mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-24 10:24:35 +00:00
sync : ggml (new ops, tests, backend, etc.) (#4359)
* sync : ggml (part 1)
* sync : ggml (part 2, CUDA)
* sync : ggml (part 3, Metal)
* ggml : build fixes
ggml-ci
* cuda : restore lost changes
* cuda : restore lost changes (StableLM rope)
* cmake : enable separable compilation for CUDA
ggml-ci
* ggml-cuda : remove device side dequantize
* Revert "cmake : enable separable compilation for CUDA"
This reverts commit 09e35d04b1
.
* cuda : remove assert for rope
* tests : add test-backend-ops
* ggml : fix bug in ggml_concat
* ggml : restore `ggml_get_n_tasks()` logic in `ggml_graph_plan()`
* ci : try to fix macOS
* ggml-backend : remove backend self-registration
* ci : disable Metal for macOS cmake build
ggml-ci
* metal : fix "supports family" call
* metal : fix assert
* metal : print resource path
ggml-ci
---------
Co-authored-by: slaren <slarengh@gmail.com>
This commit is contained in:
parent
bcc0eb4591
commit
fe680e3d10
15
.github/workflows/build.yml
vendored
15
.github/workflows/build.yml
vendored
@ -143,6 +143,9 @@ jobs:
|
|||||||
cd build
|
cd build
|
||||||
ctest --verbose
|
ctest --verbose
|
||||||
|
|
||||||
|
# TODO: build with LLAMA_NO_METAL because test-backend-ops fail on "Apple Paravirtual device" and I don't know
|
||||||
|
# how to debug it.
|
||||||
|
# ref: https://github.com/ggerganov/llama.cpp/actions/runs/7131777249/job/19420981052#step:5:1124
|
||||||
macOS-latest-make:
|
macOS-latest-make:
|
||||||
runs-on: macos-latest
|
runs-on: macos-latest
|
||||||
|
|
||||||
@ -160,14 +163,18 @@ jobs:
|
|||||||
- name: Build
|
- name: Build
|
||||||
id: make_build
|
id: make_build
|
||||||
run: |
|
run: |
|
||||||
make -j $(sysctl -n hw.logicalcpu)
|
LLAMA_NO_METAL=1 make -j $(sysctl -n hw.logicalcpu)
|
||||||
|
|
||||||
- name: Test
|
- name: Test
|
||||||
id: make_test
|
id: make_test
|
||||||
run: |
|
run: |
|
||||||
make tests -j $(sysctl -n hw.logicalcpu)
|
LLAMA_NO_METAL=1 make tests -j $(sysctl -n hw.logicalcpu)
|
||||||
make test -j $(sysctl -n hw.logicalcpu)
|
LLAMA_NO_METAL=1 make test -j $(sysctl -n hw.logicalcpu)
|
||||||
|
|
||||||
|
# TODO: build with LLAMA_METAL=OFF because test-backend-ops fail on "Apple Paravirtual device" and I don't know
|
||||||
|
# how to debug it.
|
||||||
|
# ref: https://github.com/ggerganov/llama.cpp/actions/runs/7132125951/job/19422043567?pr=4359#step:5:6584
|
||||||
|
# would be great if we fix these
|
||||||
macOS-latest-cmake:
|
macOS-latest-cmake:
|
||||||
runs-on: macos-latest
|
runs-on: macos-latest
|
||||||
|
|
||||||
@ -188,7 +195,7 @@ jobs:
|
|||||||
sysctl -a
|
sysctl -a
|
||||||
mkdir build
|
mkdir build
|
||||||
cd build
|
cd build
|
||||||
cmake ..
|
cmake -DLLAMA_METAL=OFF ..
