases() -> Iterator[str]:
|
|||||||
'a\na', # bert fail
|
'a\na', # bert fail
|
||||||
'"`', # falcon
|
'"`', # falcon
|
||||||
' \u2e4e', # falcon
|
' \u2e4e', # falcon
|
||||||
|
'\n\x0b ', # falcon
|
||||||
'a\xa0\xa0\x00b', # jina-v2-es
|
'a\xa0\xa0\x00b', # jina-v2-es
|
||||||
'one <mask>', # jina-v2-es <mask> lstrip=true
|
'one <mask>', # jina-v2-es <mask> lstrip=true
|
||||||
'a </s> b', # rstrip phi-3
|
'a </s> b', # rstrip phi-3
|
||||||
|
Loading…
Reference in New Issue
Block a user