diff --git a/.ecrc b/.ecrc index b682057dd..a3351f4e6 100644 --- a/.ecrc +++ b/.ecrc @@ -1,4 +1,5 @@ { + "Exclude": ["^\\.gitmodules$"], "Disable": { "IndentSize": true } diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index e5e435a70..fb719a550 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -337,6 +337,7 @@ jobs: OPENCL_VERSION: 2023.04.17 CLBLAST_VERSION: 1.6.0 SDE_VERSION: 9.33.0-2024-01-07 + VULKAN_VERSION: 1.3.261.1 strategy: matrix: @@ -353,6 +354,8 @@ jobs: defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_CLBLAST=ON -DBUILD_SHARED_LIBS=ON -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/clblast"' - build: 'openblas' defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_BLAS=ON -DBUILD_SHARED_LIBS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"' + - build: 'kompute' + defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_KOMPUTE=ON -DKOMPUTE_OPT_DISABLE_VULKAN_VERSION_CHECK=ON -DBUILD_SHARED_LIBS=ON' steps: - name: Clone @@ -361,6 +364,12 @@ jobs: with: fetch-depth: 0 + - name: Clone Kompute submodule + id: clone_kompute + if: ${{ matrix.build == 'kompute' }} + run: | + git submodule update --init kompute + - name: Download OpenCL SDK id: get_opencl if: ${{ matrix.build == 'clblast' }} @@ -395,6 +404,15 @@ jobs: $lib = $(join-path $msvc 'bin\Hostx64\x64\lib.exe') & $lib /machine:x64 "/def:${env:RUNNER_TEMP}/openblas/lib/libopenblas.def" "/out:${env:RUNNER_TEMP}/openblas/lib/openblas.lib" /name:openblas.dll + - name: Install Vulkan SDK + id: get_vulkan + if: ${{ matrix.build == 'kompute' }} + run: | + curl.exe -o $env:RUNNER_TEMP/VulkanSDK-Installer.exe -L "https://sdk.lunarg.com/sdk/download/${env:VULKAN_VERSION}/windows/VulkanSDK-${env:VULKAN_VERSION}-Installer.exe" + & "$env:RUNNER_TEMP\VulkanSDK-Installer.exe" --accept-licenses --default-answer --confirm-command install + Add-Content $env:GITHUB_ENV "VULKAN_SDK=C:\VulkanSDK\${env:VULKAN_VERSION}" + Add-Content $env:GITHUB_PATH "C:\VulkanSDK\${env:VULKAN_VERSION}\bin" + - name: Build id: cmake_build run: | @@ -432,7 +450,8 @@ jobs: - name: Test id: cmake_test - if: ${{ matrix.build != 'clblast' && (matrix.build != 'avx512' || env.HAS_AVX512F == '1') }} # not all machines have native AVX-512 + # not all machines have native AVX-512 + if: ${{ matrix.build != 'clblast' && matrix.build != 'kompute' && (matrix.build != 'avx512' || env.HAS_AVX512F == '1') }} run: | cd build ctest -L main -C Release --verbose --timeout 900 diff --git a/.gitmodules b/.gitmodules new file mode 100644 index 000000000..b7e8b8ff2 --- /dev/null +++ b/.gitmodules @@ -0,0 +1,3 @@ +[submodule "kompute"] + path = kompute + url = https://github.com/nomic-ai/kompute.git diff --git a/CMakeLists.txt b/CMakeLists.txt index ed8f39c62..65a6f3971 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -103,6 +103,7 @@ option(LLAMA_VULKAN "llama: use Vulkan" option(LLAMA_METAL "llama: use Metal" ${LLAMA_METAL_DEFAULT}) option(LLAMA_METAL_NDEBUG "llama: disable Metal debugging" OFF) option(LLAMA_METAL_SHADER_DEBUG "llama: compile Metal with -fno-fast-math" OFF) +option(LLAMA_KOMPUTE "llama: use Kompute" OFF) option(LLAMA_MPI "llama: use MPI" OFF) option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF) option(LLAMA_SYCL "llama: use SYCL" OFF) @@ -484,7 +485,6 @@ if (LLAMA_HIPBLAS) endif() endif() - if (LLAMA_SYCL) if ( NOT DEFINED ENV{ONEAPI_ROOT}) message(FATAL_ERROR "Not detect ENV {ONEAPI_ROOT}, please install oneAPI & source it, like: source /opt/intel/oneapi/setvars.sh") @@ -510,6 +510,160 @@ if (LLAMA_SYCL) set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} sycl OpenCL mkl_core pthread m dl mkl_sycl_blas mkl_intel_ilp64 mkl_tbb_thread) endif() +if (LLAMA_KOMPUTE) + add_compile_definitions(VULKAN_HPP_DISPATCH_LOADER_DYNAMIC=1) + find_package(Vulkan COMPONENTS glslc REQUIRED) + find_program(glslc_executable NAMES glslc HINTS Vulkan::glslc) + if (NOT glslc_executable) + message(FATAL_ERROR "glslc not found") + endif() + + function(compile_shader) + set(options) + set(oneValueArgs) + set(multiValueArgs SOURCES) + cmake_parse_arguments(compile_shader "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN}) + foreach(source ${compile_shader_SOURCES}) + get_filename_component(filename ${source} NAME) + set(spv_file ${filename}.spv) + add_custom_command( + OUTPUT ${spv_file} + DEPENDS ${CMAKE_CURRENT_SOURCE_DIR}/${source} + ${CMAKE_CURRENT_SOURCE_DIR}/kompute-shaders/common.comp + ${CMAKE_CURRENT_SOURCE_DIR}/kompute-shaders/op_getrows.comp + ${CMAKE_CURRENT_SOURCE_DIR}/kompute-shaders/op_mul_mv_q_n_pre.comp + ${CMAKE_CURRENT_SOURCE_DIR}/kompute-shaders/op_mul_mv_q_n.comp + COMMAND ${glslc_executable} --target-env=vulkan1.2 -o ${spv_file} ${CMAKE_CURRENT_SOURCE_DIR}/${source} + COMMENT "Compiling ${source} to ${spv_file}" + ) + + get_filename_component(RAW_FILE_NAME ${spv_file} NAME) + set(FILE_NAME "shader${RAW_FILE_NAME}") + string(REPLACE ".comp.spv" ".h" HEADER_FILE ${FILE_NAME}) + string(TOUPPER ${HEADER_FILE} HEADER_FILE_DEFINE) + string(REPLACE "." "_" HEADER_FILE_DEFINE "${HEADER_FILE_DEFINE}") + set(OUTPUT_HEADER_FILE "${HEADER_FILE}") + message(STATUS "${HEADER_FILE} generating ${HEADER_FILE_DEFINE}") + if(CMAKE_GENERATOR MATCHES "Visual Studio") + add_custom_command( + OUTPUT ${OUTPUT_HEADER_FILE} + COMMAND ${CMAKE_COMMAND} -E echo "/*THIS FILE HAS BEEN AUTOMATICALLY GENERATED - DO NOT EDIT*/" > ${OUTPUT_HEADER_FILE} + COMMAND ${CMAKE_COMMAND} -E echo \"\#ifndef ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE} + COMMAND ${CMAKE_COMMAND} -E echo \"\#define ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE} + COMMAND ${CMAKE_COMMAND} -E echo "namespace kp {" >> ${OUTPUT_HEADER_FILE} + COMMAND ${CMAKE_COMMAND} -E echo "namespace shader_data {" >> ${OUTPUT_HEADER_FILE} + COMMAND ${CMAKE_BINARY_DIR}/bin/$/xxd -i ${RAW_FILE_NAME} >> ${OUTPUT_HEADER_FILE} + COMMAND ${CMAKE_COMMAND} -E echo "}}" >> ${OUTPUT_HEADER_FILE} + COMMAND ${CMAKE_COMMAND} -E echo \"\#endif // define ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE} + DEPENDS ${spv_file} xxd + COMMENT "Converting to hpp: ${FILE_NAME} ${CMAKE_BINARY_DIR}/bin/$/xxd" + ) + else() + add_custom_command( + OUTPUT ${OUTPUT_HEADER_FILE} + COMMAND ${CMAKE_COMMAND} -E echo "/*THIS FILE HAS BEEN AUTOMATICALLY GENERATED - DO NOT EDIT*/" > ${OUTPUT_HEADER_FILE} + COMMAND ${CMAKE_COMMAND} -E echo \"\#ifndef ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE} + COMMAND ${CMAKE_COMMAND} -E echo \"\#define ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE} + COMMAND ${CMAKE_COMMAND} -E echo "namespace kp {" >> ${OUTPUT_HEADER_FILE} + COMMAND ${CMAKE_COMMAND} -E echo "namespace shader_data {" >> ${OUTPUT_HEADER_FILE} + COMMAND ${CMAKE_BINARY_DIR}/bin/xxd -i ${RAW_FILE_NAME} >> ${OUTPUT_HEADER_FILE} + COMMAND ${CMAKE_COMMAND} -E echo "}}" >> ${OUTPUT_HEADER_FILE} + COMMAND ${CMAKE_COMMAND} -E echo \"\#endif // define ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE} + DEPENDS ${spv_file} xxd + COMMENT "Converting to hpp: ${FILE_NAME} ${CMAKE_BINARY_DIR}/bin/xxd" + ) + endif() + endforeach() + endfunction() + + if (EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/kompute/CMakeLists.txt") + message(STATUS "Kompute found") + set(KOMPUTE_OPT_LOG_LEVEL Error CACHE STRING "Kompute log level") + add_subdirectory(kompute) + + # Compile our shaders + compile_shader(SOURCES + kompute-shaders/op_scale.comp + kompute-shaders/op_scale_8.comp + kompute-shaders/op_add.comp + kompute-shaders/op_addrow.comp + kompute-shaders/op_mul.comp + kompute-shaders/op_silu.comp + kompute-shaders/op_relu.comp + kompute-shaders/op_gelu.comp + kompute-shaders/op_softmax.comp + kompute-shaders/op_norm.comp + kompute-shaders/op_rmsnorm.comp + kompute-shaders/op_diagmask.comp + kompute-shaders/op_mul_mat_mat_f32.comp + kompute-shaders/op_mul_mat_f16.comp + kompute-shaders/op_mul_mat_q8_0.comp + kompute-shaders/op_mul_mat_q4_0.comp + kompute-shaders/op_mul_mat_q4_1.comp + kompute-shaders/op_mul_mat_q6_k.comp + kompute-shaders/op_getrows_f16.comp + kompute-shaders/op_getrows_q4_0.comp + kompute-shaders/op_getrows_q4_1.comp + kompute-shaders/op_getrows_q6_k.comp + kompute-shaders/op_rope_f16.comp + kompute-shaders/op_rope_f32.comp + kompute-shaders/op_cpy_f16_f16.comp + kompute-shaders/op_cpy_f16_f32.comp + kompute-shaders/op_cpy_f32_f16.comp + kompute-shaders/op_cpy_f32_f32.comp + ) + + # Create a custom target for our generated shaders + add_custom_target(generated_shaders DEPENDS + shaderop_scale.h + shaderop_scale_8.h + shaderop_add.h + shaderop_addrow.h + shaderop_mul.h + shaderop_silu.h + shaderop_relu.h + shaderop_gelu.h + shaderop_softmax.h + shaderop_norm.h + shaderop_rmsnorm.h + shaderop_diagmask.h + shaderop_mul_mat_mat_f32.h + shaderop_mul_mat_f16.h + shaderop_mul_mat_q8_0.h + shaderop_mul_mat_q4_0.h + shaderop_mul_mat_q4_1.h + shaderop_mul_mat_q6_k.h + shaderop_getrows_f16.h + shaderop_getrows_q4_0.h + shaderop_getrows_q4_1.h + shaderop_getrows_q6_k.h + shaderop_rope_f16.h + shaderop_rope_f32.h + shaderop_cpy_f16_f16.h + shaderop_cpy_f16_f32.h + shaderop_cpy_f32_f16.h + shaderop_cpy_f32_f32.h + ) + + # Create a custom command that depends on the generated_shaders + add_custom_command( + OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/ggml-kompute.stamp + COMMAND ${CMAKE_COMMAND} -E touch ${CMAKE_CURRENT_BINARY_DIR}/ggml-kompute.stamp + DEPENDS generated_shaders + COMMENT "Ensuring shaders are generated before compiling ggml-kompute.cpp" + ) + + # Add the stamp to the main sources to ensure dependency tracking + set(GGML_SOURCES_KOMPUTE ggml-kompute.cpp ${CMAKE_CURRENT_BINARY_DIR}/ggml-kompute.stamp) + set(GGML_HEADERS_KOMPUTE ggml-kompute.h ${CMAKE_CURRENT_BINARY_DIR}/ggml-kompute.stamp) + add_compile_definitions(GGML_USE_KOMPUTE) + set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} kompute) + set(LLAMA_EXTRA_INCLUDES ${LLAMA_EXTRA_INCLUDES} ${CMAKE_BINARY_DIR}) + else() + message(WARNING "Kompute not found") + endif() +endif() + function(get_flags CCID CCVER) set(C_FLAGS "") set(CXX_FLAGS "") @@ -852,13 +1006,14 @@ add_library(ggml OBJECT ggml-backend.h ggml-quants.c ggml-quants.h - ${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA} - ${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL} - ${GGML_SOURCES_VULKAN} ${GGML_HEADERS_VULKAN} - ${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL} - ${GGML_SOURCES_MPI} ${GGML_HEADERS_MPI} - ${GGML_SOURCES_EXTRA} ${GGML_HEADERS_EXTRA} - ${GGML_SOURCES_SYCL} ${GGML_HEADERS_SYCL} + ${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA} + ${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL} + ${GGML_SOURCES_VULKAN} ${GGML_HEADERS_VULKAN} + ${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL} + ${GGML_SOURCES_MPI} ${GGML_HEADERS_MPI} + ${GGML_SOURCES_EXTRA} ${GGML_HEADERS_EXTRA} + ${GGML_SOURCES_SYCL} ${GGML_HEADERS_SYCL} + ${GGML_SOURCES_KOMPUTE} ${GGML_HEADERS_KOMPUTE} ) target_include_directories(ggml PUBLIC . ${LLAMA_EXTRA_INCLUDES}) diff --git a/ggml-backend.c b/ggml-backend.c index 8b6cf7c9f..0764dfebc 100644 --- a/ggml-backend.c +++ b/ggml-backend.c @@ -373,6 +373,11 @@ GGML_CALL static void ggml_backend_registry_init(void) { extern GGML_CALL int ggml_backend_vk_reg_devices(void); ggml_backend_vk_reg_devices(); #endif + +#ifdef GGML_USE_KOMPUTE + extern GGML_CALL void ggml_backend_kompute_reg_devices(void); + ggml_backend_kompute_reg_devices(); +#endif } GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) { diff --git a/ggml-kompute.cpp b/ggml-kompute.cpp new file mode 100644 index 000000000..51c5af8ec --- /dev/null +++ b/ggml-kompute.cpp @@ -0,0 +1,1990 @@ +#include "ggml.h" +#include "ggml-backend.h" +#include "ggml-backend-impl.h" +#include "ggml-kompute.h" + +// These are generated at build time by cmake custom command +#include "shaderop_scale.h" +#include "shaderop_scale_8.h" +#include "shaderop_add.h" +#include "shaderop_addrow.h" +#include "shaderop_mul.h" +#include "shaderop_silu.h" +#include "shaderop_relu.h" +#include "shaderop_gelu.h" +#include "shaderop_softmax.h" +#include "shaderop_norm.h" +#include "shaderop_rmsnorm.h" +#include "shaderop_diagmask.h" +#include "shaderop_mul_mat_f16.h" +#include "shaderop_mul_mat_q8_0.h" +#include "shaderop_mul_mat_q4_0.h" +#include "shaderop_mul_mat_q4_1.h" +#include "shaderop_mul_mat_q6_k.h" +#include "shaderop_mul_mat_mat_f32.h" +#include "shaderop_getrows_f16.h" +#include "shaderop_getrows_q4_0.h" +#include "shaderop_getrows_q4_1.h" +#include "shaderop_getrows_q6_k.h" +#include "shaderop_rope_f16.h" +#include "shaderop_rope_f32.h" +#include "shaderop_cpy_f16_f16.h" +#include "shaderop_cpy_f16_f32.h" +#include "shaderop_cpy_f32_f16.h" +#include "shaderop_cpy_f32_f32.h" + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include + +#ifdef __linux__ +#include // for setenv +#endif + +#define QK4_0 32 +#define QR4_0 2 +#define QK4_1 32 +#define QK_NL 16 + +typedef ggml_fp16_t half; + +static std::string ggml_kompute_format_name(int device) { + return "Kompute" + std::to_string(device); +} + +struct ggml_kompute_context { + int device; + std::string name; + std::shared_ptr pool; + + ggml_kompute_context(int device) + : device(device), name(ggml_kompute_format_name(device)) {} +}; + +// FIXME: It would be good to consolidate the kompute manager and the kompute context into one object +// and consolidate the init functions and simplify object lifetime management. As it currently stands, +// we *have* to have the kompute manager no matter what for device discovery, but the kompute context +// is only created when a device is set and vulkan is explicitly turned on. +static ggml_kompute_context *s_kompute_context = nullptr; + +class kompute_manager { + kp::Manager *s_mgr = nullptr; + +public: + kp::Manager *operator()() { + if (s_mgr && !s_mgr->hasInstance()) { + destroy(); + } + if (!s_mgr) { + s_mgr = new kp::Manager; + } + return s_mgr; + } + + void destroy() { + delete s_mgr; + s_mgr = nullptr; + } +}; + +static kompute_manager komputeManager; + +struct ggml_vk_memory { + void *data = nullptr; + size_t size = 0; + vk::DeviceMemory *primaryMemory = nullptr; + vk::Buffer *primaryBuffer = nullptr; + vk::DeviceMemory *stagingMemory = nullptr; + vk::Buffer *stagingBuffer = nullptr; +}; + +#ifdef __linux__ +__attribute__((constructor)) +static void enable_sam() { + setenv("RADV_PERFTEST", "sam", false); +} +#endif + +static bool ggml_vk_checkPhysicalDeviceFeatures(vk::PhysicalDevice physical_device) { + vk::PhysicalDeviceFeatures availableFeatures; + physical_device.getFeatures(&availableFeatures); + + if (!availableFeatures.shaderInt16) + return false; + + vk::PhysicalDeviceVulkan11Features availableFeatures11; + vk::PhysicalDeviceVulkan12Features availableFeatures12; + + availableFeatures11.pNext = &availableFeatures12; + availableFeatures12.pNext = nullptr; + + vk::PhysicalDeviceFeatures2 features2; + features2.pNext = &availableFeatures11; + + physical_device.getFeatures2(&features2); + + if (!availableFeatures11.uniformAndStorageBuffer16BitAccess || + !availableFeatures11.storageBuffer16BitAccess) { + return false; + } + + if (!availableFeatures12.storageBuffer8BitAccess || + !availableFeatures12.uniformAndStorageBuffer8BitAccess || + !availableFeatures12.shaderFloat16 || + !availableFeatures12.shaderInt8) { + return false; + } + + return true; +} + +static const char * ggml_vk_getVendorName(uint32_t vendorID) { + switch (vendorID) { + case 0x10DE: + return "nvidia"; + case 0x1002: + return "amd"; + case 0x8086: + return "intel"; + default: + return "unknown"; + } +} + +static std::vector ggml_vk_available_devices_internal(size_t memoryRequired) { + std::vector results; + if (!komputeManager()->hasVulkan() || !komputeManager()->hasInstance()) + return results; + + std::vector physical_devices; + try { + physical_devices = komputeManager()->listDevices(); + } catch (vk::SystemError & err) { + std::cerr << __func__ << ": ignoring Vulkan exception: " << err.what() << "\n"; + return results; + } + + uint32_t deviceCount = physical_devices.size(); + if (deviceCount == 0) + return results; + + std::unordered_map count_by_name; + + for (uint32_t i = 0; i < deviceCount; i++) { + const auto & physical_device = physical_devices[i]; + + VkPhysicalDeviceProperties dev_props = physical_device.getProperties(); + VkPhysicalDeviceMemoryProperties memoryProperties = physical_device.getMemoryProperties(); + const uint32_t major = VK_VERSION_MAJOR(dev_props.apiVersion); + const uint32_t minor = VK_VERSION_MINOR(dev_props.apiVersion); + if (major < 1 || minor < 2) + continue; + + if (!ggml_vk_checkPhysicalDeviceFeatures(physical_device)) + continue; + + size_t heapSize = 0; + for (uint32_t j = 0; j < memoryProperties.memoryHeapCount; ++j) { + VkMemoryHeap heap = memoryProperties.memoryHeaps[j]; + if (heap.flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) { + heapSize = heap.size; + break; + } + } + + if (heapSize < memoryRequired) + continue; + + auto ext_props = physical_device.enumerateDeviceExtensionProperties(); + bool has_maintenance4 = false; + + // Check if maintenance4 is supported + for (const auto & properties : ext_props) { + if (strcmp("VK_KHR_maintenance4", properties.extensionName) == 0) { + has_maintenance4 = true; + } + } + + vk::PhysicalDeviceSubgroupProperties subgroup_props; + vk::PhysicalDeviceProperties2 dev_props2; + vk::PhysicalDeviceMaintenance3Properties dev_props3; + vk::PhysicalDeviceMaintenance4Properties dev_props4; + dev_props2.pNext = &dev_props3; + dev_props3.pNext = &subgroup_props; + if (has_maintenance4) { + subgroup_props.pNext = &dev_props4; + } + physical_device.getProperties2(&dev_props2); + + if (subgroup_props.subgroupSize < 32) + continue; + + ggml_vk_device d; + d.index = i; + d.type = dev_props.deviceType; + d.heapSize = heapSize; + d.vendor = strdup(ggml_vk_getVendorName(dev_props.vendorID)); + d.subgroupSize = subgroup_props.subgroupSize; + d.bufferAlignment = dev_props.limits.minStorageBufferOffsetAlignment; + + if (has_maintenance4) { + d.maxAlloc = std::min(dev_props3.maxMemoryAllocationSize, dev_props4.maxBufferSize); + } else { + d.maxAlloc = dev_props3.maxMemoryAllocationSize; + } + + std::string name(dev_props.deviceName); + size_t n_idx = ++count_by_name[name]; + if (n_idx > 1) { + name += " (" + std::to_string(n_idx) + ")"; + } + d.name = strdup(name.c_str()); + + results.push_back(d); + } + + std::stable_sort(results.begin(), results.end(), + [](const ggml_vk_device& lhs, const ggml_vk_device& rhs) -> bool { + if (lhs.type != rhs.type) { + if (lhs.type == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) return true; + if (rhs.type == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) return false; + + if (lhs.type == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) return true; + if (rhs.type == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) return false; + } + return lhs.heapSize < rhs.heapSize; + } + ); + + return results; +} + +// public API returns a C-style array +ggml_vk_device * ggml_vk_available_devices(size_t memoryRequired, size_t * count) { + auto devices = ggml_vk_available_devices_internal(memoryRequired); + *count = devices.size(); + if (devices.empty()) { + return nullptr; + } + + size_t nbytes = sizeof (ggml_vk_device) * (devices.size()); + auto * arr = static_cast(malloc(nbytes)); + memcpy(arr, devices.data(), nbytes); + return arr; +} + +static void ggml_vk_filterByVendor(std::vector& devices, const std::string& targetVendor) { + devices.erase( + std::remove_if(devices.begin(), devices.end(), + [&targetVendor](const ggml_vk_device& device) { + return device.vendor != targetVendor; + }), + devices.end() + ); +} + +static void ggml_vk_filterByName(std::vector& devices, const std::string& targetName) { + devices.erase( + std::remove_if(devices.begin(), devices.end(), + [&targetName](const ggml_vk_device& device) { + return device.name != targetName; + }), + devices.end() + ); +} + +static bool ggml_vk_get_device(ggml_vk_device * device, size_t memoryRequired, const std::string & name) { + if (name.empty()) + return false; + + auto devices = ggml_vk_available_devices_internal(memoryRequired); + if (name == "amd" || name == "nvidia" || name == "intel") { + ggml_vk_filterByVendor(devices, name); + } else if (name != "gpu") { + ggml_vk_filterByName(devices, name); + } + + if (devices.empty()) + return false; + + *device = devices.front(); + return true; +} + +bool ggml_vk_get_device(ggml_vk_device * device, size_t memoryRequired, const char * name) { + return ggml_vk_get_device(device, memoryRequired, std::string(name)); +} + +bool ggml_vk_has_vulkan() { + return komputeManager()->hasVulkan(); +} + +bool ggml_vk_has_device() { + return komputeManager()->hasDevice(); +} + +ggml_vk_device ggml_vk_current_device() { + if (!komputeManager()->hasDevice()) + return ggml_vk_device(); + + auto devices = ggml_vk_available_devices_internal(0); + ggml_vk_filterByName(devices, komputeManager()->physicalDevice()->getProperties().deviceName.data()); + GGML_ASSERT(!devices.empty()); + return devices.front(); +} + +static +void ggml_vk_allocate_descriptor_pool(struct ggml_kompute_context * ctx, size_t size) { + std::vector descriptorPoolSizes = { + vk::DescriptorPoolSize( + vk::DescriptorType::eStorageBuffer, + 3 * size // Descriptor count is number of possible tensors to pass into an algorithm + ) + }; + + vk::DescriptorPoolCreateInfo descriptorPoolInfo( + vk::DescriptorPoolCreateFlags(), + size, // Max sets + static_cast(descriptorPoolSizes.size()), + descriptorPoolSizes.data()); + + ctx->pool = std::make_shared(); + vk::Result r = komputeManager()->device()->createDescriptorPool( + &descriptorPoolInfo, nullptr, ctx->pool.get()); + if (r != vk::Result::eSuccess) + std::cerr << "Error allocating descriptor pool" << vk::to_string(r); +} + +static +void ggml_vk_free_descriptor_pool(struct ggml_kompute_context * ctx) { + if (ctx->pool) { + komputeManager()->device()->destroy( + *ctx->pool, + (vk::Optional)nullptr); + ctx->pool = nullptr; + } +} + +static +vk::Buffer *ggml_vk_allocate_buffer(size_t size) { + vk::BufferCreateInfo bufferCreateInfo; + bufferCreateInfo.size = size; + bufferCreateInfo.usage = vk::BufferUsageFlagBits::eStorageBuffer | + vk::BufferUsageFlagBits::eTransferSrc | + vk::BufferUsageFlagBits::eTransferDst; + bufferCreateInfo.sharingMode = vk::SharingMode::eExclusive; + + vk::Buffer *vkBuffer = new vk::Buffer; + vk::Result r = komputeManager()->device()->createBuffer(&bufferCreateInfo, nullptr, vkBuffer); + if (r != vk::Result::eSuccess) + std::cerr << "Error allocating buffer " << vk::to_string(r) << std::endl; + return vkBuffer; +} + +static +vk::DeviceMemory *ggml_vk_allocate(size_t size, vk::MemoryPropertyFlags flags, vk::MemoryRequirements requirements, bool *isHostVisible) { + + uint32_t memoryTypeIndex = -1; + bool memoryTypeIndexFound = false; + vk::PhysicalDeviceMemoryProperties memoryProperties = komputeManager()->physicalDevice()->getMemoryProperties(); + for (uint32_t i = 0; i < memoryProperties.memoryTypeCount; i++) { + const vk::MemoryType &memoryType = memoryProperties.memoryTypes[i]; + const vk::MemoryHeap &memoryHeap = memoryProperties.memoryHeaps[memoryType.heapIndex]; + if (memoryHeap.size < size) { + continue; + } + + if (requirements.memoryTypeBits & (1 << i)) { + if (((memoryProperties.memoryTypes[i]).propertyFlags & + flags) == flags) { + memoryTypeIndex = i; + memoryTypeIndexFound = true; + if (isHostVisible && (memoryProperties.memoryTypes[i].propertyFlags & vk::MemoryPropertyFlagBits::eHostVisible)) { + *isHostVisible = true; + } + break; + } + } + } + if (!memoryTypeIndexFound) { + throw std::runtime_error( + "Memory type index for buffer creation not found"); + } + + vk::MemoryAllocateInfo allocInfo; + allocInfo.allocationSize = size; + allocInfo.memoryTypeIndex = memoryTypeIndex; + vk::DeviceMemory *vkDeviceMemory = new vk::DeviceMemory; + vk::Result r = komputeManager()->device()->allocateMemory(&allocInfo, nullptr, vkDeviceMemory); + if (r != vk::Result::eSuccess) { + std::cerr << "Error allocating memory " << vk::to_string(r) << std::endl; + throw std::runtime_error("Error allocating vulkan memory."); + } + return vkDeviceMemory; +} + +static size_t ggml_vk_aligned_offset(ggml_backend_buffer_t buffer, size_t offset) { + size_t minStorageBufferOffsetAlignment = ggml_backend_buffer_get_alignment(buffer); + + // If offset is already aligned, return it directly + if (offset % minStorageBufferOffsetAlignment == 0) { + return offset; + } + + // Otherwise, return the largest multiple of minStorageBufferOffsetAlignment less than offset + return (offset / minStorageBufferOffsetAlignment) * minStorageBufferOffsetAlignment; +} + +static ggml_vk_memory ggml_vk_allocate(size_t size) { + ggml_vk_memory memory; + bool isHostVisible = false; + { + memory.primaryBuffer = ggml_vk_allocate_buffer(size); + vk::MemoryRequirements memoryRequirements = komputeManager()->device()->getBufferMemoryRequirements(*memory.primaryBuffer); + vk::MemoryPropertyFlags memoryPropertyFlags = vk::MemoryPropertyFlagBits::eDeviceLocal; + memory.primaryMemory = ggml_vk_allocate(size, memoryPropertyFlags, memoryRequirements, &isHostVisible); + komputeManager()->device()->bindBufferMemory(*memory.primaryBuffer, *memory.primaryMemory, 0); + if (isHostVisible) { + vk::Result r = komputeManager()->device()->mapMemory(*memory.primaryMemory, 0, size, vk::MemoryMapFlags(), &memory.data); + if (r != vk::Result::eSuccess) + std::cerr << "Error mapping memory" << vk::to_string(r); + } + } + + if (!isHostVisible) { + memory.stagingBuffer = ggml_vk_allocate_buffer(size); + vk::MemoryRequirements memoryRequirements = komputeManager()->device()->getBufferMemoryRequirements(*memory.stagingBuffer); + vk::MemoryPropertyFlags memoryPropertyFlags = vk::MemoryPropertyFlagBits::eHostVisible | + vk::MemoryPropertyFlagBits::eHostCoherent | + vk::MemoryPropertyFlagBits::eHostCached; + memory.stagingMemory = ggml_vk_allocate(size, memoryPropertyFlags, memoryRequirements, &isHostVisible); + komputeManager()->device()->bindBufferMemory(*memory.stagingBuffer, *memory.stagingMemory, 0); + vk::Result r = komputeManager()->device()->mapMemory(*memory.stagingMemory, 0, size, vk::MemoryMapFlags(), &memory.data); + if (r != vk::Result::eSuccess) + std::cerr << "Error mapping memory" << vk::to_string(r); + } + + memory.size = size; + return memory; +} + +static void ggml_vk_free_memory(ggml_vk_memory &memory) +{ + komputeManager()->device()->destroy( + *memory.primaryBuffer, + (vk::Optional)nullptr); + if (memory.stagingBuffer) { + komputeManager()->device()->destroy( + *memory.stagingBuffer, + (vk::Optional)nullptr); + } + komputeManager()->device()->freeMemory( + *memory.primaryMemory, + (vk::Optional)nullptr); + if (memory.stagingMemory) { + komputeManager()->device()->freeMemory( + *memory.stagingMemory, + (vk::Optional)nullptr); + } +} + +static const char * ggml_backend_kompute_buffer_type_get_name(ggml_backend_buffer_type_t buft); + +static +ggml_vk_memory * ggml_vk_find_tensor(const struct ggml_tensor * t, uint64_t & offset) { + ggml_backend_buffer_t buffer = t->view_src ? t->view_src->buffer : t->buffer; + + // compatibility with ggml-backend + GGML_ASSERT(buffer && buffer->buft->iface.get_name == ggml_backend_kompute_buffer_type_get_name); + + ggml_vk_memory * buf_ctx = static_cast(buffer->context); + + const intptr_t ioffs = intptr_t(t->data) - intptr_t(buf_ctx->data); + + GGML_ASSERT(ioffs >= 0 && ioffs + int64_t(ggml_nbytes(t)) <= int64_t(buffer->size)); + + offset = uint64_t(ioffs); + return buf_ctx; +} + +static +const std::shared_ptr ggml_vk_get_tensor(const struct ggml_tensor * t, uint32_t * alignedOffset = nullptr) { + uint64_t originalOffset = 0; + auto * res = ggml_vk_find_tensor(t, originalOffset); + if (!res) { + static std::shared_ptr nullTensor = nullptr; + return nullTensor; + } + + // Create a tensor whose memory will be composed of our buffers at the correct offset + const size_t nelements = ggml_nelements(t); + size_t nbytes = ggml_nbytes(t); + + size_t vulkanOffset = ggml_vk_aligned_offset(t->buffer, originalOffset); + if (alignedOffset) { + *alignedOffset = originalOffset - vulkanOffset; + nbytes += *alignedOffset; + } + + return komputeManager()->tensor( + t->data, + nelements, + nbytes, kp::Tensor::TensorDataTypes::eFloat, + res->primaryMemory, res->primaryBuffer, + res->stagingMemory, res->stagingBuffer, + vulkanOffset); +} + +static std::vector getSpirvShader(const unsigned char* rawData, size_t size) { + if (size % sizeof(uint32_t) != 0) { + throw std::runtime_error("Invalid size: must be divisible by sizeof(uint32_t)"); + } + + const uint32_t* data_ptr = reinterpret_cast(rawData); + size_t count = size / sizeof(uint32_t); + return std::vector(data_ptr, data_ptr + count); +} + +inline static +uint32_t safe_divide(uint32_t a, uint32_t b) { + if (b <= 1) { + return a; + } + if ((a % b) != 0) { + fprintf(stderr, "((%u %% %u) == %u) != 0\n", a, b, a % b); + GGML_ASSERT(!"safe_divide result would've had remainder"); + } + return a / b; +} + +static void ggml_vk_add( + kp::Sequence& seq, + const std::shared_ptr& inA, + const std::shared_ptr& inB, + const std::shared_ptr& out, + uint32_t inAOff, uint32_t inBOff, uint32_t outOff, + int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03, + int32_t nb00, int32_t nb01, int32_t nb02, int32_t nb03, + int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13, + int32_t nb10, int32_t nb11, int32_t nb12, int32_t nb13, + int32_t ne0, + int32_t nb0, int32_t nb1, int32_t nb2, int32_t nb3 +) { + const static auto spirv = getSpirvShader(kp::shader_data::op_add_comp_spv, + kp::shader_data::op_add_comp_spv_len); + + struct PushConstants { + uint32_t inAOff, inBOff, outOff; + int32_t ne00; + int32_t nb00, nb01, nb02, nb03; + int32_t ne10, ne11, ne12, ne13; + int32_t nb10, nb11, nb12, nb13; + int32_t ne0; + int32_t nb0, nb1, nb2, nb3; + } const pushConsts { + safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4), + ne00, + nb00, nb01, nb02, nb03, + ne10, ne11, ne12, ne13, + nb10, nb11, nb12, nb13, + ne0, + nb0, nb1, nb2, nb3 + }; + + std::shared_ptr s_algo = nullptr; + if (!komputeManager()->hasAlgorithm(__func__)) { + s_algo = komputeManager()->algorithm(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts}); + } else { + s_algo = komputeManager()->getAlgorithm(__func__); + s_algo->setTensors({inA, inB, out}); + s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)}); + s_algo->setPushConstants({pushConsts}); + s_algo->updateDescriptors(s_kompute_context->pool.get()); + } + seq.record(s_algo); +} + +static void ggml_vk_addrow(kp::Sequence& seq, + const std::shared_ptr& inA, + const std::shared_ptr& inB, + const std::shared_ptr& out, + uint32_t inAOff, uint32_t inBOff, uint32_t outOff, + uint32_t size, uint32_t row = 0) { + + const static auto spirv = getSpirvShader(kp::shader_data::op_addrow_comp_spv, + kp::shader_data::op_addrow_comp_spv_len); + + struct PushConstants { + uint32_t inAOff, inBOff, outOff; + uint32_t row; + } const pushConsts { + safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4), + row + }; + + std::shared_ptr s_algo = nullptr; + if (!komputeManager()->hasAlgorithm(__func__)) + s_algo = komputeManager()->algorithm(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {size}, {}, {pushConsts}); + else { + s_algo = komputeManager()->getAlgorithm(__func__); + s_algo->setTensors({inA, inB, out}); + s_algo->setWorkgroup({size}); + s_algo->setPushConstants({pushConsts}); + s_algo->updateDescriptors(s_kompute_context->pool.get()); + } + seq.record(s_algo); +} + +static void ggml_vk_mul( + kp::Sequence& seq, + const std::shared_ptr& inA, + const std::shared_ptr& inB, + const std::shared_ptr& out, + uint32_t inAOff, uint32_t inBOff, uint32_t outOff, + int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03, + int32_t nb00, int32_t nb01, int32_t nb02, int32_t nb03, + int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13, + int32_t nb10, int32_t nb11, int32_t nb12, int32_t nb13, + int32_t ne0, + int32_t nb0, int32_t nb1, int32_t nb2, int32_t nb3 +) { + const static auto spirv = getSpirvShader(kp::shader_data::op_mul_comp_spv, + kp::shader_data::op_mul_comp_spv_len); + + struct PushConstants { + uint32_t inAOff, inBOff, outOff; + int32_t ne00; + int32_t nb00, nb01, nb02, nb03; + int32_t ne10, ne11, ne12, ne13; + int32_t nb10, nb11, nb12, nb13; + int32_t ne0; + int32_t nb0, nb1, nb2, nb3; + } const pushConsts { + safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4), + ne00, + nb00, nb01, nb02, nb03, + ne10, ne11, ne12, ne13, + nb10, nb11, nb12, nb13, + ne0, + nb0, nb1, nb2, nb3 + }; + + std::shared_ptr s_algo = nullptr; + if (!komputeManager()->hasAlgorithm(__func__)) { + s_algo = komputeManager()->algorithm(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts}); + } else { + s_algo = komputeManager()->getAlgorithm(__func__); + s_algo->setTensors({inA, inB, out}); + s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)}); + s_algo->setPushConstants({pushConsts}); + s_algo->updateDescriptors(s_kompute_context->pool.get()); + } + seq.record(s_algo); +} + +static void ggml_vk_scale(kp::Sequence& seq, + const std::shared_ptr& in, + const std::shared_ptr& out, + uint32_t inOff, uint32_t outOff, + uint32_t size, float scale) { + const static auto spirv_1 = getSpirvShader( + kp::shader_data::op_scale_comp_spv, kp::shader_data::op_scale_comp_spv_len + ); + const static auto spirv_8 = getSpirvShader( + kp::shader_data::op_scale_8_comp_spv, kp::shader_data::op_scale_8_comp_spv_len + ); + + struct PushConstants { + uint32_t inOff, outOff; + float scale; + } const pushConsts { + safe_divide(inOff, 4), safe_divide(outOff, 4), + scale + }; + + const auto * spirv = &spirv_1; + std::string name(__func__); + if (size % 8 == 0) { + size /= 8; + name += "_8"; + spirv = &spirv_8; + } + + std::shared_ptr s_algo = nullptr; + if (!komputeManager()->hasAlgorithm(name)) { + s_algo = komputeManager()->algorithm(name, s_kompute_context->pool.get(), {in, out}, *spirv, {size}, {}, {pushConsts}); + } else { + s_algo = komputeManager()->getAlgorithm(name); + s_algo->setTensors({in, out}); + s_algo->setWorkgroup({size}); + s_algo->setPushConstants({pushConsts}); + s_algo->updateDescriptors(s_kompute_context->pool.get()); + } + seq.record(s_algo); +} + +static void ggml_vk_xxlu( + const std::vector& spirv, const char * suffix, kp::Sequence& seq, + const std::shared_ptr& in, + const std::shared_ptr& out, + uint32_t inOff, uint32_t outOff, + uint32_t size +) { + struct PushConstants { + uint32_t inOff, outOff; + } const pushConsts { + safe_divide(inOff, 4), safe_divide(outOff, 4), + }; + + auto name = std::string(__func__) + "_" + suffix; + std::shared_ptr s_algo = nullptr; + if (!komputeManager()->hasAlgorithm(name)) { + s_algo = komputeManager()->algorithm(name, s_kompute_context->pool.get(), {in, out}, spirv, {size}, {}, {pushConsts}); + } else { + s_algo = komputeManager()->getAlgorithm(name); + s_algo->setTensors({in, out}); + s_algo->setWorkgroup({size}); + s_algo->setPushConstants({pushConsts}); + s_algo->updateDescriptors(s_kompute_context->pool.get()); + } + seq.record(s_algo); +} + +template +static void ggml_vk_silu(Args&&... args) { + const static auto spirv = getSpirvShader(kp::shader_data::op_silu_comp_spv, + kp::shader_data::op_silu_comp_spv_len); + + ggml_vk_xxlu(spirv, "silu", std::forward(args)...); +} + +template +static void ggml_vk_relu(Args&&... args) { + const static auto spirv = getSpirvShader(kp::shader_data::op_relu_comp_spv, + kp::shader_data::op_relu_comp_spv_len); + + ggml_vk_xxlu(spirv, "relu", std::forward(args)...); +} + +template +static void ggml_vk_gelu(Args&&... args) { + const static auto spirv = getSpirvShader(kp::shader_data::op_gelu_comp_spv, + kp::shader_data::op_gelu_comp_spv_len); + + ggml_vk_xxlu(spirv, "gelu", std::forward(args)...); +} + +static void ggml_vk_soft_max( + kp::Sequence& seq, + const std::shared_ptr& inA, + const std::shared_ptr& inB, + const std::shared_ptr& out, + uint32_t inAOff, uint32_t inBOff, uint32_t outOff, + int32_t ne00, int32_t ne01, int32_t ne02, uint32_t ne03, + float scale +) { + const static auto spirv = getSpirvShader(kp::shader_data::op_softmax_comp_spv, + kp::shader_data::op_softmax_comp_spv_len); + + struct PushConstants { + uint32_t inAOff, inBOff, outOff; + int32_t ne00, ne01, ne02; + float scale; + int32_t mask; + } pushConsts { + safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4), + ne00, ne01, ne02, + scale, + bool(inB) + }; + + auto & inB_ = inB ? inB : inA; + + std::shared_ptr s_algo = nullptr; + if (!komputeManager()->hasAlgorithm(__func__)) { + // FIXME: The softmax kernel needs to be fixed to use the subgroupsize which can vary by device + const uint32_t local_x = 32; + s_algo = komputeManager()->algorithm(__func__, s_kompute_context->pool.get(), {inA, inB_, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {local_x}, {pushConsts}); + } else { + s_algo = komputeManager()->getAlgorithm(__func__); + s_algo->setTensors({inA, inB_, out}); + s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)}); + s_algo->setPushConstants({pushConsts}); + s_algo->updateDescriptors(s_kompute_context->pool.get()); + } + seq.record(s_algo); +} + +static void ggml_vk_norm_( + const std::vector& spirv, const char * suffix, kp::Sequence& seq, + const std::shared_ptr& in, + const std::shared_ptr& out, + uint32_t inOff, uint32_t outOff, + int32_t ne00, int32_t nb01, + int32_t nrows, float epsilon +) { + GGML_ASSERT(nb01%sizeof(float) == 0); + GGML_ASSERT(ne00%sizeof(float) == 0); + + struct PushConstants { + uint32_t inOff, outOff; + uint32_t ne00, nb01; + float eps; + } pushConsts { + safe_divide(inOff, 4), safe_divide(outOff, 4), + (uint32_t)ne00, (uint32_t)nb01, epsilon + }; + + auto name = std::string(__func__) + "_" + suffix; + std::shared_ptr s_algo = nullptr; + if (!komputeManager()->hasAlgorithm(name)) { + s_algo = komputeManager()->algorithm(name, s_kompute_context->pool.get(), {in, out}, spirv, {(uint32_t)nrows}, {}, {pushConsts}); + } else { + s_algo = komputeManager()->getAlgorithm(name); + s_algo->setTensors({in, out}); + s_algo->setWorkgroup({(uint32_t)nrows}); + s_algo->setPushConstants({pushConsts}); + s_algo->updateDescriptors(s_kompute_context->pool.get()); + } + seq.record(s_algo); +} + +template +static void ggml_vk_norm(Args&&... args) { + const static auto spirv = getSpirvShader(kp::shader_data::op_norm_comp_spv, + kp::shader_data::op_norm_comp_spv_len); + + ggml_vk_norm_(spirv, "norm", std::forward(args)...); +} + +template +static void ggml_vk_rms_norm(Args&&... args) { + const static auto spirv = getSpirvShader(kp::shader_data::op_rmsnorm_comp_spv, + kp::shader_data::op_rmsnorm_comp_spv_len); + + ggml_vk_norm_(spirv, "rms", std::forward(args)...); +} + +static void ggml_vk_diag_mask_inf(kp::Sequence& seq, + const std::shared_ptr& in, + const std::shared_ptr& out, + uint32_t inOff, uint32_t outOff, + uint32_t n_past, + int32_t ne00, int32_t ne01, int32_t ne02) { + const static auto spirv = getSpirvShader(kp::shader_data::op_diagmask_comp_spv, + kp::shader_data::op_diagmask_comp_spv_len); + + struct PushConstants { + uint32_t inOff, outOff; + uint32_t n_past; + int32_t ne00, ne01; + } pushConsts { + safe_divide(inOff, 4), safe_divide(outOff, 4), + n_past, + ne00, ne01 + }; + + std::shared_ptr s_algo = nullptr; + if (!komputeManager()->hasAlgorithm(__func__)) + s_algo = komputeManager()->algorithm(__func__, s_kompute_context->pool.get(), {in, out}, spirv, {unsigned(ne00), unsigned(ne01), unsigned(ne02)}, {}, {pushConsts}); + else { + s_algo = komputeManager()->getAlgorithm(__func__); + s_algo->setTensors({in, out}); + s_algo->setWorkgroup({unsigned(ne00), unsigned(ne01), unsigned(ne02)}); + s_algo->setPushConstants({pushConsts}); + s_algo->updateDescriptors(s_kompute_context->pool.get()); + } + seq.record(s_algo); +} + +static void ggml_vk_mul_mat_f16( + kp::Sequence& seq, + const std::shared_ptr& inA, + const std::shared_ptr& inB, + const std::shared_ptr& out, + uint32_t inAOff, uint32_t inBOff, uint32_t outOff, + int32_t ne00, int32_t ne01, int32_t ne02, + uint32_t nb00, uint32_t nb01, uint32_t nb02, + int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13, + uint32_t nb10, uint32_t nb11, uint32_t nb12, + int32_t ne0, int32_t ne1, + uint32_t r2, uint32_t r3 +) { + const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_f16_comp_spv, + kp::shader_data::op_mul_mat_f16_comp_spv_len); + + struct PushConstants { + uint32_t inAOff, inBOff, outOff; + int32_t ne00, ne01, ne02; + uint32_t nb00, nb01, nb02; + int32_t ne10, ne11, ne12; + uint32_t nb10, nb11, nb12; + int32_t ne0, ne1; + uint32_t r2, r3; + } pushConsts { + safe_divide(inAOff, 2), safe_divide(inBOff, 4), safe_divide(outOff, 4), + ne00, ne01, ne02, + nb00, nb01, nb02, + ne10, ne11, ne12, + nb10, nb11, nb12, + ne0, ne1, + r2, r3 + }; + + const unsigned ny = unsigned((ne11 + 4 - 1)/4); + + std::shared_ptr s_algo = nullptr; + if (!komputeManager()->hasAlgorithm(__func__)) { + const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2; + s_algo = komputeManager()->algorithm(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), ny, unsigned(ne12*ne13)}, {local_x}, {pushConsts}); + } else { + s_algo = komputeManager()->getAlgorithm(__func__); + s_algo->setTensors({inA, inB, out}); + s_algo->setWorkgroup({unsigned(ne01), ny, unsigned(ne12*ne13)}); + s_algo->setPushConstants({pushConsts}); + s_algo->updateDescriptors(s_kompute_context->pool.get()); + } + seq.record(s_algo); +} + +static void ggml_vk_mul_mat_mat_f32(kp::Sequence& seq, + const std::shared_ptr& inA, + const std::shared_ptr& inB, + const std::shared_ptr& out, + uint32_t inAOff, uint32_t inBOff, uint32_t outOff, + int32_t ne00, int32_t ne01, int32_t ne02, + uint32_t nb01, uint32_t nb02, + int32_t ne11, int32_t ne12, + uint32_t nb11, uint32_t nb12, + uint32_t nb1, uint32_t nb2) { + const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_mat_f32_comp_spv, + kp::shader_data::op_mul_mat_mat_f32_comp_spv_len); + + struct PushConstants { + uint32_t inAOff, inBOff, outOff; + int32_t ne00, ne01, ne02, ne11, ne12; + uint32_t nb01, nb02; + uint32_t nb11, nb12; + uint32_t nb1, nb2; + } pushConsts { + safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4), + ne00, ne01, ne02, ne11, ne12, + nb01, nb02, nb11, nb12, + nb1, nb2 + }; + + const uint32_t local_x = ggml_vk_current_device().subgroupSize; + std::shared_ptr s_algo = nullptr; + if (!komputeManager()->hasAlgorithm(__func__)) { + s_algo = komputeManager()->algorithm(__func__, s_kompute_context->pool.get(), + {inA, inB, out}, spirv, + {unsigned(ne01), + unsigned(ne11), + unsigned(std::max(ne12, ne02)) + }, + {local_x}, + {pushConsts}); + } else { + s_algo = komputeManager()->getAlgorithm(__func__); + s_algo->setTensors({inA, inB, out}); + s_algo->setWorkgroup({unsigned(ne01), + unsigned(ne11), + unsigned(std::max(ne12, ne02)), + }); + s_algo->setPushConstants({pushConsts}); + s_algo->updateDescriptors(s_kompute_context->pool.get()); + } + seq.record(s_algo); +} + +static void ggml_vk_mul_mat_impl( + const std::vector& spirv, const char * suffix, uint32_t block_size, kp::Sequence& seq, + const std::shared_ptr& inA, + const std::shared_ptr& inB, + const std::shared_ptr& out, + uint32_t inAOff, uint32_t inBOff, uint32_t outOff, + int32_t ne00, int32_t ne01, int32_t ne02, + int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13, + int32_t ne0, int32_t ne1, + uint32_t r2, uint32_t r3 +) { + struct PushConstants { + uint32_t inAOff, inBOff, outOff; + int32_t ne00, ne01, ne02; + int32_t ne10, ne12; + int32_t ne0, ne1; + uint32_t r2, r3; + } pushConsts { + safe_divide(inAOff, block_size), safe_divide(inBOff, 4), safe_divide(outOff, 4), + ne00, ne01, ne02, + ne10, ne12, + ne0, ne1, + r2, r3 + }; + + auto name = std::string(__func__) + "_" + suffix; + std::shared_ptr s_algo = nullptr; + if (!komputeManager()->hasAlgorithm(name)) { + const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2; + s_algo = komputeManager()->algorithm(name, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned((ne01 + 7)/8), unsigned(ne11), unsigned(ne12*ne13)}, {local_x}, {pushConsts}); + } else { + s_algo = komputeManager()->getAlgorithm(name); + s_algo->setTensors({inA, inB, out}); + s_algo->setWorkgroup({unsigned((ne01 + 7)/8), unsigned(ne11), unsigned(ne12*ne13)}); + s_algo->setPushConstants({pushConsts}); + s_algo->updateDescriptors(s_kompute_context->pool.get()); + } + seq.record(s_algo); +} + +template +static void ggml_vk_mul_mat_q4_0(Args&&... args) { + const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q4_0_comp_spv, + kp::shader_data::op_mul_mat_q4_0_comp_spv_len); + + ggml_vk_mul_mat_impl(spirv, "q4_0", 1/*We access blocks unaligned*/, std::forward(args)...); +} + +template +static void ggml_vk_mul_mat_q4_1(Args&&... args) { + const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q4_1_comp_spv, + kp::shader_data::op_mul_mat_q4_1_comp_spv_len); + + ggml_vk_mul_mat_impl(spirv, "q4_1", 1/*We access blocks unaligned*/, std::forward(args)...); +} + +template +static void ggml_vk_mul_mat_q8_0(Args&&... args) { + const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q8_0_comp_spv, + kp::shader_data::op_mul_mat_q8_0_comp_spv_len); + + ggml_vk_mul_mat_impl(spirv, "q8_0", 1/*We access blocks unaligned*/, std::forward(args)...); +} + +static void ggml_vk_mul_mat_q6_k( + kp::Sequence& seq, + const std::shared_ptr& inA, + const std::shared_ptr& inB, + const std::shared_ptr& out, + uint32_t inAOff, uint32_t inBOff, uint32_t outOff, + int32_t ne00, int32_t ne10, int32_t ne0, int32_t ne1, + int32_t ne01, int32_t ne11, int32_t ne12, int32_t ne02 +) { + const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q6_k_comp_spv, + kp::shader_data::op_mul_mat_q6_k_comp_spv_len); + + struct PushConstants { + uint32_t inAOff, inBOff, outOff; + int32_t ne00, ne10, ne0, ne1, ne01, gqa; + } pushConsts { + inAOff, safe_divide(inBOff, 4), safe_divide(outOff, 4), + ne00, ne10, ne0, ne1, ne01, ne12/ne02 + }; + + std::shared_ptr s_algo = nullptr; + if (!komputeManager()->hasAlgorithm(__func__)) { + const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2; + s_algo = komputeManager()->algorithm(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned((ne01 + 1)/2), unsigned(ne11), unsigned(ne12)}, {local_x}, {pushConsts}); + } else { + s_algo = komputeManager()->getAlgorithm(__func__); + s_algo->setTensors({inA, inB, out}); + s_algo->setWorkgroup({unsigned((ne01 + 1)/2), unsigned(ne11), unsigned(ne12)}); + s_algo->setPushConstants({pushConsts}); + s_algo->updateDescriptors(s_kompute_context->pool.get()); + } + seq.record(s_algo); +} + +static void ggml_vk_get_rows( + const std::vector& spirv, + const char * suffix, + unsigned element_size, unsigned qk, + kp::Sequence& seq, + const std::shared_ptr& inA, + const std::shared_ptr& inB, + const std::shared_ptr& out, + uint32_t inAOff, uint32_t inBOff, uint32_t outOff, + int32_t ne00, int32_t nb01, int32_t nb1, + uint32_t size +) { + GGML_ASSERT(nb01%element_size == 0); + GGML_ASSERT(nb1%sizeof(float) == 0); + if (qk) GGML_ASSERT(ne00%qk == 0); + + struct PushConstants { + uint32_t inAOff, inBOff, outOff; + int32_t ne00, nb01, nb1; + } pushConsts { + safe_divide(inAOff, element_size), safe_divide(inBOff, 4), safe_divide(outOff, 4), + ne00, nb01, nb1 + }; + + auto name = std::string(__func__) + "_" + suffix; + std::shared_ptr s_algo = nullptr; + if (!komputeManager()->hasAlgorithm(name)) { + s_algo = komputeManager()->algorithm(name, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {size}, {}, {pushConsts}); + } else { + s_algo = komputeManager()->getAlgorithm(name); + s_algo->setTensors({inA, inB, out}); + s_algo->setWorkgroup({size}); + s_algo->setPushConstants({pushConsts}); + s_algo->updateDescriptors(s_kompute_context->pool.get()); + } + seq.record(s_algo); +} + +template +static void ggml_vk_get_rows_f16(Args&&... args) { + const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_f16_comp_spv, + kp::shader_data::op_getrows_f16_comp_spv_len); + + ggml_vk_get_rows(spirv, "f16", sizeof(half), 0, std::forward(args)...); +} + +template +static void ggml_vk_get_rows_q4_0(Args&&... args) { + const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q4_0_comp_spv, + kp::shader_data::op_getrows_q4_0_comp_spv_len); + + ggml_vk_get_rows(spirv, "q4_0", 1/*We access blocks unaligned*/, QK4_0, std::forward(args)...); +} + +template +static void ggml_vk_get_rows_q4_1(Args&&... args) { + const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q4_1_comp_spv, + kp::shader_data::op_getrows_q4_1_comp_spv_len); + + ggml_vk_get_rows(spirv, "q4_1", 1/*We access blocks unaligned*/, QK4_1, std::forward(args)...); +} + +template +static void ggml_vk_get_rows_q6_k(Args&&... args) { + const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q6_k_comp_spv, + kp::shader_data::op_getrows_q6_k_comp_spv_len); + ggml_vk_get_rows(spirv, "q6_k", 1/*We access blocks unaligned*/, QK_NL, std::forward(args)...); +} + +static void ggml_vk_rope( + kp::Sequence& seq, + const std::shared_ptr& inA, + const std::shared_ptr& inB, + const std::shared_ptr& out, + uint32_t inAOff, uint32_t inBOff, uint32_t outOff, + ggml_type src0t, int32_t n_dims, int32_t mode, int32_t n_orig_ctx, + float freq_base, float freq_scale, float ext_factor, float attn_factor, float beta_fast, float beta_slow, + int32_t ne01, int32_t ne02, int32_t ne03, + uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03, + int32_t ne0, + uint32_t nb0, uint32_t nb1, uint32_t nb2, uint32_t nb3 +) { + GGML_ASSERT(src0t == GGML_TYPE_F16 || src0t == GGML_TYPE_F32); + + static const auto spirv_f16 = getSpirvShader( + kp::shader_data::op_rope_f16_comp_spv, kp::shader_data::op_rope_f16_comp_spv_len + ); + static const auto spirv_f32 = getSpirvShader( + kp::shader_data::op_rope_f32_comp_spv, kp::shader_data::op_rope_f32_comp_spv_len + ); + + int type_size = src0t == GGML_TYPE_F16 ? 2 : 4; + + GGML_ASSERT(nb03 % type_size == 0); + GGML_ASSERT(nb02 % type_size == 0); + GGML_ASSERT(nb01 % type_size == 0); + GGML_ASSERT(nb00 % type_size == 0); + GGML_ASSERT(nb3 % type_size == 0); + GGML_ASSERT(nb2 % type_size == 0); + GGML_ASSERT(nb1 % type_size == 0); + GGML_ASSERT(nb0 % type_size == 0); + + struct PushConstants { + uint32_t inAOff, inBOff, outOff; + int32_t n_dims, mode, n_orig_ctx; + float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; + uint32_t nb00, nb01, nb02, nb03; + int32_t ne0; + uint32_t nb0, nb1, nb2, nb3; + } pushConsts { + safe_divide(inAOff, type_size), safe_divide(inBOff, 4), safe_divide(outOff, type_size), + n_dims, mode, n_orig_ctx, + freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, + nb00, nb01, nb02, nb03, + ne0, + nb0, nb1, nb2, nb3 + }; + + auto name = std::string(__func__) + (src0t == GGML_TYPE_F16 ? "_f16" : "_f32"); + std::shared_ptr s_algo = nullptr; + if (!komputeManager()->hasAlgorithm(name)) { + s_algo = komputeManager()->algorithm( + name, s_kompute_context->pool.get(), {inA, inB, out}, + src0t == GGML_TYPE_F16 ? spirv_f16 : spirv_f32, + {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts} + ); + } else { + s_algo = komputeManager()->getAlgorithm(name); + s_algo->setTensors({inA, inB, out}); + s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)}); + s_algo->setPushConstants({pushConsts}); + s_algo->updateDescriptors(s_kompute_context->pool.get()); + } + seq.record(s_algo); +} + +static void ggml_vk_cpy( + const std::vector& spirv, + uint32_t in_element_size, uint32_t out_element_size, + kp::Sequence& seq, + const std::shared_ptr& in, + const std::shared_ptr& out, + uint32_t inOff, uint32_t outOff, + int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03, + uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03, + int32_t ne0, int32_t ne1, int32_t ne2, + uint32_t nb0, uint32_t nb1, uint32_t nb2, uint32_t nb3 +) { + struct PushConstants { + uint32_t inOff, outOff; + int32_t ne00, ne01, ne02; + uint32_t nb00, nb01, nb02, nb03; + int32_t ne0, ne1, ne2; + uint32_t nb0, nb1, nb2, nb3; + } pushConsts { + safe_divide(inOff, in_element_size), safe_divide(outOff, out_element_size), + ne00, ne01, ne02, + nb00, nb01, nb02, nb03, + ne0, ne1, ne2, + nb0, nb1, nb2, nb3 + }; + + std::string name = std::string(__func__) + + "_i_" + std::to_string(in_element_size) + + "_o_" + std::to_string(out_element_size); + std::shared_ptr s_algo = nullptr; + if (!komputeManager()->hasAlgorithm(name)) + s_algo = komputeManager()->algorithm(name, s_kompute_context->pool.get(), {in, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts}); + else { + s_algo = komputeManager()->getAlgorithm(name); + s_algo->setTensors({in, out}); + s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)}); + s_algo->setPushConstants({pushConsts}); + s_algo->updateDescriptors(s_kompute_context->pool.get()); + } + seq.record(s_algo); +} + +template +static void ggml_vk_cpy_f32_f16(Args&&... args) { + const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f32_f16_comp_spv, + kp::shader_data::op_cpy_f32_f16_comp_spv_len); + ggml_vk_cpy(spirv, 4, 2, std::forward(args)...); +} + +template +static void ggml_vk_cpy_f32_f32(Args&&... args) { + const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f32_f32_comp_spv, + kp::shader_data::op_cpy_f32_f32_comp_spv_len); + ggml_vk_cpy(spirv, 4, 4, std::forward(args)...); +} + +template +static void ggml_vk_cpy_f16_f16(Args&&... args) { + const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f16_f16_comp_spv, + kp::shader_data::op_cpy_f16_f16_comp_spv_len); + ggml_vk_cpy(spirv, 