diff --git a/examples/llava/README.md b/examples/llava/README.md index 57eb42932..e42db6e5a 100644 --- a/examples/llava/README.md +++ b/examples/llava/README.md @@ -53,7 +53,7 @@ python ./examples/llava/convert-image-encoder-to-gguf.py -m ../clip-vit-large-pa 5. Use `convert.py` to convert the LLaMA part of LLaVA to GGUF: ```sh -python ./convert.py ../llava-v1.5-7b +python ./convert.py ../llava-v1.5-7b --skip-unknown ``` Now both the LLaMA part and the image encoder is in the `llava-v1.5-7b` directory. diff --git a/examples/llava/llava-surgery.py b/examples/llava/llava-surgery.py index 0a61efdfe..8b7a62fba 100644 --- a/examples/llava/llava-surgery.py +++ b/examples/llava/llava-surgery.py @@ -19,10 +19,6 @@ mm_tensors = [k for k, v in checkpoint.items() if k.startswith("model.mm_project projector = {name: checkpoint[name].float() for name in mm_tensors} torch.save(projector, f"{args.model}/llava.projector") -# remove these tensors from the checkpoint and save it again -for name in mm_tensors: - del checkpoint[name] - # BakLLaVA models contain CLIP tensors in it clip_tensors = [k for k, v in checkpoint.items() if k.startswith("model.vision_tower")] if len(clip_tensors) > 0: @@ -39,7 +35,7 @@ if len(clip_tensors) > 0: f.write("{}\n") -torch.save(checkpoint, path) + torch.save(checkpoint, path) print("Done!") print(f"Now you can convert {args.model} to a regular LLaMA GGUF file.")