diff --git a/convert-falcon-hf-to-gguf.py b/convert-falcon-hf-to-gguf.py new file mode 100644 index 000000000..7d50d8c5c --- /dev/null +++ b/convert-falcon-hf-to-gguf.py @@ -0,0 +1,285 @@ +# HF falcon--> gguf conversion + +import gguf +import os +import sys +import struct +import json +import numpy as np +import torch + +from typing import Any, List +from pathlib import Path +from transformers import AutoTokenizer + +def bytes_to_unicode(): + # ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py + """ + Returns list of utf-8 byte and a corresponding list of unicode strings. + The reversible bpe codes work on unicode strings. + This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. + When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. + This is a significant percentage of your normal, say, 32K bpe vocab. + To avoid that, we want lookup tables between utf-8 bytes and unicode strings. + And avoids mapping to whitespace/control characters the bpe code barfs on. + """ + bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) + cs = bs[:] + n = 0 + for b in range(2**8): + if b not in bs: + bs.append(b) + cs.append(2**8+n) + n += 1 + cs = [chr(n) for n in cs] + return dict(zip(bs, cs)) + + +def count_model_parts(dir_model: str) -> int: + num_parts = 0 + for filename in os.listdir(dir_model): + if filename.startswith("pytorch_model-"): + num_parts += 1 + + if num_parts > 0: + print("gguf: found " + str(num_parts) + " model parts") + return num_parts + + +if len(sys.argv) < 3: + print("Usage: convert-h5-to-ggml.py dir-model ftype\n") + print(" ftype == 0 -> float32") + print(" ftype == 1 -> float16") + sys.exit(1) + + +# output in the same directory as the model +dir_model = sys.argv[1] +last_dir = os.path.basename(os.path.normpath(dir_model)) + +# possible tensor data types +# ftype == 0 -> float32 +# ftype == 1 -> float16 + +# map from ftype to string +ftype_str = ["f32", "f16"] + +ftype = 1 +if len(sys.argv) > 2: + ftype = int(sys.argv[2]) + if ftype < 0 or ftype > 1: + print("Invalid ftype: " + str(ftype)) + + sys.exit(1) + +fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf" + +print("gguf: loading model "+last_dir) + +with open(dir_model + "/config.json", "r", encoding="utf-8") as f: + hparams = json.load(f) + +if hparams["architectures"][0] != "RWForCausalLM": + print("Model architecture not supported: " + hparams["architectures"][0]) + + sys.exit() + +# get number of model parts +num_parts = count_model_parts(dir_model) + +ARCH=gguf.MODEL_ARCH.FALCON +gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH]) + +print("gguf: get model metadata") + +block_count = hparams["n_layer"] + +gguf_writer.add_architecture() +gguf_writer.add_name(last_dir) +gguf_writer.add_context_length(2048) +gguf_writer.add_embedding_length(hparams["hidden_size"]) +gguf_writer.add_feed_forward_length(4 * hparams["hidden_size"]) +gguf_writer.add_block_count(block_count) +gguf_writer.add_head_count(hparams["n_head"]) +if "n_head_kv" in hparams: gguf_writer.add_head_count_kv(hparams["n_head_kv"]) +gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"]) + +# TOKENIZATION + +print("gguf: get tokenizer metadata") + +tokens: List[str] = [] +merges: List[str] = [] + + +if Path(dir_model + "/tokenizer.json").is_file(): + # gpt2 tokenizer + gguf_writer.add_tokenizer_model("gpt2") + + print("gguf: get gpt2 tokenizer merges") + + with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f: + tokenizer_json = json.load(f) + merges = tokenizer_json["model"]["merges"] + + gguf_writer.add_token_merges(merges) + + print("gguf: get gpt2 tokenizer vocab") + + vocab_size = len(tokenizer_json["model"]["vocab"]) + + # ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py + tokenizer = AutoTokenizer.from_pretrained(dir_model) + + reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()} + byte_encoder = bytes_to_unicode() + byte_decoder = {v: k for k, v in byte_encoder.items()} + + for i in range(vocab_size): + if i in reverse_vocab: + try: + text = bytearray([byte_decoder[c] for c in reverse_vocab[i]]) + except KeyError: + text = bytearray() + for c in reverse_vocab[i]: + if ord(c) < 256: # single byte character + text.append(byte_decoder[ord(c)]) + else: # multibyte special token character + text.extend(c.encode('utf-8')) + else: + print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.") + pad_token = f"[PAD{i}]".encode("utf8") + text = bytearray(pad_token) + + tokens.append(text) + + gguf_writer.add_token_list(tokens) + + if "added_tokens" in tokenizer_json and Path(dir_model + "/tokenizer_config.json").is_file(): + print("gguf: get special token ids") + + with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f: + tokenizer_config = json.load(f) + + # find special token ids + + if "bos_token" in tokenizer_config: + for key in tokenizer_json["added_tokens"]: + if key["content"] == tokenizer_config["bos_token"]: + gguf_writer.add_bos_token_id(key["id"]) + + if "eos_token" in tokenizer_config: + for key in tokenizer_json["added_tokens"]: + if key["content"] == tokenizer_config["eos_token"]: + gguf_writer.add_eos_token_id(key["id"]) + + if "unk_token" in tokenizer_config: + for key in tokenizer_json["added_tokens"]: + if key["content"] == tokenizer_config["unk_token"]: + gguf_writer.add_unk_token_id(key["id"]) + + if "sep_token" in tokenizer_config: + for key in tokenizer_json["added_tokens"]: + if key["content"] == tokenizer_config["sep_token"]: + gguf_writer.add_sep_token_id(key["id"]) + + if "pad_token" in tokenizer_config: + for key in tokenizer_json["added_tokens"]: + if key["content"] == tokenizer_config["pad_token"]: + gguf_writer.add_pad_token_id(key["id"]) + + +# TENSORS + +tensor_map = gguf.get_tensor_name_map(ARCH,block_count) + +# params for qkv transform +if "n_head_kv" in hparams: + n_head_kv = hparams["n_head_kv"] +else: + n_head_kv = 1 +n_head = hparams["n_head"] +head_dim = hparams["hidden_size"] // n_head + +# tensor info +print("gguf: get tensor metadata") + +if num_parts == 0: + part_names = ("pytorch_model.bin",) +else: + part_names = ( + f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1) + ) + +for part_name in part_names: + print("gguf: loading model part '" + part_name + "'") + model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu") + + for name in model_part.keys(): + data = model_part[name] + + old_dtype = data.dtype + + # convert any unsupported data types to float32 + if data.dtype != torch.float16 and data.dtype != torch.float32: + data = data.to(torch.float32) + + # QKV tensor transform + # The original query_key_value tensor contains n_head_kv "kv groups", + # each consisting of n_head/n_head_kv query weights followed by one key + # and one value weight (shared by all query heads in the kv group). + # This layout makes it a big pain to work with in GGML. + # So we rearrange them here,, so that we have n_head query weights + # followed by n_head_kv key weights followed by n_head_kv value weights, + # in contiguous fashion. + # ref: https://github.com/jploski/ggml/blob/d5295b477fb36c69468c3fecb0393a8d7980b7c8/examples/falcon/convert-hf-to-ggml.py#L107-L123 + + if "query_key_value" in name: + qkv = data.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head) + q = qkv[:, :-2 ].reshape(n_head * head_dim, head_dim * n_head) + k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head) + v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head) + data = torch.cat((q,k,v)).reshape_as(data) + + data = data.squeeze().numpy() + + # map tensor names + if name.endswith(".weight") and name[:-7] in tensor_map: + name = tensor_map[name[:-7]] + ".weight" + elif name.endswith(".bias") and name[:-5] in tensor_map: + name = tensor_map[name[:-5]] + ".bias" + else: + print("Can not map tensor '" + name + "'") + sys.exit() + + n_dims = len(data.shape) + data_dtype = data.dtype + + # if f32 desired, convert any float16 to float32 + if ftype == 0 and data_dtype == np.float16: + data = data.astype(np.float32) + + # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 + if ftype == 1 and data_dtype == np.float16 and n_dims == 1: + data = data.astype(np.float32) + + # if f16 desired, convert any float32 2-dim weight tensors to float16 + if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: + data = data.astype(np.float16) + + print(name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype)) + + gguf_writer.add_tensor(name, data) + + +print("gguf: write header") +gguf_writer.write_header_to_file() +print("gguf: write metadata") +gguf_writer.write_kv_data_to_file() +print("gguf: write tensors") +gguf_writer.write_tensors_to_file() + +gguf_writer.close() + +print("gguf: model successfully exported to '" + fname_out + "'") +print("")