2, 2, std::forward(args)...); +} + +template +static void ggml_vk_cpy_f16_f32(Args&&... args) { + const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f16_f32_comp_spv, + kp::shader_data::op_cpy_f16_f32_comp_spv_len); + ggml_vk_cpy(spirv, 2, 4, std::forward(args)...); +} + +static bool ggml_vk_supports_op(const struct ggml_tensor * op) { + switch (op->type) { + case GGML_TYPE_F16: + case GGML_TYPE_F32: + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + break; + default: + return false; + } + + switch (op->op) { + case GGML_OP_UNARY: + switch (ggml_get_unary_op(op)) { + case GGML_UNARY_OP_RELU: + case GGML_UNARY_OP_GELU: + case GGML_UNARY_OP_SILU: + return true; + default: + ; + } + break; + case GGML_OP_NONE: + case GGML_OP_RESHAPE: + case GGML_OP_VIEW: + case GGML_OP_TRANSPOSE: + case GGML_OP_PERMUTE: + case GGML_OP_ADD: + case GGML_OP_MUL: + case GGML_OP_SCALE: + case GGML_OP_SOFT_MAX: + case GGML_OP_RMS_NORM: + case GGML_OP_NORM: + case GGML_OP_ROPE: + return true; + case GGML_OP_DUP: + case GGML_OP_CPY: + case GGML_OP_CONT: + switch (op->src[0]->type) { + case GGML_TYPE_F32: + case GGML_TYPE_F16: + break; + default: + return false; + } + switch (op->type) { + case GGML_TYPE_F32: + case GGML_TYPE_F16: + break; + default: + return false; + } + return true; + case GGML_OP_DIAG_MASK_INF: + return op->ne[3] == 1; + case GGML_OP_GET_ROWS: + switch (op->src[0]->type) { + case GGML_TYPE_F16: + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + case GGML_TYPE_Q6_K: + return op->ne[2] == 1 && op->ne[3] == 1; + default: + ; + } + return false; + case GGML_OP_MUL_MAT: + if (op->src[1]->type != GGML_TYPE_F32 || ggml_is_transposed(op->src[0]) || ggml_is_transposed(op->src[1])) + return false; + + switch (op->src[0]->type) { + case GGML_TYPE_F32: + case GGML_TYPE_Q6_K: + return op->ne[3] == 1; + case GGML_TYPE_F16: + case GGML_TYPE_Q8_0: + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + return true; + default: + ; + } + default: + ; + } + return false; +} + +static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml_cgraph * gf) { + const int n_seq = 8; + + // FIXME: Figure out if we can somehow optimize the size of the pool... right now we're setting + // it to the size of the graph, but I think it can be made smaller? + ggml_vk_allocate_descriptor_pool(ctx, gf->n_nodes); + + std::vector> sequences(n_seq); + + for (auto& sequence : sequences) { + sequence = komputeManager()->sequence(); + } + for (int seq_idx = 0; seq_idx < n_seq; ++seq_idx) { + const int n_nodes_per_seq = (gf->n_nodes + n_seq - 1) / n_seq; + + auto& seq = *sequences[seq_idx]; + + const int node_start = (seq_idx + 0) * n_nodes_per_seq; + const int node_end = std::min((seq_idx == n_seq - 1) ? gf->n_nodes : (seq_idx + 1) * n_nodes_per_seq, gf->n_nodes); + + bool any_commands_recorded = false; + + for (int i = node_start; i < node_end; ++i) { + struct ggml_tensor * src0 = gf->nodes[i]->src[0]; + struct ggml_tensor * src1 = gf->nodes[i]->src[1]; + struct ggml_tensor * dst = gf->nodes[i]; + GGML_ASSERT(dst->data != nullptr); + + switch (dst->op) { + case GGML_OP_NONE: + case GGML_OP_RESHAPE: + case GGML_OP_VIEW: + case GGML_OP_TRANSPOSE: + case GGML_OP_PERMUTE: + continue; // noop -> next node + default: + break; + } + + any_commands_recorded = true; + + if (!ggml_vk_supports_op(dst)) { + fprintf(stderr, "%s: error: unsupported op '%s'\n", __func__, ggml_op_desc(dst)); + GGML_ASSERT(!"unsupported op"); + } + + const int32_t ne00 = src0 ? src0->ne[0] : 0; + const int32_t ne01 = src0 ? src0->ne[1] : 0; + const int32_t ne02 = src0 ? src0->ne[2] : 0; + const int32_t ne03 = src0 ? src0->ne[3] : 0; + + const uint32_t nb00 = src0 ? src0->nb[0] : 0; + const uint32_t nb01 = src0 ? src0->nb[1] : 0; + const uint32_t nb02 = src0 ? src0->nb[2] : 0; + const uint32_t nb03 = src0 ? src0->nb[3] : 0; + + const int32_t ne10 = src1 ? src1->ne[0] : 0; + const int32_t ne11 = src1 ? src1->ne[1] : 0; + const int32_t ne12 = src1 ? src1->ne[2] : 0; + const int32_t ne13 = src1 ? src1->ne[3] : 0; + + const uint32_t nb10 = src1 ? src1->nb[0] : 0; + const uint32_t nb11 = src1 ? src1->nb[1] : 0; + const uint32_t nb12 = src1 ? src1->nb[2] : 0; + const uint32_t nb13 = src1 ? src1->nb[3] : 0; + + const int32_t ne0 = dst ? dst->ne[0] : 0; + const int32_t ne1 = dst ? dst->ne[1] : 0; + const int32_t ne2 = dst ? dst->ne[2] : 0; +// const int32_t ne3 = dst ? dst->ne[3] : 0; + + const uint32_t nb0 = dst ? dst->nb[0] : 0; + const uint32_t nb1 = dst ? dst->nb[1] : 0; + const uint32_t nb2 = dst ? dst->nb[2] : 0; + const uint32_t nb3 = dst ? dst->nb[3] : 0; + + const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT; + const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT; + const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT; + + const static std::shared_ptr nullTensor = nullptr; + uint32_t off_src0 = 0; + uint32_t off_src1 = 0; + uint32_t off_dst = 0; + const std::shared_ptr& id_src0 = src0 ? ggml_vk_get_tensor(src0, &off_src0) : nullTensor; + const std::shared_ptr& id_src1 = src1 ? ggml_vk_get_tensor(src1, &off_src1) : nullTensor; + const std::shared_ptr& id_dst = dst ? ggml_vk_get_tensor(dst, &off_dst) : nullTensor; + + switch (dst->op) { + case GGML_OP_ADD: + { + if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) { + // src1 is a row + ggml_vk_addrow(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ggml_nelements(dst)/4, ne00); + } else { + ggml_vk_add( + seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, + ne00, ne01, ne02, ne03, + nb00, nb01, nb02, nb03, + ne10, ne11, ne12, ne13, + nb10, nb11, nb12, nb13, + ne0, + nb0, nb1, nb2, nb3 + ); + } + } break; + case GGML_OP_MUL: + { + ggml_vk_mul( + seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, + ne00, ne01, ne02, ne03, + nb00, nb01, nb02, nb03, + ne10, ne11, ne12, ne13, + nb10, nb11, nb12, nb13, + ne0, + nb0, nb1, nb2, nb3 + ); + } break; + case GGML_OP_SCALE: + { + float scale; memcpy(&scale, dst->op_params, sizeof(float)); + + ggml_vk_scale(seq, id_src0, id_dst, off_src0, off_dst, ggml_nelements(dst), scale); + } break; + case GGML_OP_UNARY: + { + int64_t n = ggml_nelements(dst); + GGML_ASSERT(n % 4 == 0); + switch (ggml_get_unary_op(gf->nodes[i])) { + case GGML_UNARY_OP_SILU: + { + ggml_vk_silu(seq, id_src0, id_dst, off_src0, off_dst, n/4); + } break; + case GGML_UNARY_OP_RELU: + { + ggml_vk_relu(seq, id_src0, id_dst, off_src0, off_dst, n/4); + } break; + case GGML_UNARY_OP_GELU: + { + GGML_ASSERT(n % 8 == 0); + ggml_vk_gelu(seq, id_src0, id_dst, off_src0, off_dst, n/8); + } break; + default: + { + fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); + GGML_ASSERT(false); + } + } + } break; + case GGML_OP_SOFT_MAX: + { + float scale; + memcpy(&scale, dst->op_params, sizeof(float)); + ggml_vk_soft_max(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, ne01, ne02, ne03, scale); + } break; + case GGML_OP_DIAG_MASK_INF: + { + const int n_past = ((int32_t *)(dst->op_params))[0]; + ggml_vk_diag_mask_inf(seq, id_src0, id_dst, off_src0, off_dst, n_past, ne00, ne01, ne02); + } break; + case GGML_OP_NORM: + { + float eps; + memcpy(&eps, dst->op_params, sizeof(float)); + ggml_vk_norm(seq, id_src0, id_dst, off_src0, off_dst, ne00, nb01, ggml_nrows(src0), eps); + } break; + case GGML_OP_RMS_NORM: + { + GGML_ASSERT(ne00 % 4 == 0); + + float eps; + memcpy(&eps, dst->op_params, sizeof(float)); + ggml_vk_rms_norm(seq, id_src0, id_dst, off_src0, off_dst, ne00, nb01, ggml_nrows(src0), eps); + } break; + case GGML_OP_MUL_MAT: + { + GGML_ASSERT(ne00 == ne10); + + // TODO: assert that dim2 and dim3 are contiguous + GGML_ASSERT(ne12 % ne02 == 0); + GGML_ASSERT(ne13 % ne03 == 0); + + const uint32_t r2 = ne12/ne02; + const uint32_t r3 = ne13/ne03; + + if (src1t != GGML_TYPE_F32) { + fprintf(stderr, "%s: %s: Unsupported src1 type: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t); + goto not_implemented; + } + + if (ggml_is_transposed(src0) || + ggml_is_transposed(src1)) { + fprintf(stderr, "%s: %s: matmul on tranposed tensor not supported: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t); + goto not_implemented; + } + + switch (src0t) { + case GGML_TYPE_F32: + ggml_vk_mul_mat_mat_f32( + seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, + ne00, ne01, ne02, nb01, nb02, ne11, ne12, nb11, nb12, nb1, nb2 + ); + break; + case GGML_TYPE_F16: + ggml_vk_mul_mat_f16( + seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, + ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, ne13, nb10, nb11, nb12, + ne0, ne1, r2, r3 + ); + break; + case GGML_TYPE_Q8_0: + ggml_vk_mul_mat_q8_0( + seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, + ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3 + ); + break; + case GGML_TYPE_Q4_0: + ggml_vk_mul_mat_q4_0( + seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, + ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3 + ); + break; + case GGML_TYPE_Q4_1: + ggml_vk_mul_mat_q4_1( + seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, + ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3 + ); + break; + case GGML_TYPE_Q6_K: + ggml_vk_mul_mat_q6_k( + seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, + ne00, ne10, ne0, ne1, ne01, ne11, ne12, ne02 + ); + break; + default: { + fprintf(stderr, "%s: %s: Unsupported quantization: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t); + goto not_implemented; + } + } + + } break; + case GGML_OP_GET_ROWS: + { + if (src0t == GGML_TYPE_F16) { + ggml_vk_get_rows_f16(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1)); + } else if (src0t == GGML_TYPE_Q4_0) { + ggml_vk_get_rows_q4_0(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1)); + } else if (src0t == GGML_TYPE_Q4_1) { + ggml_vk_get_rows_q4_1(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1)); + } else if (src0t == GGML_TYPE_Q6_K) { + ggml_vk_get_rows_q6_k(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1)); + } else { + fprintf(stderr, "%s: %s: Unsupported quantization: %u\n", __func__, ggml_op_name(dst->op), src0t); + goto not_implemented; + } + } break; + case GGML_OP_ROPE: + { + GGML_ASSERT(ne10 == ne02); + GGML_ASSERT(src0t == dstt); + // const int n_past = ((int32_t *) dst->op_params)[0]; + const int n_dims = ((int32_t *) dst->op_params)[1]; + const int mode = ((int32_t *) dst->op_params)[2]; + // skip 3, n_ctx used in GLM RoPE, unimplemented in Vulkan + const int n_orig_ctx = ((int32_t *) dst->op_params)[4]; + + float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; + memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float)); + memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float)); + memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float)); + memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float)); + memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float)); + memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float)); + ggml_vk_rope( + seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, src0t, n_dims, mode, n_orig_ctx, + freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, + ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, nb0, nb1, nb2, nb3 + ); + } break; + case GGML_OP_DUP: + case GGML_OP_CPY: + case GGML_OP_CONT: + { + switch (src0t) { + case GGML_TYPE_F32: + { + switch (dstt) { + case GGML_TYPE_F16: ggml_vk_cpy_f32_f16(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break; + case GGML_TYPE_F32: ggml_vk_cpy_f32_f32(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break; + default: goto not_implemented; + } + } break; + case GGML_TYPE_F16: + { + switch (dstt) { + case GGML_TYPE_F16: ggml_vk_cpy_f16_f16(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break; + case GGML_TYPE_F32: ggml_vk_cpy_f16_f32(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break; + default: goto not_implemented; + } break; + default: goto not_implemented; + } + } + } break; + default: goto not_implemented; + } + continue; + not_implemented: {} + fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); + //GGML_ASSERT(false); + } + + // Evaluate sequence + if (any_commands_recorded) { + seq.evalAsync(); + } + } + + // Wait for all sequences to finish + for (auto& sequence : sequences) { + if (sequence->isRunning()) + sequence->evalAwait(); + } + + ggml_vk_free_descriptor_pool(ctx); +} + +template<> +kp::Tensor::TensorDataTypes +kp::TensorT::dataType() +{ + return TensorDataTypes::eFloat; +} + +template<> +kp::Tensor::TensorDataTypes +kp::TensorT::dataType() +{ + return TensorDataTypes::eUnsignedInt; +} + +//////////////////////////////////////////////////////////////////////////////// + +// backend interface + +struct ggml_backend_kompute_buffer_type_context { + int device; + int device_ref = 0; + uint64_t buffer_alignment; + uint64_t max_alloc; + std::string name; + + ggml_backend_kompute_buffer_type_context(int device, uint64_t buffer_alignment, uint64_t max_alloc) + : device(device), buffer_alignment(buffer_alignment), max_alloc(max_alloc), name(ggml_kompute_format_name(device)) {} +}; + +static void ggml_backend_kompute_device_ref(ggml_backend_buffer_type_t buft) { + auto * ctx = static_cast(buft->context); + + if (!ctx->device_ref) { + komputeManager()->initializeDevice( + ctx->device, {}, { + "VK_KHR_shader_float16_int8", "VK_KHR_8bit_storage", + "VK_KHR_16bit_storage", "VK_KHR_shader_non_semantic_info" + } + ); + } + + assert(ggml_vk_has_device()); + ctx->device_ref++; +} + +static void ggml_backend_kompute_device_unref(ggml_backend_buffer_type_t buft) { + auto * ctx = static_cast(buft->context); + + assert(ctx->device_ref > 0); + + ctx->device_ref--; + + if (!ctx->device_ref) { + komputeManager.destroy(); + } +} + +static const char * ggml_backend_kompute_buffer_get_name(ggml_backend_buffer_t buffer) { + auto * ctx = static_cast(buffer->buft->context); + return ctx->name.c_str(); +} + +static void ggml_backend_kompute_buffer_free_buffer(ggml_backend_buffer_t buffer) { + auto * memory = (ggml_vk_memory *)buffer->context; + if (ggml_vk_has_device()) { + ggml_vk_free_memory(*memory); + } + delete memory; +} + +static void * ggml_backend_kompute_buffer_get_base(ggml_backend_buffer_t buffer) { + return ((ggml_vk_memory *)buffer->context)->data; +} + +static void ggml_backend_kompute_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { + GGML_UNUSED(buffer); + + const auto res = ggml_vk_get_tensor(tensor); + GGML_ASSERT(res); + + memcpy((char *)tensor->data + offset, data, size); + + komputeManager()->sequence()->eval({res}); +} + +static void ggml_backend_kompute_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { + GGML_UNUSED(buffer); + + const auto res = ggml_vk_get_tensor(tensor); + GGML_ASSERT(res); + + komputeManager()->sequence()->eval({res}); + + memcpy(data, (const char *)tensor->data + offset, size); +} + +static void ggml_backend_kompute_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { + auto * memory = (ggml_vk_memory *)buffer->context; + memset(memory->data, value, buffer->size); + + if (memory->stagingBuffer) + komputeManager()->sequence()->eval(memory->primaryBuffer, memory->stagingBuffer, memory->size); +} + +static ggml_backend_buffer_i ggml_backend_kompute_buffer_i = { + /* .get_name = */ ggml_backend_kompute_buffer_get_name, + /* .free_buffer = */ ggml_backend_kompute_buffer_free_buffer, + /* .get_base = */ ggml_backend_kompute_buffer_get_base, + /* .init_tensor = */ NULL, + /* .set_tensor = */ ggml_backend_kompute_buffer_set_tensor, + /* .get_tensor = */ ggml_backend_kompute_buffer_get_tensor, + /* .cpy_tensor = */ NULL, + /* .clear = */ ggml_backend_kompute_buffer_clear, + /* .reset = */ NULL, +}; + +// default buffer type + +static const char * ggml_backend_kompute_buffer_type_get_name(ggml_backend_buffer_type_t buft) { + auto * ctx = static_cast(buft->context); + return ctx->name.c_str(); +} + +static ggml_backend_buffer_t ggml_backend_kompute_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { + ggml_backend_kompute_device_ref(buft); + auto * ctx = new ggml_vk_memory(ggml_vk_allocate(size)); + return ggml_backend_buffer_init(buft, ggml_backend_kompute_buffer_i, ctx, size); +} + +static size_t ggml_backend_kompute_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { + auto * ctx = static_cast(buft->context); + return ctx->buffer_alignment; +} + +static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) { + auto * ctx = static_cast(buft->context); + return ctx->max_alloc; +} + +static bool ggml_backend_kompute_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) { + GGML_UNUSED(buft); + return ggml_backend_is_kompute(backend); +} + +static ggml_backend_buffer_type_i ggml_backend_kompute_buffer_type_interface = { + /* .get_name = */ ggml_backend_kompute_buffer_type_get_name, + /* .alloc_buffer = */ ggml_backend_kompute_buffer_type_alloc_buffer, + /* .get_alignment = */ ggml_backend_kompute_buffer_type_get_alignment, + /* .get_max_size = */ ggml_backend_vk_buffer_type_get_max_size, + /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes + /* .supports_backend = */ ggml_backend_kompute_buffer_type_supports_backend, + /* .is_host = */ NULL, +}; + +ggml_backend_buffer_type_t ggml_backend_kompute_buffer_type(int device) { + static std::vector bufts = []() { + std::vector vec; + auto devices = ggml_vk_available_devices_internal(0); + vec.reserve(devices.size()); + + for (const auto & dev : devices) { + vec.push_back({ + /* .iface = */ ggml_backend_kompute_buffer_type_interface, + /* .context = */ new ggml_backend_kompute_buffer_type_context(dev.index, dev.bufferAlignment, dev.maxAlloc) + }); + } + return vec; + }(); + + auto it = std::find_if(bufts.begin(), bufts.end(), [device](const ggml_backend_buffer_type & t) { + return device == static_cast(t.context)->device; + }); + return it < bufts.end() ? &*it : nullptr; +} + +// backend + +static const char * ggml_backend_kompute_name(ggml_backend_t