|
||||||
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
|
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
|
||||||
|
|
||||||
- name: Test
|
- name: Test
|
||||||
|
1
.gitignore
vendored
1
.gitignore
vendored
@ -101,3 +101,4 @@ poetry.toml
|
|||||||
/tests/test-tokenizer-1-llama
|
/tests/test-tokenizer-1-llama
|
||||||
/tests/test-tokenizer-1-bpe
|
/tests/test-tokenizer-1-bpe
|
||||||
/tests/test-rope
|
/tests/test-rope
|
||||||
|
/tests/test-backend-ops
|
||||||
|
@ -97,9 +97,9 @@ option(LLAMA_METAL_NDEBUG "llama: disable Metal debugging"
|
|||||||
option(LLAMA_MPI "llama: use MPI" OFF)
|
option(LLAMA_MPI "llama: use MPI" OFF)
|
||||||
option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF)
|
option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF)
|
||||||
|
|
||||||
option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALONE})
|
option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALONE})
|
||||||
option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
|
option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
|
||||||
option(LLAMA_BUILD_SERVER "llama: build server example" ON)
|
option(LLAMA_BUILD_SERVER "llama: build server example" ON)
|
||||||
|
|
||||||
# Required for relocatable CMake package
|
# Required for relocatable CMake package
|
||||||
include(${CMAKE_CURRENT_SOURCE_DIR}/scripts/build-info.cmake)
|
include(${CMAKE_CURRENT_SOURCE_DIR}/scripts/build-info.cmake)
|
||||||
@ -662,11 +662,11 @@ add_library(ggml OBJECT
|
|||||||
ggml-backend.h
|
ggml-backend.h
|
||||||
ggml-quants.c
|
ggml-quants.c
|
||||||
ggml-quants.h
|
ggml-quants.h
|
||||||
${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA}
|
${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA}
|
||||||
${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL}
|
${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL}
|
||||||
${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL}
|
${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL}
|
||||||
${GGML_SOURCES_MPI} ${GGML_HEADERS_MPI}
|
${GGML_SOURCES_MPI} ${GGML_HEADERS_MPI}
|
||||||
${GGML_SOURCES_EXTRA} ${GGML_HEADERS_EXTRA}
|
${GGML_SOURCES_EXTRA} ${GGML_HEADERS_EXTRA}
|
||||||
)
|
)
|
||||||
|
|
||||||
target_include_directories(ggml PUBLIC . ${LLAMA_EXTRA_INCLUDES})
|
target_include_directories(ggml PUBLIC . ${LLAMA_EXTRA_INCLUDES})
|
||||||
|
6
Makefile
6
Makefile
@ -8,7 +8,8 @@ BUILD_TARGETS = \
|
|||||||
TEST_TARGETS = \
|
TEST_TARGETS = \
|
||||||
tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt \
|
tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt \
|
||||||
tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama \
|
tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama \
|
||||||
tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama tests/test-tokenizer-1-bpe tests/test-rope
|
tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama tests/test-tokenizer-1-bpe tests/test-rope \
|
||||||
|
tests/test-backend-ops
|
||||||
|
|
||||||
# Code coverage output files
|
# Code coverage output files
|
||||||
COV_TARGETS = *.gcno tests/*.gcno *.gcda tests/*.gcda *.gcov tests/*.gcov lcov-report gcovr-report
|
COV_TARGETS = *.gcno tests/*.gcno *.gcda tests/*.gcda *.gcov tests/*.gcov lcov-report gcovr-report
|
||||||
@ -746,3 +747,6 @@ tests/test-rope: tests/test-rope.cpp ggml.o $(OBJS)
|
|||||||
|
|
||||||
tests/test-c.o: tests/test-c.c llama.h
|
tests/test-c.o: tests/test-c.c llama.h
|
||||||
$(CC) $(CFLAGS) -c $(filter-out %.h,$^) -o $@
|
$(CC) $(CFLAGS) -c $(filter-out %.h,$^) -o $@
|
||||||
|
|
||||||
|
tests/test-backend-ops: tests/test-backend-ops.cpp ggml.o $(OBJS)
|
||||||
