mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-13 20:14:29 +00:00
convert : update phi-2 to latest HF repo
ggml-ci
This commit is contained in:
parent
de473f5f8e
commit
fe252237a3
@ -23,6 +23,16 @@ if 'NO_LOCAL_GGUF' not in os.environ:
|
||||
import gguf
|
||||
|
||||
|
||||
# check for any of the given keys in the dictionary and return the value of the first key found
|
||||
def get_key_opts(d, keys):
|
||||
vals = []
|
||||
for k in keys:
|
||||
if k in d:
|
||||
return d[k]
|
||||
print(f"Could not find any of {keys}")
|
||||
sys.exit()
|
||||
|
||||
|
||||
###### MODEL DEFINITIONS ######
|
||||
|
||||
class SentencePieceTokenTypes(IntEnum):
|
||||
@ -257,10 +267,12 @@ class Model:
|
||||
toktypes.append(gguf.TokenType.USER_DEFINED)
|
||||
elif reverse_vocab[i] in added_vocab:
|
||||
tokens.append(reverse_vocab[i])
|
||||
if tokenizer.added_tokens_decoder[i].special:
|
||||
toktypes.append(gguf.TokenType.CONTROL)
|
||||
else:
|
||||
toktypes.append(gguf.TokenType.USER_DEFINED)
|
||||
# check if tokenizer has added_tokens_decoder
|
||||
if hasattr(tokenizer, "added_tokens_decoder"):
|
||||
if tokenizer.added_tokens_decoder[i].special:
|
||||
toktypes.append(gguf.TokenType.CONTROL)
|
||||
else:
|
||||
toktypes.append(gguf.TokenType.USER_DEFINED)
|
||||
else:
|
||||
tokens.append(reverse_vocab[i])
|
||||
toktypes.append(gguf.TokenType.NORMAL)
|
||||
@ -1068,17 +1080,19 @@ class GPT2Model(Model):
|
||||
|
||||
class Phi2Model(Model):
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams["n_layer"]
|
||||
block_count = get_key_opts(self.hparams, ["num_hidden_layers", "n_layer"])
|
||||
|
||||
self.gguf_writer.add_name("Phi2")
|
||||
self.gguf_writer.add_context_length(self.hparams["n_positions"])
|
||||
self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
|
||||
self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
|
||||
self.gguf_writer.add_context_length(get_key_opts(self.hparams, ["n_positions", "max_position_embeddings"]))
|
||||
|
||||
self.gguf_writer.add_embedding_length(get_key_opts(self.hparams, ["n_embd", "hidden_size"]))
|
||||
self.gguf_writer.add_feed_forward_length(4 * get_key_opts(self.hparams, ["n_embd", "hidden_size"]))
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_head_count(self.hparams["n_head"])
|
||||
self.gguf_writer.add_head_count_kv(self.hparams["n_head"])
|
||||
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
|
||||
self.gguf_writer.add_rope_dimension_count(self.hparams["rotary_dim"])
|
||||
self.gguf_writer.add_head_count(get_key_opts(self.hparams, ["n_head", "num_attention_heads"]))
|
||||
self.gguf_writer.add_head_count_kv(get_key_opts(self.hparams, ["n_head", "num_attention_heads"]))
|
||||
self.gguf_writer.add_layer_norm_eps(get_key_opts(self.hparams, ["layer_norm_epsilon", "layer_norm_eps"]))
|
||||
self.gguf_writer.add_rope_dimension_count(
|
||||
int(get_key_opts(self.hparams, ["partial_rotary_factor"]) * get_key_opts(self.hparams, ["n_embd", "hidden_size"])) // get_key_opts(self.hparams, ["n_head", "num_attention_heads"]))
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
self.gguf_writer.add_add_bos_token(False)
|
||||
|
||||
|
@ -389,6 +389,9 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_QKV,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
|
@ -191,6 +191,7 @@ class TensorNameMap:
|
||||
"transformer.h.{bid}.mlp.w1", # qwen
|
||||
"h.{bid}.mlp.c_fc", # gpt2
|
||||
"transformer.h.{bid}.mlp.fc1", # phi2
|
||||
"model.layers.{bid}.mlp.fc1", # phi2
|
||||
"model.layers.layers.{bid}.mlp.up_proj", # plamo
|
||||
),
|
||||
|
||||
@ -232,6 +233,7 @@ class TensorNameMap:
|
||||
"model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
|
||||
"h.{bid}.mlp.c_proj", # gpt2
|
||||
"transformer.h.{bid}.mlp.fc2", # phi2
|
||||
"model.layers.{bid}.mlp.fc2", # phi2
|
||||
"model.layers.layers.{bid}.mlp.down_proj", # plamo
|
||||
),
|
||||
|
||||
|
42
llama.cpp
42
llama.cpp
@ -574,6 +574,9 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES =
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
@ -3676,8 +3679,19 @@ static bool llm_load_tensors(
|
||||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||||
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
|
||||
|
||||
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
|
||||
layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
|
||||
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, false);
|
||||
layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
|
||||
|
||||
if (layer.wqkv == nullptr) {
|
||||
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
|
||||
layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
|
||||
|
||||
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
|
||||
layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
|
||||
|
||||
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
|
||||
layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
|
||||
}
|
||||
|
||||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||||
layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
|
||||
@ -5637,15 +5651,25 @@ struct llm_build_context {
|
||||
|
||||
// self-attention
|
||||
{
|
||||
cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
|
||||
cb(cur, "wqkv", il);
|
||||
struct ggml_tensor * Qcur = nullptr;
|
||||
struct ggml_tensor * Kcur = nullptr;
|
||||
struct ggml_tensor * Vcur = nullptr;
|
||||
|
||||
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
|
||||
cb(cur, "bqkv", il);
|
||||
if (model.layers[il].wqkv) {
|
||||
cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
|
||||
cb(cur, "wqkv", il);
|
||||
|
||||
struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
|
||||
struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
|
||||
struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
|
||||
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
|
||||
cb(cur, "bqkv", il);
|
||||
|
||||
Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
|
||||
Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
|
||||
Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
|
||||
} else {
|
||||
Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
|
||||
Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
|
||||
Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
|
||||
}
|
||||
|
||||
cb(Qcur, "Qcur", il);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
Loading…
Reference in New Issue
Block a user