backend) { + auto * ctx = static_cast(backend->context); + return ctx->name.c_str(); +} + +static void ggml_backend_kompute_free(ggml_backend_t backend) { + auto * ctx = static_cast(backend->context); + + assert(ctx == s_kompute_context); + s_kompute_context = nullptr; + if (ctx != nullptr) { + delete ctx; + } + + delete backend; +} + +static ggml_backend_buffer_type_t ggml_backend_kompute_get_default_buffer_type(ggml_backend_t backend) { + auto * ctx = static_cast(backend->context); + return ggml_backend_kompute_buffer_type(ctx->device); +} + +static bool ggml_backend_kompute_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { + auto * ctx = static_cast(backend->context); + ggml_vk_graph_compute(ctx, cgraph); + return true; +} + +static bool ggml_backend_kompute_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { + GGML_UNUSED(backend); + return ggml_vk_supports_op(op); +} + +static struct ggml_backend_i kompute_backend_i = { + /* .get_name = */ ggml_backend_kompute_name, + /* .free = */ ggml_backend_kompute_free, + /* .get_default_buffer_type = */ ggml_backend_kompute_get_default_buffer_type, + /* .set_tensor_async = */ NULL, + /* .get_tensor_async = */ NULL, + /* .cpy_tensor_async = */ NULL, + /* .synchronize = */ NULL, + /* .graph_plan_create = */ NULL, + /* .graph_plan_free = */ NULL, + /* .graph_plan_compute = */ NULL, + /* .graph_compute = */ ggml_backend_kompute_graph_compute, + /* .supports_op = */ ggml_backend_kompute_supports_op, +}; + +ggml_backend_t ggml_backend_kompute_init(int device) { + GGML_ASSERT(s_kompute_context == nullptr); + s_kompute_context = new ggml_kompute_context(device); + + ggml_backend_t kompute_backend = new ggml_backend { + /* .interface = */ kompute_backend_i, + /* .context = */ s_kompute_context, + }; + + return kompute_backend; +} + +bool ggml_backend_is_kompute(ggml_backend_t backend) { + return backend && backend->iface.get_name == ggml_backend_kompute_name; +} + +static ggml_backend_t ggml_backend_reg_kompute_init(const char * params, void * user_data) { + GGML_UNUSED(params); + return ggml_backend_kompute_init(intptr_t(user_data)); +} + +extern "C" int ggml_backend_kompute_reg_devices(); + +int ggml_backend_kompute_reg_devices() { + auto devices = ggml_vk_available_devices_internal(0); + for (const auto & device : devices) { + ggml_backend_register( + ggml_kompute_format_name(device.index).c_str(), + ggml_backend_reg_kompute_init, + ggml_backend_kompute_buffer_type(device.index), + reinterpret_cast(intptr_t(device.index)) + ); + } + return devices.size(); +} diff --git a/ggml-kompute.h b/ggml-kompute.h new file mode 100644 index 000000000..171465456 --- /dev/null +++ b/ggml-kompute.h @@ -0,0 +1,46 @@ +#pragma once + +#include "ggml.h" +#include "ggml-backend.h" + +#include +#include +#include + +#ifdef __cplusplus +extern "C" { +#endif + +struct ggml_vk_device { + int index; + int type; // same as VkPhysicalDeviceType + size_t heapSize; + const char * name; + const char * vendor; + int subgroupSize; + uint64_t bufferAlignment; + uint64_t maxAlloc; +}; + +struct ggml_vk_device * ggml_vk_available_devices(size_t memoryRequired, size_t * count); +bool ggml_vk_get_device(struct ggml_vk_device * device, size_t memoryRequired, const char * name); +bool ggml_vk_has_vulkan(void); +bool ggml_vk_has_device(void); +struct ggml_vk_device ggml_vk_current_device(void); + +// +// backend API +// + +// forward declaration +typedef struct ggml_backend * ggml_backend_t; + +GGML_API ggml_backend_t ggml_backend_kompute_init(int device); + +GGML_API bool ggml_backend_is_kompute(ggml_backend_t backend); + +GGML_API ggml_backend_buffer_type_t ggml_backend_kompute_buffer_type(int device); + +#ifdef __cplusplus +} +#endif diff --git a/kompute b/kompute new file mode 160000 index 000000000..4565194ed --- /dev/null +++ b/kompute @@ -0,0 +1 @@ +Subproject commit 4565194ed7c32d1d2efa32ceab4d3c6cae006306 diff --git a/kompute-shaders/common.comp b/kompute-shaders/common.comp new file mode 100644 index 000000000..62d62b025 --- /dev/null +++ b/kompute-shaders/common.comp @@ -0,0 +1,102 @@ +#extension GL_EXT_shader_16bit_storage: require +#extension GL_EXT_shader_8bit_storage: require +#extension GL_EXT_shader_explicit_arithmetic_types_float16: require +#extension GL_EXT_shader_explicit_arithmetic_types_int8: require +#extension GL_EXT_shader_explicit_arithmetic_types_int16: require +#extension GL_EXT_control_flow_attributes: enable +#extension GL_KHR_shader_subgroup_arithmetic : require +#extension GL_EXT_debug_printf : enable + +#define QK4_0 32 +#define QK4_1 32 + +#define GELU_COEF_A 0.044715 +#define SQRT_2_OVER_PI 0.79788456080286535587989211986876 +#define TWOPI_F 6.283185307179586f + +#define QK_K 256 + +#define u8BufToU16(buf, idx) (((uint16_t(buf[idx + 1]) << 8)) | buf[idx]) +#define u8BufToFloat16(buf, idx) uint16BitsToHalf u8BufToU16(buf, idx) +#define u8BufToU32(buf, idx) (((uint32_t u8BufToU16(buf, idx + 2) << 8 | buf[idx + 1]) << 8) | buf[idx]) +#define u8BufToFloat(buf, idx) uintBitsToFloat u8BufToU32(buf, idx) + +#define sizeof_block_q4_0 0x12 +struct block_q4_0 { + float16_t d; + uint8_t qs[QK4_0 / 2]; +}; +mat4 dequantize_q4_0(const block_q4_0 xb, uint il) { + const float d1 = il != 0 ? (xb.d / 16.f) : xb.d; + const float d2 = d1 / 256.f; + const float md = -8.f * xb.d; + const uint16_t mask0 = il != 0 ? uint16_t(0x00F0) : uint16_t(0x000F); + const uint16_t mask1 = mask0 << 8; + + mat4 reg; + for (int i=0;i<8;i++) { + uint16_t b = (uint16_t(xb.qs[2 * i + 1]) << 8) | uint16_t(xb.qs[2 * i]); + reg[i/2][2*(i%2)+0] = d1 * (b & mask0) + md; + reg[i/2][2*(i%2)+1] = d2 * (b & mask1) + md; + } + return reg; +} + +#define sizeof_block_q4_1 0x14 +struct block_q4_1 { + float16_t d; + float16_t m; + uint8_t qs[QK4_1 / 2]; +}; +mat4 dequantize_q4_1(const block_q4_1 xb, uint il) { + const float d1 = il != 0 ? (xb.d / 16.f) : xb.d; + const float d2 = d1 / 256.f; + const float m = xb.m; + const uint16_t mask0 = il != 0 ? uint16_t(0x00F0) : uint16_t(0x000F); + const uint16_t mask1 = mask0 << 8; + + mat4 reg; + for (int i=0;i<8;i++) { + uint16_t b = (uint16_t(xb.qs[2 * i + 1]) << 8) | uint16_t(xb.qs[2 * i]); + reg[i/2][2*(i%2)+0] = ((b & mask0) * d1) + m; + reg[i/2][2*(i%2)+1] = ((b & mask1) * d2) + m; + } + return reg; +} + +#define sizeof_block_q6_k 210 +struct block_q6_k { + uint8_t ql[QK_K/2]; // quants, lower 4 bits + uint8_t qh[QK_K/4]; // quants, upper 2 bits + int8_t scales[QK_K/16]; // scales, quantized with 8 bits + float16_t d; // super-block scale +}; +mat4 dequantize_q6_k(const block_q6_k xb, uint il) { + const float16_t d_all = xb.d; + + const uint qlIndex = 64*(il/8) + 32*((il/2)&1) + 16*(il&1); + const uint qhIndex = 32*(il/8) + 16*(il&1); + float16_t sc = xb.scales[(il%2) + 2 * ((il/2))]; + il = (il/2) & 3; + + const uint16_t kmask1 = il>1 ? uint16_t(il>2 ? 192 : 48) : uint16_t(il>0 ? 12 : 3); + const uint16_t kmask2 = il>1 ? uint8_t(0xF0) : uint8_t(0x0F); + const float16_t coef = il>1 ? float16_t(1.f/16.f) : float16_t(1.f); + const float16_t ml = float16_t(d_all * sc * 32.f); + const float16_t dl = float16_t(d_all * sc * coef); + mat4 reg; + for (int i = 0; i < 16; ++i) { + const float16_t q = (il&1) != 0 ? ((xb.ql[qlIndex + i] & kmask2) | ((xb.qh[qhIndex + i] & kmask1) << 2)) + : ((xb.ql[qlIndex + i] & kmask2) | ((xb.qh[qhIndex + i] & kmask1) << 4)); + reg[i/4][i%4] = dl * q - ml; + } + return reg; +} + + +#define QK8_0 32 +// struct block_q8_0 { +// float16_t d; // delta +// int8_t qs[QK8_0]; // quants +// }; +#define sizeof_block_q8_0 34 diff --git a/kompute-shaders/op_add.comp b/kompute-shaders/op_add.comp new file mode 100644 index 000000000..b7b76a79d --- /dev/null +++ b/kompute-shaders/op_add.comp @@ -0,0 +1,58 @@ +#version 450 + +#include "common.comp" + +layout(local_size_x = 1024) in; + +layout(binding = 0) buffer restrict readonly tensorInA { float inA[]; }; +layout(binding = 1) buffer restrict readonly tensorInB { float inB[]; }; +layout(binding = 2) buffer restrict writeonly tensorOut { float out_[]; }; + +layout(push_constant) uniform PushConstants { + uint inAOff; + uint inBOff; + uint outOff; + int ne00; + int nb00; + int nb01; + int nb02; + int nb03; + int ne10; + int ne11; + int ne12; + int ne13; + int nb10; + int nb11; + int nb12; + int nb13; + int ne0; + int nb0; + int nb1; + int nb2; + int nb3; + //int offs; // TODO: needed for GGML_OP_ACC, see metal code +} pcs; + +// general-purpose kernel for addition of two tensors +// pros: works for non-contiguous tensors, supports broadcast across dims 1, 2 and 3 +// cons: not very efficient +void main() { + const uint i03 = gl_WorkGroupID.z; + const uint i02 = gl_WorkGroupID.y; + const uint i01 = gl_WorkGroupID.x; + + const uint i13 = i03 % pcs.ne13; + const uint i12 = i02 % pcs.ne12; + const uint i11 = i01 % pcs.ne11; + + int offs = 0; // TMP (see above) + + uint src0_off = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + offs) / 4); + uint src1_off = uint((i13*pcs.nb13 + i12*pcs.nb12 + i11*pcs.nb11 ) / 4); + uint dst_off = uint((i03*pcs.nb3 + i02*pcs.nb2 + i01*pcs.nb1 + offs) / 4); + + for (uint i0 = gl_LocalInvocationID.x; i0 < pcs.ne0; i0 += gl_WorkGroupSize.x) { + const uint i10 = i0 % pcs.ne10; + out_[pcs.outOff + dst_off + i0] = inA[pcs.inAOff + src0_off + i0] + inB[pcs.inBOff + src1_off + i10]; + } +} diff --git a/kompute-shaders/op_addrow.comp b/kompute-shaders/op_addrow.comp new file mode 100644 index 000000000..2376a6b8f --- /dev/null +++ b/kompute-shaders/op_addrow.comp @@ -0,0 +1,25 @@ +#version 450 + +#include "common.comp" + +layout(local_size_x = 1) in; + +layout(binding = 0) buffer restrict readonly tensorInA { float inA[]; }; +layout(binding = 1) buffer restrict readonly tensorInB { float inB[]; }; +layout(binding = 2) buffer restrict writeonly tensorOut { float out_[]; }; + +layout(push_constant) uniform PushConstants { + uint inAOff; + uint inBOff; + uint outOff; + uint row; +} pcs; + +void main() { + const uint baseIndex = gl_WorkGroupID.x * 4; + + for (uint x = 0; x < 4; x++) { + const uint i = baseIndex + x; + out_[i + pcs.outOff] = inA[i + pcs.inAOff] + inB[(i % pcs.row) + pcs.inBOff]; + } +} diff --git a/kompute-shaders/op_cpy_f16_f16.comp b/kompute-shaders/op_cpy_f16_f16.comp new file mode 100644 index 000000000..d57247d2d --- /dev/null +++ b/kompute-shaders/op_cpy_f16_f16.comp @@ -0,0 +1,52 @@ +#version 450 + +#include "common.comp" + +#define IN_TYPE float16_t +#define IN_TYPE_SIZE 2 +#define OUT_TYPE float16_t +#define OUT_TYPE_SIZE 2 + +layout(local_size_x = 1024) in; + +layout (binding = 0) readonly buffer tensorIn { IN_TYPE in_[]; }; +layout (binding = 1) writeonly buffer tensorOut { OUT_TYPE out_[]; }; + +layout (push_constant) uniform parameter { + uint inOff; + uint outOff; + int ne00; + int ne01; + int ne02; + uint nb00; + uint nb01; + uint nb02; + uint nb03; + int ne0; + int ne1; + int ne2; + uint nb0; + uint nb1; + uint nb2; + uint nb3; +} pcs; + +void main() { + const uint i03 = gl_WorkGroupID.z; + const uint i02 = gl_WorkGroupID.y; + const uint i01 = gl_WorkGroupID.x; + + const int n = int(i03)*pcs.ne02*pcs.ne01*pcs.ne00 + int(i02)*pcs.ne01*pcs.ne00 + int(i01)*pcs.ne00; + + const int i3 = n / (pcs.ne2*pcs.ne1*pcs.ne0); + const int i2 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0) / (pcs.ne1*pcs.ne0); + const int i1 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0) / pcs.ne0; + const int i0 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0 - i1*pcs.ne0); + + const uint dst_data = (i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / OUT_TYPE_SIZE + pcs.outOff; // Based from out_ + + for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) { + const uint src = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + i00*pcs.nb00) / IN_TYPE_SIZE) + pcs.inOff; // Based from in_ + out_[dst_data+i00] = OUT_TYPE(in_[src]); + } +} diff --git a/kompute-shaders/op_cpy_f16_f32.comp b/kompute-shaders/op_cpy_f16_f32.comp new file mode 100644 index 000000000..b568bcd7b --- /dev/null +++ b/kompute-shaders/op_cpy_f16_f32.comp @@ -0,0 +1,52 @@ +#version 450 + +#include "common.comp" + +#define IN_TYPE float16_t +#define IN_TYPE_SIZE 2 +#define OUT_TYPE float +#define OUT_TYPE_SIZE 4 + +layout(local_size_x = 1024) in; + +layout (binding = 0) readonly buffer tensorIn { IN_TYPE in_[]; }; +layout (binding = 1) writeonly buffer tensorOut { OUT_TYPE out_[]; }; + +layout (push_constant) uniform parameter { + uint inOff; + uint outOff; + int ne00; + int ne01; + int ne02; + uint nb00; + uint nb01; + uint nb02; + uint nb03; + int ne0; + int ne1; + int ne2; + uint nb0; + uint nb1; + uint nb2; + uint nb3; +} pcs; + +void main() { + const uint i03 = gl_WorkGroupID.z; + const uint i02 = gl_WorkGroupID.y; + const uint i01 = gl_WorkGroupID.x; + + const int n = int(i03)*pcs.ne02*pcs.ne01*pcs.ne00 + int(i02)*pcs.ne01*pcs.ne00 + int(i01)*pcs.ne00; + + const int i3 = n / (pcs.ne2*pcs.ne1*pcs.ne0); + const int i2 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0) / (pcs.ne1*pcs.ne0); + const int i1 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0) / pcs.ne0; + const int i0 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0 - i1*pcs.ne0); + + const uint dst_data = (i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / OUT_TYPE_SIZE + pcs.outOff; // Based from out_ + + for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) { + const uint src = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + i00*pcs.nb00) / IN_TYPE_SIZE) + pcs.inOff; // Based from in_ + out_[dst_data+i00] = OUT_TYPE(in_[src]); + } +} diff --git a/kompute-shaders/op_cpy_f32_f16.comp b/kompute-shaders/op_cpy_f32_f16.comp new file mode 100644 index 000000000..99b228343 --- /dev/null +++ b/kompute-shaders/op_cpy_f32_f16.comp @@ -0,0 +1,52 @@ +#version 450 + +#include "common.comp" + +#define IN_TYPE float +#define IN_TYPE_SIZE 4 +#define OUT_TYPE float16_t +#define OUT_TYPE_SIZE 2 + +layout(local_size_x = 1024) in; + +layout (binding = 0) readonly buffer tensorIn { IN_TYPE in_[]; }; +layout (binding = 1) writeonly buffer tensorOut { OUT_TYPE out_[]; }; + +layout (push_constant) uniform parameter { + uint inOff; + uint outOff; + int ne00; + int ne01; + int ne02; + uint nb00; + uint nb01; + uint nb02; + uint nb03; + int ne0; + int ne1; + int ne2; + uint nb0; + uint nb1; + uint nb2; + uint nb3; +} pcs; + +void main() { + const uint i03 = gl_WorkGroupID.z; + const uint i02 = gl_WorkGroupID.y; + const uint i01 = gl_WorkGroupID.x; + + const int n = int(i03)*pcs.ne02*pcs.ne01*pcs.ne00 + int(i02)*pcs.ne01*pcs.ne00 + int(i01)*pcs.ne00; + + const int i3 = n / (pcs.ne2*pcs.ne1*pcs.ne0); + const int i2 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0) / (pcs.ne1*pcs.ne0); + const int i1 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0) / pcs.ne0; + const int i0 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0 - i1*pcs.ne0); + + const uint dst_data = (i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / OUT_TYPE_SIZE + pcs.outOff; // Based from out_ + + for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) { + const uint src = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + i00*pcs.nb00) / IN_TYPE_SIZE) + pcs.inOff; // Based from in_ + out_[dst_data+i00] = OUT_TYPE(in_[src]); + } +} diff --git a/kompute-shaders/op_cpy_f32_f32.comp b/kompute-shaders/op_cpy_f32_f32.comp new file mode 100644 index 000000000..2fc998492 --- /dev/null +++ b/kompute-shaders/op_cpy_f32_f32.comp @@ -0,0 +1,52 @@ +#version 450 + +#include "common.comp" + +#define IN_TYPE float +#define IN_TYPE_SIZE 4 +#define OUT_TYPE float +#define OUT_TYPE_SIZE 4 + +layout(local_size_x = 1024) in; + +layout (binding = 0) readonly buffer tensorIn { IN_TYPE in_[]; }; +layout (binding = 1) writeonly buffer tensorOut { OUT_TYPE out_[]; }; + +layout (push_constant) uniform parameter { + uint inOff; + uint outOff; + int ne00; + int ne01; + int ne02; + uint nb00; + uint nb01; + uint nb02; + uint nb03; + int ne0; + int ne1; + int ne2; + uint nb0; + uint nb1; + uint nb2; + uint nb3; +} pcs; + +void main() { + const uint i03 = gl_WorkGroupID.z; + const uint i02 = gl_WorkGroupID.y; + const uint i01 = gl_WorkGroupID.x; + + const int n = int(i03)*pcs.ne02*pcs.ne01*pcs.ne00 + int(i02)*pcs.ne01*pcs.ne00 + int(i01)*pcs.ne00; + + const int i3 = n / (pcs.ne2*pcs.ne1*pcs.ne0); + const int i2 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0) / (pcs.ne1*pcs.ne0); + const int i1 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0) / pcs.ne0; + const int i0 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0 - i1*pcs.ne0); + + const uint dst_data = (i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / OUT_TYPE_SIZE + pcs.outOff; // Based from out_ + + for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) { + const uint src = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + i00*pcs.nb00) / IN_TYPE_SIZE) + pcs.inOff; // Based from in_ + out_[dst_data+i00] = OUT_TYPE(in_[src]); + } +} diff --git a/kompute-shaders/op_diagmask.comp b/kompute-shaders/op_diagmask.comp new file mode 100644 index 000000000..291c3fc18 --- /dev/null +++ b/kompute-shaders/op_diagmask.comp @@ -0,0 +1,30 @@ +#version 450 + +#include "common.comp" + +layout(local_size_x = 1) in; + +layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; }; +layout(binding = 1) buffer restrict writeonly tensorOut { float out_[]; }; + +layout(push_constant) uniform PushConstants { + uint inOff; + uint outOff; + uint n_past; + int ne00; + int ne01; +} pcs; + +void main() { + const uint i02 = gl_WorkGroupID.z; + const uint i01 = gl_WorkGroupID.y; + const uint i00 = gl_WorkGroupID.x; + + const uint index = i02*pcs.ne01*pcs.ne00 + i01*pcs.ne00 + i00; + + if (i00 > pcs.n_past + i01) { + out_[index + pcs.outOff] = uintBitsToFloat(0xFF800000); + } else { + out_[index + pcs.outOff] = in_[index + pcs.inOff]; + } +} diff --git a/kompute-shaders/op_gelu.comp b/kompute-shaders/op_gelu.comp new file mode 100644 index 000000000..9d8c53710 --- /dev/null +++ b/kompute-shaders/op_gelu.comp @@ -0,0 +1,22 @@ +#version 450 + +#include "common.comp" + +layout(local_size_x = 1) in; + +layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; }; +layout(binding = 1) buffer restrict writeonly tensorOut { float out_[]; }; +layout(push_constant) uniform PushConstants { + uint inOff; + uint outOff; +} pcs; + +void main() { + const uint baseIndex = gl_WorkGroupID.x * 8; + + for (uint x = 0; x < 8; x++) { + const uint i = baseIndex + x; + const float y = in_[i + pcs.inOff]; + out_[i + pcs.outOff] = 0.5*y*(1.0 + tanh(clamp(SQRT_2_OVER_PI*y*(1.0 + GELU_COEF_A*y*y), -15.0, 15.0))); + } +} diff --git a/kompute-shaders/op_getrows.comp b/kompute-shaders/op_getrows.comp new file mode 100644 index 000000000..1a5581b23 --- /dev/null +++ b/kompute-shaders/op_getrows.comp @@ -0,0 +1,17 @@ +void main() { + const uint i = gl_WorkGroupID.x; + const int r = inB[i + pcs.inBOff]; + + int z = 0; + for (uint ind = gl_LocalInvocationID.x; ind < pcs.ne00/16; ind += gl_WorkGroupSize.x) { + const uint inIndex = (r * pcs.nb01 + pcs.inAOff) + ind/NL * SIZE_OF_BLOCK; + const mat4 result = dequantize_block(inIndex, ind%NL); + for (uint j = 0; j < 4; ++j) { + for (uint k = 0; k < 4; ++k) { + const uint outIndex = i * pcs.nb1/BYTES_FOR_TYPE + pcs.outOff + z; + out_[outIndex] = result[j][k]; + ++z; + } + } + } +} diff --git a/kompute-shaders/op_getrows_f16.comp b/kompute-shaders/op_getrows_f16.comp new file mode 100644 index 000000000..48c936108 --- /dev/null +++ b/kompute-shaders/op_getrows_f16.comp @@ -0,0 +1,31 @@ +#version 450 + +#include "common.comp" + +layout(local_size_x = 1) in; + +layout (binding = 0) readonly buffer tensorInA { float16_t inA[]; }; +layout (binding = 1) readonly buffer tensorInB { int inB[]; }; +layout (binding = 2) writeonly buffer tensorOut { float out_[]; }; + +layout (push_constant) uniform parameter { + uint inAOff; + uint inBOff; + uint outOff; + int ne00; + int nb01; + int nb1; +} pcs; + +void dequantize_row_f16(uint x /*Based from inA unaligned*/, uint y /*Based from out_*/, int k) { + for (int j = 0; j < k; j++) { + out_[y + j] = inA[x + j]; + } +} + +void main() { + const uint i = gl_WorkGroupID.x; + const int r = inB[i + pcs.inBOff]; + + dequantize_row_f16(r*pcs.nb01/2/*bytes for float16*/ + pcs.inAOff, i*pcs.nb1/4 + pcs.outOff, pcs.ne00); +} diff --git a/kompute-shaders/op_getrows_q4_0.comp b/kompute-shaders/op_getrows_q4_0.comp new file mode 100644 index 000000000..32b2e891e --- /dev/null +++ b/kompute-shaders/op_getrows_q4_0.comp @@ -0,0 +1,38 @@ +#version 450 + +#include "common.comp" + +#define NL 2 +#define BYTES_FOR_TYPE 4 /*bytes for float*/ +#define SIZE_OF_BLOCK sizeof_block_q4_0 + +layout(local_size_x = 1) in; + +layout (binding = 0) readonly buffer tensorInA { uint8_t inA[]; }; +layout (binding = 1) readonly buffer tensorInB { int inB[]; }; +layout (binding = 2) writeonly buffer tensorOut { float out_[]; }; + +layout (push_constant) uniform parameter { + uint inAOff; + uint inBOff; + uint outOff; + int ne00; + int nb01; + int nb1; +} pcs; + +block_q4_0 get_unaligned_block_q4_0(uint index) { + block_q4_0 fres; + fres.d = u8BufToFloat16(inA, index); + [[unroll]] for (uint it = 0; it != QK4_0 / 2; it++) { + fres.qs[it] = inA[index+2+it]; + } + return fres; +} + +mat4 dequantize_block(uint index, uint il) { + const block_q4_0 block = get_unaligned_block_q4_0(index); + return dequantize_q4_0(block, il); +} + +#include "op_getrows.comp" diff --git a/kompute-shaders/op_getrows_q4_1.comp b/kompute-shaders/op_getrows_q4_1.comp new file mode 100644 index 000000000..87f2fbe17 --- /dev/null +++ b/kompute-shaders/op_getrows_q4_1.comp @@ -0,0 +1,39 @@ +#version 450 + +#include "common.comp" + +#define NL 2 +#define BYTES_FOR_TYPE 4 /*bytes for float*/ +#define SIZE_OF_BLOCK sizeof_block_q4_1 + +layout(local_size_x = 1) in; + +layout (binding = 0) readonly buffer tensorInA { uint8_t inA[]; }; +layout (binding = 1) readonly buffer tensorInB { int inB[]; }; +layout (binding = 2) writeonly buffer tensorOut { float out_[]; }; + +layout (push_constant) uniform parameter { + uint inAOff; + uint inBOff; + uint outOff; + int ne00; + int nb01; + int nb1; +} pcs; + +block_q4_1 get_unaligned_block_q4_1(uint index) { + block_q4_1 fres; + fres.d = u8BufToFloat16(inA, index); + fres.m = u8BufToFloat16(inA, index+2); + [[unroll]] for (uint it = 0; it != QK4_1 / 2; it++) { + fres.qs[it] = inA[index+4+it]; + } + return fres; +} + +mat4 dequantize_block(uint index, uint il) { + const block_q4_1 block = get_unaligned_block_q4_1(index); + return dequantize_q4_1(block, il); +} + +#include "op_getrows.comp" diff --git a/kompute-shaders/op_getrows_q6_k.comp b/kompute-shaders/op_getrows_q6_k.comp new file mode 100644 index 000000000..9ce3545d1 --- /dev/null +++ b/kompute-shaders/op_getrows_q6_k.comp @@ -0,0 +1,44 @@ +#version 450 + +#include "common.comp" + +#define NL 16 +#define BYTES_FOR_TYPE 4 /*bytes for float*/ +#define SIZE_OF_BLOCK sizeof_block_q6_k + +layout(local_size_x = 1) in; + +layout (binding = 0) readonly buffer tensorInA { uint8_t inA[]; }; +layout (binding = 1) readonly buffer tensorInB { int inB[]; }; +layout (binding = 2) writeonly buffer tensorOut { float out_[]; }; + +layout (push_constant) uniform parameter { + uint inAOff; + uint inBOff; + uint outOff; + int ne00; + int nb01; + int nb1; +} pcs; + +block_q6_k get_unaligned_block_q6_k(uint index) { + block_q6_k fres; + [[unroll]] for (uint it = 0; it != QK_K / 2; it++) { + fres.ql[it] = inA[index + it]; + } + [[unroll]] for (uint it = 0; it != QK_K / 4; it++) { + fres.qh[it] = inA[index + QK_K/2 + it]; + } + [[unroll]] for (uint it = 0; it != QK_K / 16; it++) { + fres.scales[it] = int8_t(inA[index + QK_K/2 + QK_K/4 + it]); + } + fres.d = u8BufToFloat16(inA, index + QK_K/2 + QK_K/4 + QK_K/16); + return fres; +} + +mat4 dequantize_block(uint index, uint il) { + const block_q6_k block = get_unaligned_block_q6_k(index); + return dequantize_q6_k(block, il); +} + +#include "op_getrows.comp" diff --git a/kompute-shaders/op_mul.comp b/kompute-shaders/op_mul.comp new file mode 100644 index 000000000..c92647c4d --- /dev/null +++ b/kompute-shaders/op_mul.comp @@ -0,0 +1,52 @@ +#version 450 + +#include "common.comp" + +layout(local_size_x = 1024) in; + +layout(binding = 0) buffer restrict readonly tensorInA { float inA[]; }; +layout(binding = 1) buffer restrict readonly tensorInB { float inB[]; }; +layout(binding = 2) buffer restrict writeonly tensorOut { float out_[]; }; + +layout(push_constant) uniform PushConstants { + uint inAOff; + uint inBOff; + uint outOff; + int ne00; + int nb00; + int nb01; + int nb02; + int nb03; + int ne10; + int ne11; + int ne12; + int ne13; + int nb10; + int nb11; + int nb12; + int nb13; + int ne0; + int nb0; + int nb1; + int nb2; + int nb3; +} pcs; + +void main() { + const uint i03 = gl_WorkGroupID.z; + const uint i02 = gl_WorkGroupID.y; + const uint i01 = gl_WorkGroupID.x; + + const uint i13 = i03 % pcs.ne13; + const uint i12 = i02 % pcs.ne12; + const uint i11 = i01 % pcs.ne11; + + uint src0_off = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01) / 4); + uint src1_off = uint((i13*pcs.nb13 + i12*pcs.nb12 + i11*pcs.nb11) / 4); + uint dst_off = uint((i03*pcs.nb3 + i02*pcs.nb2 + i01*pcs.nb1) / 4); + + for (uint i0 = gl_LocalInvocationID.x; i0 < pcs.ne0; i0 += gl_WorkGroupSize.x) { + const uint i10 = i0 % pcs.ne10; + out_[pcs.outOff + dst_off + i0] = inA[pcs.inAOff + src0_off + i0] * inB[pcs.inBOff + src1_off + i10]; + } +} diff --git a/kompute-shaders/op_mul_mat_f16.comp b/kompute-shaders/op_mul_mat_f16.comp new file mode 100644 index 000000000..8f0a9031f --- /dev/null +++ b/kompute-shaders/op_mul_mat_f16.comp @@ -0,0 +1,67 @@ +#version 450 + +#include "common.comp" + +#extension GL_KHR_shader_subgroup_arithmetic : require + +layout(local_size_x_id = 0) in; + +layout (binding = 0) readonly buffer tensorInA { float16_t inA[]; }; +layout (binding = 1) readonly buffer tensorInB { float inB[]; }; +layout (binding = 2) writeonly buffer tensorOut { float out_[]; }; + +layout (push_constant) uniform parameter { + uint inAOff; + uint inBOff; + uint outOff; + int ne00; + int ne01; + int ne02; + uint nb00; + uint nb01; + uint nb02; + int ne10; + int ne11; + int ne12; + uint nb10; + uint nb11; + uint nb12; + int ne0; + int ne1; + uint r2; + uint r3; +} pcs; + +#define N_F16_F32 4 + +void main() { + const uint r0 = gl_WorkGroupID.x; + const uint rb = gl_WorkGroupID.y*N_F16_F32; + const uint im = gl_WorkGroupID.z; + + const uint i12 = im%pcs.ne12; + const uint i13 = im/pcs.ne12; + + const uint offset0 = r0*pcs.nb01 + (i12/pcs.r2)*pcs.nb02 + (i13/pcs.r3)*pcs.nb02*pcs.ne02; + + const uint x = offset0 / 2 + pcs.inAOff; // Based from inA + + for (uint row = 0; row < N_F16_F32; ++row) { + uint r1 = rb + row; + if (r1 >= pcs.ne11) { + break; + } + + const uint y = (r1*pcs.nb11 + im*pcs.nb12) / 4 + pcs.inBOff; // Based from inB + + float sumf = 0; + for (uint i = gl_SubgroupInvocationID.x; i < pcs.ne00; i += gl_SubgroupSize) { + sumf += float(inA[x+i]) * float(inB[y+i]); + } + + const float all_sum = subgroupAdd(sumf); + if (subgroupElect()) { + out_[im*pcs.ne1*pcs.ne0 + r1*pcs.ne0 + r0 + pcs.outOff] = all_sum; + } + } +} diff --git a/kompute-shaders/op_mul_mat_mat_f32.comp b/kompute-shaders/op_mul_mat_mat_f32.comp new file mode 100644 index 000000000..d1ca4ad6c --- /dev/null +++ b/kompute-shaders/op_mul_mat_mat_f32.comp @@ -0,0 +1,51 @@ +#version 450 + +#include "common.comp" + +#extension GL_KHR_shader_subgroup_arithmetic : require +#extension GL_EXT_debug_printf : enable + +// device subgroup size +layout (local_size_x_id = 0) in; + +layout(binding = 0) readonly buffer tensorInA { float inA[]; }; +layout(binding = 1) readonly buffer tensorInB { float inB[]; }; +layout(binding = 2) writeonly buffer tensorOut { float out_[]; }; + +layout(push_constant) uniform parameter { + uint inAOff; + uint inBOff; + uint outOff; + int ne00; + int ne01; + int ne02; + int ne11; + int ne12; + uint nb01; + uint nb02; + uint nb11; + uint nb12; + uint nb1; + uint nb2; +} +pcs; + + +void main() { + uvec3 gid = gl_WorkGroupID; + + uint bc_ab = pcs.ne12 > pcs.ne02 ? gid.z / (pcs.ne12 / pcs.ne02) : gid.z; + uint bc_ba = pcs.ne02 > pcs.ne12 ? gid.z / (pcs.ne02 / pcs.ne12) : gid.z; + + const uint x = (gid.x*pcs.nb01 + bc_ab*pcs.nb02) / 4 + pcs.inAOff; // Based from inA + const uint y = (gid.y*pcs.nb11 + bc_ba*pcs.nb12) / 4 + pcs.inBOff; // based from inB + float sum = 0.0f; + for (uint i = gl_SubgroupInvocationID.x; i < pcs.ne00; i += gl_SubgroupSize) { + sum += float(inA[x+i]) * float(inB[y+i]); + } + + const float all_sum = subgroupAdd(sum); + if (subgroupElect()) { + out_[gid.z*(pcs.nb2/4) + gid.y*(pcs.nb1/4) + gid.x + pcs.outOff] = all_sum; + } +} diff --git a/kompute-shaders/op_mul_mat_q4_0.comp b/kompute-shaders/op_mul_mat_q4_0.comp new file mode 100644 index 000000000..b0cea8bbe --- /dev/null +++ b/kompute-shaders/op_mul_mat_q4_0.comp @@ -0,0 +1,33 @@ +#version 450 + +#include "common.comp" + +#define BLOCKS_IN_QUANT QK4_0 +#define SIZE_OF_BLOCK sizeof_block_q4_0 +#define N_ROWS 4 + +#include "op_mul_mv_q_n_pre.comp" + +// The q4_0 version of this function +float block_q_n_dot_y(uint block_index, uint yb, uint il) { + vec2 acc = vec2(0.0, 0.0); + const uint index = (block_index) * SIZE_OF_BLOCK + pcs.inAOff; + float d = float(u8BufToFloat16(inA, index)); + float sumy = 0.0f; + for (int i = 0; i < BLOCKS_IN_QUANT/4; i+=2) { + const uint16_t b = u8BufToU16(inA, index + 2 + il + i); + + const float yl0 = inB[yb + i]; + const float yl1 = inB[yb + i + 1]; + const float yl8 = inB[yb + i + BLOCKS_IN_QUANT/2]; + const float yl9 = inB[yb + i + BLOCKS_IN_QUANT/2 + 1]; + + sumy += yl0 + yl1 + yl8 + yl9; + + acc[0] += yl0 * (b & 0x000F) + yl1 / 256.f * (b & 0x0F00); + acc[1] += yl8 / 16.f * (b & 0x00F0) + yl9 / 4096.f * (b & 0xF000); + } + return d * (sumy * -8.f + acc[0] + acc[1]); +} + +#include "op_mul_mv_q_n.comp" diff --git a/kompute-shaders/op_mul_mat_q4_1.comp b/kompute-shaders/op_mul_mat_q4_1.comp new file mode 100644 index 000000000..8582c61a3 --- /dev/null +++ b/kompute-shaders/op_mul_mat_q4_1.comp @@ -0,0 +1,35 @@ +#version 450 + +#include "common.comp" + +#define BLOCKS_IN_QUANT QK4_1 +#define SIZE_OF_BLOCK sizeof_block_q4_1 +#define N_ROWS 4 + +#include "op_mul_mv_q_n_pre.comp" + +// The q4_1 version of this function +float block_q_n_dot_y(uint block_index, uint yb, uint il) { + vec2 acc = vec2(0.0, 0.0); + const uint index = (block_index) * SIZE_OF_BLOCK + pcs.inAOff; + float d = float(u8BufToFloat16(inA, index)); + float m = float(u8BufToFloat16(inA, index+2)); + + float sumy = 0.0f; + for (int i = 0; i < BLOCKS_IN_QUANT/4; i+=2) { + const uint16_t b = u8BufToU16(inA, index + 4 + il + i); + + const float yl0 = inB[yb + i]; + const float yl1 = inB[yb + i + 1]; + const float yl8 = inB[yb + i + BLOCKS_IN_QUANT/2]; + const float yl9 = inB[yb + i + BLOCKS_IN_QUANT/2 + 1]; + + sumy += yl0 + yl1 + yl8 + yl9; + + acc[0] += yl0 * (b & 0x000F) + yl1 / 256.f * (b & 0x0F00); + acc[1] += yl8 / 16.f * (b & 0x00F0) + yl9 / 4096.f * (b & 0xF000); + } + return d * (acc[0] + acc[1]) + sumy * m; +} + +#include "op_mul_mv_q_n.comp" diff --git a/kompute-shaders/op_mul_mat_q6_k.comp b/kompute-shaders/op_mul_mat_q6_k.comp new file mode 100644 index 000000000..c9baebdf4 --- /dev/null +++ b/kompute-shaders/op_mul_mat_q6_k.comp @@ -0,0 +1,94 @@ +#version 450 + +#include "common.comp" + +#define SIZE_OF_BLOCK sizeof_block_q6_k + +layout(local_size_x_id = 0) in; +layout(local_size_y_id = 1) in; +layout(local_size_z = 1) in; + +layout (binding = 0) readonly buffer tensorInA { uint8_t inA[]; }; +layout (binding = 1) readonly buffer tensorInB { float inB[]; }; +layout (binding = 2) writeonly buffer tensorOut { float out_[]; }; + +layout (push_constant) uniform parameter { + uint inAOff; + uint inBOff; + uint outOff; + int ne00; + int ne10; + int ne0; + int ne1; + int ne01; + int gqa; +} pcs; + +void main() { + const uint8_t kmask1 = uint8_t(0x03); + const uint8_t kmask2 = uint8_t(0x0C); + const uint8_t kmask3 = uint8_t(0x30); + const uint8_t kmask4 = uint8_t(0xC0); + + const uint nb = pcs.ne00/QK_K; + + const uint r0 = gl_WorkGroupID.x; + const uint r1 = gl_WorkGroupID.y; + const uint r2 = gl_WorkGroupID.z; + + const uint row = (r0 * gl_NumSubgroups + gl_SubgroupID); + const uint offset0 = r2/pcs.gqa*(nb*pcs.ne0); + const uint x = row * nb + offset0; // Based from inA without base offset + const uint yy = r1*pcs.ne10 + r2*pcs.ne00*pcs.ne1+pcs.inBOff; // Based from inB + + float sumf = 0; + + // bits of invocation ID for gl_SubgroupSize=32: + // x x x x x + // 4 3 2 1 0 + // ( tid ) ix + // ip ( il ) + + const uint block_stride = gl_SubgroupSize / 16; // number of blocks each subgroup processes + const uint tid = gl_SubgroupInvocationID/block_stride; // first block_stride groups have tid=0 + const uint ix = gl_SubgroupInvocationID%block_stride; // first block is 0..block_stride-1 + const uint ip = tid/8; // first or second half of block (0 or 1) + const uint il = tid%8; // each half has 8 parts, one per scale + const uint n = 4; // 4 scales at a time (and 4 sums) + const uint l0 = n*il; // offset into half-block, 0..28 + const uint is = 8*ip + l0/16; // 0, 1, 8, 9 + + const uint y_offset = 128*ip + l0; + const uint q_offset_l = 64*ip + l0; + const uint q_offset_h = 32*ip + l0; + + for (uint i = ix; i < nb; i += block_stride) { + + const uint baseIndex = (x + i) * SIZE_OF_BLOCK + pcs.inAOff; + + const uint qlIndex = q_offset_l; + const uint q2Index = qlIndex + QK_K/8; + const uint qhIndex = q_offset_h; + const uint y = yy + i * QK_K + y_offset; + + float sums[4] = {0.0f, 0.0f, 0.0f, 0.0f}; + for (uint l = 0; l < n; ++l) { + const uint8_t currentQ1 = inA[baseIndex + qlIndex + l]; + const uint8_t currentQ2 = inA[baseIndex + q2Index + l]; + const uint8_t currentQh = inA[baseIndex + QK_K/2 + qhIndex + l]; + + sums[0] += inB[y+l+ 0] * (int8_t((currentQ1 & 0xF) | ((currentQh & kmask1) << 4)) - 32); + sums[1] += inB[y+l+32] * (int8_t((currentQ2 & 0xF) | ((currentQh & kmask2) << 2)) - 32); + sums[2] += inB[y+l+64] * (int8_t((currentQ1 >> 4) | ((currentQh & kmask3) << 0)) - 32); + sums[3] += inB[y+l+96] * (int8_t((currentQ2 >> 4) | ((currentQh & kmask4) >> 2)) - 32); + } + + float d = u8BufToFloat16(inA, baseIndex + QK_K/2 + QK_K/4 + QK_K/16); + sumf += d * (sums[0] * int8_t(inA[baseIndex + QK_K/2 + QK_K/4 + is]) + sums[1] * int8_t(inA[baseIndex + QK_K/2 + QK_K/4 + 2 + is]) + sums[2] * int8_t(inA[baseIndex + QK_K/2 + QK_K/4 + 4 + is]) + sums[3] * int8_t(inA[baseIndex + QK_K/2 + QK_K/4 + 6 + is])); + } + + const float tot = subgroupAdd(sumf); + if (subgroupElect()) { + out_[r1*pcs.ne0 + r2*pcs.ne0*pcs.ne1 + row + pcs.outOff] = tot; + } +} diff --git a/kompute-shaders/op_mul_mat_q8_0.comp b/kompute-shaders/op_mul_mat_q8_0.comp new file mode 100644 index 000000000..34d015e90 --- /dev/null +++ b/kompute-shaders/op_mul_mat_q8_0.comp @@ -0,0 +1,73 @@ +#version 450 + +#include "common.comp" + +#include "op_mul_mv_q_n_pre.comp" + +#define SIZE_OF_D 2 + +#define N_DST 4 // each SIMD group works on 4 rows +#define N_SIMDGROUP 2 // number of SIMD groups in a thread group +#define N_SIMDWIDTH 32 // assuming SIMD group size is 32 + +#define NB_Q8_0 8 + +void main() { + // NB: hack to make compatible with AMD GPUs that have a subgroup size of 64 + if (gl_SubgroupInvocationID > 31) + return; + + const int nr = N_DST; + const int nsg = N_SIMDGROUP; + const int nw = N_SIMDWIDTH; + + const int nb = pcs.ne00/QK8_0; + const uint r0 = gl_WorkGroupID.x; + const uint r1 = gl_WorkGroupID.y; + const uint im = gl_WorkGroupID.z; + + const uint first_row = (r0 * nsg + gl_SubgroupID) * nr; + + const uint i12 = im%pcs.ne12; + const uint i13 = im/pcs.ne12; + + const uint offset0 = first_row * nb + (i12/pcs.r2)*(nb*pcs.ne01) + (i13/pcs.r3)*(nb*pcs.ne01*pcs.ne02); + + const uint x = offset0*sizeof_block_q8_0 + pcs.inAOff; // Based from inA + const uint y = r1*pcs.ne10 + im*pcs.ne00*pcs.ne1 + pcs.inBOff; // based from inB + + float yl[NB_Q8_0]; + float sumf[N_DST]={0.f, 0.f, 0.f, 0.f}; + + const uint ix = gl_SubgroupInvocationID.x/4; + const uint il = gl_SubgroupInvocationID.x%4; + + uint yb = y + ix * QK8_0 + NB_Q8_0*il; + + // each thread in a SIMD group deals with NB_Q8_0 quants at a time + for (uint ib = ix; ib < nb; ib += nw/4) { + for (int i = 0; i < NB_Q8_0; ++i) { + yl[i] = inB[yb + i]; + } + + for (int row = 0; row < nr; row++) { + const uint block_offset = (ib+row*nb) * sizeof_block_q8_0; + float sumq = 0.f; + for (int iq = 0; iq < NB_Q8_0; ++iq) { + const int8_t qs_iq = int8_t(inA[x + block_offset + SIZE_OF_D + NB_Q8_0*il + iq]); + sumq += qs_iq * yl[iq]; + } + const float16_t d = u8BufToFloat16(inA, x + block_offset); + sumf[row] += sumq*d; + } + + yb += NB_Q8_0 * nw; + } + + for (int row = 0; row < nr; ++row) { + const float tot = subgroupAdd(sumf[row]); + if (subgroupElect() && first_row + row < pcs.ne01) { + out_[r1*pcs.ne0 + im*pcs.ne0*pcs.ne1 + first_row + row] = tot; + } + } +} diff --git a/kompute-shaders/op_mul_mv_q_n.comp b/kompute-shaders/op_mul_mv_q_n.comp new file mode 100644 index 000000000..440b5ab2c --- /dev/null +++ b/kompute-shaders/op_mul_mv_q_n.comp @@ -0,0 +1,48 @@ +void main() { + // NB: hack to make compatible with AMD GPUs that have a subgroup size of 64 + if (gl_SubgroupInvocationID > 31) + return; + + const uint nb = uint(pcs.ne00/BLOCKS_IN_QUANT); + + const uint r0 = gl_WorkGroupID.x; + const uint r1 = gl_WorkGroupID.y; + const uint im = gl_WorkGroupID.z; + + const uint first_row = (r0 * gl_NumSubgroups + gl_SubgroupID) * N_ROWS; + + const uint i12 = im%pcs.ne12; + const uint i13 = im/pcs.ne12; + + const uint offset0 = first_row * nb + (i12/pcs.r2)*(nb*pcs.ne01) + (i13/pcs.r3)*(nb*pcs.ne01*pcs.ne02); + + const uint x = offset0; // Based from inA without base offset + const uint y = r1*uint(pcs.ne10)+im*pcs.ne00*pcs.ne1+pcs.inBOff; // Based from inB + + float sumf[N_ROWS] = {0.0f, 0.0f, 0.0f, 0.0f}; + + const uint ix = gl_SubgroupInvocationID/2; + const uint il = (BLOCKS_IN_QUANT/4)*(gl_SubgroupInvocationID%2); + + uint yb = y + ix * BLOCKS_IN_QUANT + il; + + //debugPrintfEXT("gl_NumSubgroups=%d, gl_SubgroupID=%d, gl_SubgroupInvocationID=%d, glSubgroupSize=%d, gl_WorkGroupSize.x=%d, gl_WorkGroupSize.y=%d, gl_WorkGroupSize.z=%d\n", + // gl_NumSubgroups, gl_SubgroupID, gl_SubgroupInvocationID, gl_SubgroupSize, + // gl_WorkGroupSize.x, gl_WorkGroupSize.y, gl_WorkGroupSize.z); + + for (uint ib = ix; ib < nb; ib += 16) { + for (int row = 0; row < N_ROWS; row++) { + const uint block_index = x + ib + row * nb; + sumf[row] += block_q_n_dot_y(block_index, yb, il); + } + + yb += BLOCKS_IN_QUANT * 16; + } + + for (int row = 0; row < N_ROWS; ++row) { + const float tot = subgroupAdd(sumf[row]); + if (first_row + row < pcs.ne01 && subgroupElect()) { + out_[r1*pcs.ne0 + im*pcs.ne0*pcs.ne1 + first_row + row + pcs.outOff] = tot; + } + } +} diff --git a/kompute-shaders/op_mul_mv_q_n_pre.comp b/kompute-shaders/op_mul_mv_q_n_pre.comp new file mode 100644 index 000000000..7912b09ac --- /dev/null +++ b/kompute-shaders/op_mul_mv_q_n_pre.comp @@ -0,0 +1,22 @@ +layout(local_size_x_id = 0) in; +layout(local_size_y = 1) in; +layout(local_size_z = 1) in; + +layout (binding = 0) readonly buffer tensorInA { uint8_t inA[]; }; +layout (binding = 1) readonly buffer tensorInB { float inB[]; }; +layout (binding = 2) writeonly buffer tensorOut { float out_[]; }; + +layout (push_constant) uniform parameter { + uint inAOff; + uint inBOff; + uint outOff; + int ne00; + int ne01; + int ne02; + int ne10; + int ne12; + int ne0; + int ne1; + uint r2; + uint r3; +} pcs; diff --git a/kompute-shaders/op_norm.comp b/kompute-shaders/op_norm.comp new file mode 100644 index 000000000..ad0c3c01b --- /dev/null +++ b/kompute-shaders/op_norm.comp @@ -0,0 +1,84 @@ +#version 450 + +#include "common.comp" + +layout(local_size_x = 256) in; + +layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; }; +layout(binding = 1) buffer restrict tensorOut { float out_[]; }; + +layout(push_constant) uniform PushConstants { + uint inOff; + uint outOff; + uint ne00; + uint nb01; + float eps; +} pcs; + +shared float sum[gl_WorkGroupSize.x]; + +void main() { + const uint x = (gl_WorkGroupID.x*pcs.nb01/4) + pcs.inOff; // Based from in_ + // MEAN + // parallel sum + sum[gl_LocalInvocationID.x] = 0.0; + for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) { + sum[gl_LocalInvocationID.x] += in_[x+i00]; + } + + // reduce + barrier(); + memoryBarrierShared(); + [[unroll]] for (uint i = gl_WorkGroupSize.x/2; i > 0; i /= 2) { + if (gl_LocalInvocationID.x < i) { + sum[gl_LocalInvocationID.x] += sum[gl_LocalInvocationID.x + i]; + } + barrier(); + memoryBarrierShared(); + } + + // broadcast + if (gl_LocalInvocationID.x == 0) { + sum[0] /= float(pcs.ne00); + } + barrier(); + memoryBarrierShared(); + const float mean = sum[0]; + + // recenter + const uint y = (gl_WorkGroupID.x*pcs.ne00) + pcs.outOff; // Based from out_ + for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) { + out_[y+i00] = in_[x+i00] - mean; + } + + // VARIANCE + // parallel sum + sum[gl_LocalInvocationID.x] = 0.0; + for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) { + sum[gl_LocalInvocationID.x] += out_[y+i00] * out_[y+i00]; + } + + // reduce + barrier(); + memoryBarrierShared(); + [[unroll]] for (uint i = gl_WorkGroupSize.x/2; i > 0; i /= 2) { + if (gl_LocalInvocationID.x < i) { + sum[gl_LocalInvocationID.x] += sum[gl_LocalInvocationID.x + i]; + } + barrier(); + memoryBarrierShared(); + } + + // broadcast + if (gl_LocalInvocationID.x == 0) { + sum[0] /= float(pcs.ne00); + } + barrier(); + memoryBarrierShared(); + const float variance = sum[0]; + + const float scale = 1.0f/sqrt(variance + pcs.eps); + for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) { + out_[y+i00] *= scale; + } +} diff --git a/kompute-shaders/op_relu.comp b/kompute-shaders/op_relu.comp new file mode 100644 index 000000000..52a601fe6 --- /dev/null +++ b/kompute-shaders/op_relu.comp @@ -0,0 +1,21 @@ +#version 450 + +#include "common.comp" + +layout(local_size_x = 1) in; + +layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; }; +layout(binding = 1) buffer restrict writeonly tensorOut { float out_[]; }; +layout(push_constant) uniform PushConstants { + uint inOff; + uint outOff; +} pcs; + +void main() { + const uint baseIndex = gl_WorkGroupID.x * 4; + + for (uint x = 0; x < 4; x++) { + const uint i = baseIndex + x; + out_[i + pcs.outOff] = max(0.0, in_[i + pcs.inOff]); + } +} diff --git a/kompute-shaders/op_rmsnorm.comp b/kompute-shaders/op_rmsnorm.comp new file mode 100644 index 000000000..da658c160 --- /dev/null +++ b/kompute-shaders/op_rmsnorm.comp @@ -0,0 +1,53 @@ +#version 450 + +#include "common.comp" + +layout(local_size_x = 512) in; + +layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; }; +layout(binding = 1) buffer restrict tensorOut { float out_[]; }; + +layout(push_constant) uniform PushConstants { + uint inOff; + uint outOff; + uint ne00; + uint nb01; + float eps; +} pcs; + +shared float sum[gl_WorkGroupSize.x]; + +void main() { + const uint x = (gl_WorkGroupID.x*pcs.nb01/4) + pcs.inOff; // Based from in_ + + // parallel sum + sum[gl_LocalInvocationID.x] = 0.0; + for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) { + sum[gl_LocalInvocationID.x] += in_[x+i00] * in_[x+i00]; + } + + // reduce + barrier(); + memoryBarrierShared(); + [[unroll]] for (uint i = gl_WorkGroupSize.x/2; i > 0; i /= 2) { + if (gl_LocalInvocationID.x < i) { + sum[gl_LocalInvocationID.x] += sum[gl_LocalInvocationID.x + i]; + } + barrier(); + memoryBarrierShared(); + } + + // broadcast + if (gl_LocalInvocationID.x == 0) { + sum[0] /= float(pcs.ne00); + } + barrier(); + memoryBarrierShared(); + + const float scale = 1.0f/sqrt(sum[0] + pcs.eps); + + const uint y = (gl_WorkGroupID.x*pcs.ne00) + pcs.outOff; // Based from out_ + for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) { + out_[y+i00] = in_[x+i00] * scale; + } +} diff --git a/kompute-shaders/op_rope_f16.comp b/kompute-shaders/op_rope_f16.comp new file mode 100644 index 000000000..b44622584 --- /dev/null +++ b/kompute-shaders/op_rope_f16.comp @@ -0,0 +1,73 @@ +#version 450 + +#include "rope_common.comp" + +layout(binding = 0) buffer restrict readonly tensorInA { float16_t inA[]; }; +layout(binding = 1) buffer restrict readonly tensorInB { int inB[]; }; +layout(binding = 2) buffer restrict writeonly tensorOut { float16_t out_[]; }; + +void main() { + const uint i3 = gl_WorkGroupID.z; + const uint i2 = gl_WorkGroupID.y; + const uint i1 = gl_WorkGroupID.x; + + const bool is_neox = (pcs.mode & 2) != 0; + + float corr_dims[2]; + rope_yarn_corr_dims(pcs.n_dims, pcs.n_orig_ctx, pcs.freq_base, pcs.beta_fast, pcs.beta_slow, corr_dims); + + const float theta_scale = pow(pcs.freq_base, -2.0/pcs.n_dims); + + const int p = inB[pcs.inBOff + i2]; + + float theta = float(p); + + if (!is_neox) { + for (uint i0 = 0; i0 < pcs.ne0; i0 += 2) { + float cos_theta, sin_theta; + rope_yarn(theta, pcs.freq_scale, corr_dims, i0, pcs.ext_factor, pcs.attn_factor, cos_theta, sin_theta); + + theta *= theta_scale; + + const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 2) + pcs.inAOff; // Based from in + const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 2) + pcs.outOff; // Based from out_ + + const float x0 = float(inA[src]); + const float x1 = float(inA[src+1]); + + out_[dst_data] = float16_t(x0*cos_theta - x1*sin_theta); + out_[dst_data+1] = float16_t(x0*sin_theta + x1*cos_theta); + } + } else { + const float inv_ndims = -1.f/pcs.n_dims; + for (uint ic = 0; ic < pcs.n_dims; ic += 2) { + const uint cur_rot = ic; + + float cos_theta, sin_theta; + rope_yarn(theta, pcs.freq_scale, corr_dims, cur_rot, pcs.ext_factor, pcs.attn_factor, cos_theta, sin_theta); + + theta *= theta_scale; + + const uint i0 = ic/2; + + const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 2) + pcs.inAOff; // Based from in + const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 2) + pcs.outOff; // Based from out_ + + const float x0 = float(inA[src]); + const float x1 = float(inA[src+pcs.n_dims/2]); + + out_[dst_data] = float16_t(x0*cos_theta - x1*sin_theta); + out_[dst_data+pcs.n_dims/2] = float16_t(x0*sin_theta + x1*cos_theta); + } + + for (uint ic = pcs.n_dims; ic < pcs.ne0; ic += 2) { + const uint i0 = ic; + + const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 2) + pcs.inAOff; // Based from in + const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 2) + pcs.outOff; // Based from out_ + + out_[dst_data + 0] = inA[src + 0]; + out_[dst_data + 1] = inA[src + 1]; + } + } +} diff --git a/kompute-shaders/op_rope_f32.comp b/kompute-shaders/op_rope_f32.comp new file mode 100644 index 000000000..2c0235d75 --- /dev/null +++ b/kompute-shaders/op_rope_f32.comp @@ -0,0 +1,73 @@ +#version 450 + +#include "rope_common.comp" + +layout(binding = 0) buffer restrict readonly tensorInA { float inA[]; }; +layout(binding = 1) buffer restrict readonly tensorInB { int inB[]; }; +layout(binding = 2) buffer restrict writeonly tensorOut { float out_[]; }; + +void main() { + const uint i3 = gl_WorkGroupID.z; + const uint i2 = gl_WorkGroupID.y; + const uint i1 = gl_WorkGroupID.x; + + const bool is_neox = (pcs.mode & 2) != 0; + + float corr_dims[2]; + rope_yarn_corr_dims(pcs.n_dims, pcs.n_orig_ctx, pcs.freq_base, pcs.beta_fast, pcs.beta_slow, corr_dims); + + const float theta_scale = pow(pcs.freq_base, -2.0/pcs.n_dims); + + const int p = inB[pcs.inBOff + i2]; + + float theta = float(p); + + if (!is_neox) { + for (uint i0 = 0; i0 < pcs.ne0; i0 += 2) { + float cos_theta, sin_theta; + rope_yarn(theta, pcs.freq_scale, corr_dims, i0, pcs.ext_factor, pcs.attn_factor, cos_theta, sin_theta); + + theta *= theta_scale; + + const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 4) + pcs.inAOff; // Based from in + const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 4) + pcs.outOff; // Based from out_ + + const float x0 = inA[src]; + const float x1 = inA[src+1]; + + out_[dst_data] = x0*cos_theta - x1*sin_theta; + out_[dst_data+1] = x0*sin_theta + x1*cos_theta; + } + } else { + const float inv_ndims = -1.f/pcs.n_dims; + for (uint ic = 0; ic < pcs.n_dims; ic += 2) { + const uint cur_rot = ic; + + float cos_theta, sin_theta; + rope_yarn(theta, pcs.freq_scale, corr_dims, cur_rot, pcs.ext_factor, pcs.attn_factor, cos_theta, sin_theta); + + theta *= theta_scale; + + const uint i0 = ic/2; + + const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 4) + pcs.inAOff; // Based from in + const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 4) + pcs.outOff; // Based from out_ + + const float x0 = inA[src]; + const float x1 = inA[src+pcs.n_dims/2]; + + out_[dst_data] = x0*cos_theta - x1*sin_theta; + out_[dst_data+pcs.n_dims/2] = x0*sin_theta + x1*cos_theta; + } + + for (uint ic = pcs.n_dims; ic < pcs.ne0; ic += 2) { + const uint i0 = ic; + + const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 4) + pcs.inAOff; // Based from in + const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 4) + pcs.outOff; // Based from out_ + + out_[dst_data + 0] = inA[src + 0]; + out_[dst_data + 1] = inA[src + 1]; + } + } +} diff --git a/kompute-shaders/op_scale.comp b/kompute-shaders/op_scale.comp new file mode 100644 index 000000000..bdae26738 --- /dev/null +++ b/kompute-shaders/op_scale.comp @@ -0,0 +1,19 @@ +#version 450 + +#include "common.comp" + +layout(local_size_x = 1) in; + +layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; }; +layout(binding = 1) buffer restrict writeonly tensorOut { float out_[]; }; + +layout(push_constant) uniform PushConstants { + uint inOff; + uint outOff; + float scale; +} pcs; + +void main() { + const uint i = gl_WorkGroupID.x; + out_[i + pcs.outOff] = in_[i + pcs.inOff] * pcs.scale; +} diff --git a/kompute-shaders/op_scale_8.comp b/kompute-shaders/op_scale_8.comp new file mode 100644 index 000000000..ada69754b --- /dev/null +++ b/kompute-shaders/op_scale_8.comp @@ -0,0 +1,23 @@ +#version 450 + +#include "common.comp" + +layout(local_size_x = 1) in; + +layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; }; +layout(binding = 1) buffer restrict writeonly tensorOut { float out_[]; }; + +layout(push_constant) uniform PushConstants { + uint inOff; + uint outOff; + float scale; +} pcs; + +void main() { + const uint baseIndex = gl_WorkGroupID.x * 8; + + for (uint x = 0; x < 8; x++) { + const uint i = baseIndex + x; + out_[i + pcs.outOff] = in_[i + pcs.inOff] * pcs.scale; + } +} diff --git a/kompute-shaders/op_silu.comp b/kompute-shaders/op_silu.comp new file mode 100644 index 000000000..0fb8e4b74 --- /dev/null +++ b/kompute-shaders/op_silu.comp @@ -0,0 +1,22 @@ +#version 450 + +#include "common.comp" + +layout(local_size_x = 1) in; + +layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; }; +layout(binding = 1) buffer restrict writeonly tensorOut { float out_[]; }; +layout(push_constant) uniform PushConstants { + uint inOff; + uint outOff; +} pcs; + +void main() { + const uint baseIndex = gl_WorkGroupID.x * 4; + + for (uint x = 0; x < 4; x++) { + const uint i = baseIndex + x; + const float y = in_[i + pcs.inOff]; + out_[i + pcs.outOff] = y / (1.0 + exp(-y)); + } +} diff --git a/kompute-shaders/op_softmax.comp b/kompute-shaders/op_softmax.comp new file mode 100644 index 000000000..7bc9176ca --- /dev/null +++ b/kompute-shaders/op_softmax.comp @@ -0,0 +1,56 @@ +// TODO: implement multi-simd softmax (llama.cpp commit e16b9fa4) + +#version 450 + +#include "common.comp" + +layout(local_size_x_id = 0) in; + +layout(binding = 0) buffer restrict readonly tensorInA { float inA[]; }; +layout(binding = 1) buffer restrict readonly tensorInB { float inB[]; }; +layout(binding = 2) buffer restrict writeonly tensorOut { float out_[]; }; + +layout(push_constant) uniform PushConstants { + uint inAOff; + uint inBOff; + uint outOff; + int ne00; + int ne01; + int ne02; + float scale; + int mask; +} pcs; + +void main() { + if (gl_SubgroupInvocationID > 31) + return; + + const uint i03 = gl_WorkGroupID.z; + const uint i02 = gl_WorkGroupID.y; + const uint i01 = gl_WorkGroupID.x; + + const uint extra_off = i03*pcs.ne02*pcs.ne01*pcs.ne00 + i02*pcs.ne01*pcs.ne00 + i01*pcs.ne00; + const uint psrc0 = extra_off + pcs.inAOff; // Based from inA + const uint pmask = i01*pcs.ne00 + pcs.inBOff; // Based from inB + const uint pdst = extra_off + pcs.outOff; // Based from out_ + + // parallel max + float localMax = uintBitsToFloat(0xFF800000); + for (uint i00 = gl_SubgroupInvocationID.x; i00 < pcs.ne00; i00 += 32) { + localMax = max(localMax, inA[psrc0 + i00]*pcs.scale + (pcs.mask!=0 ? inB[pmask + i00] : 0.0f)); + } + float max_ = subgroupMax(localMax); + + // parallel sum + float localSum = 0.0f; + for (uint i00 = gl_SubgroupInvocationID.x; i00 < pcs.ne00; i00 += 32) { + const float exp_psrc0 = exp(inA[psrc0 + i00]*pcs.scale + (pcs.mask!=0 ? inB[pmask + i00] : 0.0f) - max_); + localSum += exp_psrc0; + out_[pdst + i00] = exp_psrc0; + } + + const float sum = subgroupAdd(localSum); + for (uint i00 = gl_SubgroupInvocationID.x; i00 < pcs.ne00; i00 += 32) { + out_[pdst + i00] /= sum; + } +} diff --git a/kompute-shaders/rope_common.comp b/kompute-shaders/rope_common.comp new file mode 100644 index 000000000..57ba6597a --- /dev/null +++ b/kompute-shaders/rope_common.comp @@ -0,0 +1,67 @@ +#include "common.comp" + +// TODO: use a local size of 32 or more (Metal uses 1024) +layout(local_size_x = 1) in; + +layout (push_constant) uniform parameter { + uint inAOff; + uint inBOff; + uint outOff; + int n_dims; + int mode; + int n_orig_ctx; + float freq_base; + float freq_scale; + float ext_factor; + float attn_factor; + float beta_fast; + float beta_slow; + uint nb00; + uint nb01; + uint nb02; + uint nb03; + int ne0; + uint nb0; + uint nb1; + uint nb2; + uint nb3; +} pcs; + +float rope_yarn_ramp(const float low, const float high, const float i0) { + const float y = (i0 / 2 - low) / max(0.001f, high - low); + return 1.0f - min(1.0f, max(0.0f, y)); +} + +// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn +// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng. +void rope_yarn( + float theta_extrap, float freq_scale, float corr_dims[2], float i0, float ext_factor, float mscale, + out float cos_theta, out float sin_theta +) { + // Get n-d rotational scaling corrected for extrapolation + float theta_interp = freq_scale * theta_extrap; + float theta = theta_interp; + if (ext_factor != 0.0f) { + float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor; + theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix; + + // Get n-d magnitude scaling corrected for interpolation + mscale *= 1.0f + 0.1f * log(1.0f / freq_scale); + } + cos_theta = cos(theta) * mscale; + sin_theta = sin(theta) * mscale; +} + +// Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get +// `corr_fac(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))` +float rope_yarn_corr_factor(int n_dims, int n_orig_ctx, float n_rot, float base) { + return n_dims * log(n_orig_ctx / (n_rot * TWOPI_F)) / (2 * log(base)); +} + +void rope_yarn_corr_dims( + int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, out float dims[2] +) { + // start and end correction dims + dims[0] = max(0.0f, floor(rope_yarn_corr_factor(n_dims, n_orig_ctx, beta_fast, freq_base))); + dims[1] = min(n_dims - 1.0f, ceil(rope_yarn_corr_factor(n_dims, n_orig_ctx, beta_slow, freq_base))); +} diff --git a/llama.cpp b/llama.cpp index 45569f7d3..9631506c6 100644 --- a/llama.cpp +++ b/llama.cpp @@ -15,6 +15,8 @@ # include "ggml-vulkan.h" #elif defined(GGML_USE_SYCL) # include "ggml-sycl.h" +#elif defined(GGML_USE_KOMPUTE) +# include "ggml-kompute.h" #endif #ifdef GGML_USE_METAL @@ -1313,6 +1315,11 @@ static ggml_backend_buffer_type_t llama_default_buffer_type_offload(int gpu) { buft = ggml_backend_sycl_buffer_type(gpu); #elif defined(GGML_USE_CLBLAST) buft = ggml_backend_opencl_buffer_type(); +#elif defined(GGML_USE_KOMPUTE) + buft = ggml_backend_kompute_buffer_type(gpu); + if (buft == nullptr) { + LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu); + } #endif if (buft == nullptr) { @@ -4107,7 +4114,7 @@ static bool llm_load_tensors( } // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback -static int llama_model_load(const std::string & fname, llama_model & model, const llama_model_params & params) { +static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) { try { llama_model_loader ml(fname, params.use_mmap, params.kv_overrides); @@ -4128,6 +4135,22 @@ static int llama_model_load(const std::string & fname, llama_model & model, cons return 0; } +#ifdef GGML_USE_KOMPUTE + if (ggml_vk_has_device() && params.n_gpu_layers > 0 && ( + !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) + || !( + model.ftype == LLAMA_FTYPE_ALL_F32 || + model.ftype == LLAMA_FTYPE_MOSTLY_F16 || + model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || + model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1 + ) + )) { + // disable Vulkan due to unsupported model architecture or quantization type + // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file + params.n_gpu_layers = 0; + } +#endif + if (!llm_load_tensors( ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock, params.progress_callback, params.progress_callback_user_data @@ -10259,6 +10282,16 @@ struct llama_context * llama_new_context_with_model( } ctx->backends.push_back(backend); } +#elif defined(GGML_USE_KOMPUTE) + if (model->n_gpu_layers > 0) { + auto * backend = ggml_backend_kompute_init(model->main_gpu); + if (backend == nullptr) { + LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__); + llama_free(ctx); + return nullptr; + } + ctx->backends.push_back(backend); + } #endif ctx->backend_cpu = ggml_backend_cpu_init(); if (ctx->backend_cpu == nullptr) { diff --git a/llama.h b/llama.h index 3e33072c6..01b293e64 100644 --- a/llama.h +++ b/llama.h @@ -49,7 +49,8 @@ #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN #define LLAMA_SESSION_VERSION 4 -#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || defined(GGML_USE_SYCL) +#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \ + defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE) // Defined when llama.cpp is compiled with support for offloading model layers to GPU. #define LLAMA_SUPPORTS_GPU_OFFLOAD #endif diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index 015939105..775147d42 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -370,12 +370,15 @@ struct test_case { printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str()); fflush(stdout); - // check if backends support op + // check if the backends support the ops bool supported = true; for (ggml_backend_t backend : {backend1, backend2}) { - if (!ggml_backend_supports_op(backend, out)) { - printf("not supported [%s] ", ggml_backend_name(backend)); - supported = false; + for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { + if (!ggml_backend_supports_op(backend, t)) { + printf("not supported [%s] ", ggml_backend_name(backend)); + supported = false; + break; + } } } if (!supported) { @@ -626,6 +629,13 @@ struct test_unary : public test_case { ggml_tensor * out = ggml_unary(ctx, in, op); return out; } + + void initialize_tensors(ggml_context * ctx) override { + for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { + // test extended range of values to check for NaNs in GELU + init_tensor_uniform(t, -150.f, 150.f); + } + } }; // GGML_OP_GET_ROWS @@ -1066,18 +1076,24 @@ struct test_diag_mask_inf : public test_case { struct test_soft_max : public test_case { const ggml_type type; const std::array ne; + const float scale; + const bool mask; std::string vars() override { - return VARS_TO_STR2(type, ne); + return VARS_TO_STR4(type, ne, scale, mask); } test_soft_max(ggml_type type = GGML_TYPE_F32, - std::array ne = {10, 10, 10, 10}) - : type(type), ne(ne) {} + std::array ne = {10, 10, 10, 10}, + float scale = 1.0f, + bool mask = false) + : type(type), ne(ne), scale(scale), mask(mask) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); - ggml_tensor * out = ggml_soft_max(ctx, a); + ggml_tensor * b = nullptr; + if (mask) { b = ggml_new_tensor_2d(ctx, type, ne[0], ne[1]); } + ggml_tensor * out = ggml_soft_max_ext(ctx, a, b, scale); return out; } }; @@ -1474,6 +1490,393 @@ struct test_moe : public test_case { } }; + +enum llm_norm_type { + LLM_NORM, + LLM_NORM_RMS, +}; + +struct llama_hparams { + uint32_t n_vocab; + uint32_t n_embd; + uint32_t n_head; + uint32_t n_head_kv; + static constexpr uint32_t n_layer = 1; + uint32_t n_rot; + uint32_t n_embd_head; // dimension of values (d_v) + uint32_t n_ff; + + float f_norm_eps; + float f_norm_rms_eps; + + // cparams + static constexpr uint32_t n_ctx = 512; // user-specified context size + static constexpr uint32_t n_orig_ctx = n_ctx; + + // batch + int32_t n_tokens; + + // llm_build_context + static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx + static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache + + uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads + return n_embd_head * n_head_kv; + } +}; + +// LLM base class +struct test_llm : public test_case { + llama_hparams hp; + +protected: + test_llm(llama_hparams hp) + : hp(std::move(hp)) { + } + +public: + struct ggml_tensor * llm_build_norm( + struct ggml_context * ctx, + struct ggml_tensor * cur, + struct ggml_tensor * mw, + struct ggml_tensor * mb, + llm_norm_type type) { + switch (type) { + case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break; + case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break; + } + cur = ggml_mul(ctx, cur, mw); + if (mb) { + cur = ggml_add(ctx, cur, mb); + } + return cur; + } + + void llm_build_kv_store( + struct ggml_context * ctx, + struct ggml_tensor * k_l, + struct ggml_tensor * v_l, + struct ggml_tensor * k_cur, + struct ggml_tensor * v_cur) { + // compute the transposed [n_tokens, n_embd] V matrix + struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens)); + + struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(), + (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head); + + struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(), + ( hp.n_ctx)*ggml_element_size(v_l), + (hp.kv_head)*ggml_element_size(v_l)); + + // important: storing RoPE-ed version of K in the KV cache! + ggml_cpy(ctx, k_cur, k_cache_view); + ggml_cpy(ctx, v_cur_t, v_cache_view); + } + + // if max_alibi_bias > 0 then apply ALiBi + struct ggml_tensor * llm_build_kqv( + struct ggml_context * ctx, + struct ggml_tensor * k_l, + struct ggml_tensor * v_l, + struct ggml_tensor * q_cur, + struct ggml_tensor * kq_mask, + float kq_scale) { + struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3); + + struct ggml_tensor * k = + ggml_view_3d(ctx, k_l, + hp.n_embd_head, hp.n_kv, hp.n_head_kv, + ggml_row_size(k_l->type, hp.n_embd_gqa()), + ggml_row_size(k_l->type, hp.n_embd_head), + 0); + + struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q); + + kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale); + + // split cached v into n_head heads + struct ggml_tensor * v = + ggml_view_3d(ctx, v_l, + hp.n_kv, hp.n_embd_head, hp.n_head_kv, + ggml_element_size(v_l)*hp.n_ctx, + ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head, + 0); + + struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq); + + struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3); + + struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens); + + struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd); + cur = ggml_mul_mat(ctx, wo, cur); + + return cur; + } + + void initialize_tensors(ggml_context * ctx) override { + for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { + if (t->type == GGML_TYPE_I32) { + // pos + std::vector data(hp.n_tokens); + for (int i = 0; i < hp.n_tokens; i++) { + data[i] = rand() % hp.n_ctx; + } + ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int)); + } else { + init_tensor_uniform(t); + } + } + } +}; + + +// Llama +struct test_llama : public test_llm { + static constexpr float freq_base = 10000.0f; + static constexpr float freq_scale = 1.0f; + static constexpr float ext_factor = 0.0f; + static constexpr float attn_factor = 1.0f; + static constexpr float beta_fast = 32.0f; + static constexpr float beta_slow = 1.0f; + + std::string op_desc(ggml_tensor * t) override { + GGML_UNUSED(t); + return "LLAMA"; + } + + std::string vars() override { + auto n_tokens = hp.n_tokens; + return VARS_TO_STR1(n_tokens); + } + + double max_nmse_err() override { + return 2e-3; + } + + test_llama(int n_tokens = 1) + : test_llm({ + /*n_vocab =*/ 32000, + /*n_embd =*/ 3200, + /*n_head =*/ 32, + /*n_head_kv =*/ 32, + /*n_rot =*/ 100, + /*n_embd_head =*/ 100, + /*n_ff =*/ 8640, + /*f_norm_eps =*/ 0.f, + /*f_norm_rms_eps =*/ 1e-5f, + /*n_tokens =*/ n_tokens, + }) { + } + + ggml_tensor * build_graph(ggml_context * ctx) override { + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hp.n_kv, hp.n_tokens, 1); + + ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400); + ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400); + + for (uint32_t il = 0; il < hp.n_layer; ++il) { + struct ggml_tensor * inpSA = inpL; + + // norm + ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd); + cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS); + + // self-attention + { + ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd); + ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa()); + ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa()); + + // compute Q and K and RoPE them + struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur); + struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur); + struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur); + + Qcur = ggml_rope_custom( + ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, + hp.n_rot, 0, 0, hp.n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + + Kcur = ggml_rope_custom( + ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, + hp.n_rot, 0, 0, hp.n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + + llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur); + + cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head))); + } + + struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA); + + // feed-forward network + ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd); + cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS); + + ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff); + ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd); + ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff); + struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur); + cur = ggml_mul_mat(ctx, ffn_gate, cur); + cur = ggml_silu(ctx, cur); + cur = ggml_mul(ctx, cur, tmp); + cur = ggml_mul_mat(ctx, ffn_down, cur); + + cur = ggml_add(ctx, cur, ffn_inp); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd); + cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS); + + // lm_head + ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab); + cur = ggml_mul_mat(ctx, output, cur); + + return cur; + } +}; + +// Falcon +struct test_falcon : public test_llm { + static constexpr float freq_base = 10000.0f; + static constexpr float freq_scale = 1.0f; + static constexpr float ext_factor = 0.0f; + static constexpr float attn_factor = 1.0f; + static constexpr float beta_fast = 32.0f; + static constexpr float beta_slow = 1.0f; + + std::string op_desc(ggml_tensor * t) override { + GGML_UNUSED(t); + return "FALCON"; + } + + std::string vars() override { + auto n_tokens = hp.n_tokens; + return VARS_TO_STR1(n_tokens); + } + + double max_nmse_err() override { + return 2e-3; + } + + test_falcon(int n_tokens = 1) + : test_llm({ + /*n_vocab =*/ 32000, + /*n_embd =*/ 3200, + /*n_head =*/ 50, + /*n_head_kv =*/ 1, + /*n_rot =*/ 64, + /*n_embd_head =*/ 64, + /*n_ff =*/ 8640, + /*f_norm_eps =*/ 1e-5f, + /*f_norm_rms_eps =*/ 0.f, + /*n_tokens =*/ n_tokens, + }) { + } + + ggml_tensor * build_graph(ggml_context * ctx) override { + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hp.n_kv, hp.n_tokens, 1); + + ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400); + ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400); + + for (uint32_t il = 0; il < hp.n_layer; ++il) { + // norm + ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd); + ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd); + ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM); + + // self-attention + { + cur = attn_norm; + + ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa()); + + cur = ggml_mul_mat(ctx, wqkv, cur); + + struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd))); + struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd))); + struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa()))); + + Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens); + Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens); + + // using mode = 2 for neox mode + Qcur = ggml_rope_custom( + ctx, Qcur, inp_pos, hp.n_rot, 2, 0, hp.n_orig_ctx, + freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow + ); + + Kcur = ggml_rope_custom( + ctx, Kcur, inp_pos, hp.n_rot, 2, 0, hp.n_orig_ctx, + freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow + ); + + llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur); + + cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head))); + } + + struct ggml_tensor * ffn_inp = cur; + + // feed forward + { + ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff); + ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd); + cur = attn_norm; + cur = ggml_mul_mat(ctx, ffn_up, cur); + cur = ggml_gelu(ctx, cur); + cur = ggml_mul_mat(ctx, ffn_down, cur); + } + + cur = ggml_add(ctx, cur, ffn_inp); + + cur = ggml_add(ctx, cur, inpL); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd); + ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd); + cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM); + + // lm_head + ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab); + cur = ggml_mul_mat(ctx, output, cur); + + return cur; + } +}; + static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name) { std::vector> test_cases; std::default_random_engine rng(0); @@ -1626,6 +2029,9 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op exponent <<= 1; } + test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, 0.1f)); + test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, 0.1f, true)); + for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) { test_cases.emplace_back(new test_rope(type, {128, 32, 10, 1}, 128, 0, 512)); // llama 7B test_cases.emplace_back(new test_rope(type, {128, 40, 10, 1}, 128, 0, 512)); // llama 13B @@ -1662,6 +2068,14 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op //test_cases.emplace_back(new test_moe(8, 2, 8, 4096, 14336)); #endif + // these tests are disabled to save execution time, but they can be handy for debugging +#if 0 + test_cases.emplace_back(new test_llama(1)); + test_cases.emplace_back(new test_llama(2)); + test_cases.emplace_back(new test_falcon(1)); + test_cases.emplace_back(new test_falcon(2)); +#endif + // run tests if (mode == MODE_TEST) { ggml_backend_t backend_cpu = ggml_backend_cpu_init(); diff --git a/tests/test-c.c b/tests/test-c.c index a05071080..95ba73df3 100644 --- a/tests/test-c.c +++ b/tests/test-c.c @@ -1,3 +1,7 @@ #include "llama.h" +#ifdef GGML_USE_KOMPUTE +#include "ggml-kompute.h" +#endif + int main(void) {}