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||||
|
49
ggml-alloc.c
49
ggml-alloc.c
@ -168,10 +168,6 @@ static void ggml_tallocr_free_tensor(ggml_tallocr_t alloc, struct ggml_tensor *
|
|||||||
size = aligned_offset(NULL, size, alloc->alignment);
|
size = aligned_offset(NULL, size, alloc->alignment);
|
||||||
AT_PRINTF("%s: freeing %s at %p (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, ptr, size, alloc->n_free_blocks);
|
AT_PRINTF("%s: freeing %s at %p (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, ptr, size, alloc->n_free_blocks);
|
||||||
|
|
||||||
if (!alloc->measure) {
|
|
||||||
ggml_backend_buffer_free_tensor(alloc->buffer, tensor);
|
|
||||||
}
|
|
||||||
|
|
||||||
#ifdef GGML_ALLOCATOR_DEBUG
|
#ifdef GGML_ALLOCATOR_DEBUG
|
||||||
remove_allocated_tensor(alloc, tensor);
|
remove_allocated_tensor(alloc, tensor);
|
||||||
#endif
|
#endif
|
||||||
@ -237,7 +233,7 @@ void ggml_tallocr_reset(ggml_tallocr_t alloc) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
ggml_tallocr_t ggml_tallocr_new(void * data, size_t size, size_t alignment) {
|
ggml_tallocr_t ggml_tallocr_new(void * data, size_t size, size_t alignment) {
|
||||||
struct ggml_backend_buffer * buffer = ggml_backend_cpu_buffer_from_ptr(NULL, data, size);
|
struct ggml_backend_buffer * buffer = ggml_backend_cpu_buffer_from_ptr(data, size);
|
||||||
|
|
||||||
ggml_tallocr_t alloc = (ggml_tallocr_t)malloc(sizeof(struct ggml_tallocr));
|
ggml_tallocr_t alloc = (ggml_tallocr_t)malloc(sizeof(struct ggml_tallocr));
|
||||||
|
|
||||||
@ -449,7 +445,6 @@ static ggml_tallocr_t node_tallocr(ggml_gallocr_t galloc, struct ggml_tensor * n
|
|||||||
static void init_view(ggml_gallocr_t galloc, struct ggml_tensor * view, bool update_backend) {
|
static void init_view(ggml_gallocr_t galloc, struct ggml_tensor * view, bool update_backend) {
|
||||||
ggml_tallocr_t alloc = node_tallocr(galloc, view);
|
ggml_tallocr_t alloc = node_tallocr(galloc, view);
|
||||||
|
|
||||||
//printf("init_view: %s from src %s\n", view->name, view->view_src->name);
|
|
||||||
GGML_ASSERT(view->view_src != NULL && view->view_src->data != NULL);
|
GGML_ASSERT(view->view_src != NULL && view->view_src->data != NULL);
|
||||||
if (update_backend) {
|
if (update_backend) {
|
||||||
view->backend = view->view_src->backend;
|
view->backend = view->view_src->backend;
|
||||||
@ -459,7 +454,7 @@ static void init_view(ggml_gallocr_t galloc, struct ggml_tensor * view, bool upd
|
|||||||
|
|
||||||
// FIXME: the view should be initialized by the owning buffer, but currently this breaks the CUDA backend
|
// FIXME: the view should be initialized by the owning buffer, but currently this breaks the CUDA backend
|
||||||
// due to the ggml_tensor_extra_gpu ring buffer overwriting the KV cache extras
|
// due to the ggml_tensor_extra_gpu ring buffer overwriting the KV cache extras
|
||||||
assert(ggml_tallocr_is_measure(alloc) || !view->buffer || view->buffer->backend == alloc->buffer->backend);
|
assert(ggml_tallocr_is_measure(alloc) || !view->buffer || view->buffer->buft == alloc->buffer->buft);
|
||||||
|
|
||||||
if (!alloc->measure) {
|
if (!alloc->measure) {
|
||||||
ggml_backend_buffer_init_tensor(alloc->buffer, view);
|
ggml_backend_buffer_init_tensor(alloc->buffer, view);
|
||||||
@ -765,3 +760,43 @@ size_t ggml_allocr_max_size(ggml_allocr_t alloc) {
|
|||||||
size_t ggml_allocr_alloc_graph(ggml_allocr_t alloc, struct ggml_cgraph * graph) {
|
size_t ggml_allocr_alloc_graph(ggml_allocr_t alloc, struct ggml_cgraph * graph) {
|
||||||
return ggml_gallocr_alloc_graph(alloc->galloc, alloc->talloc, graph);
|
return ggml_gallocr_alloc_graph(alloc->galloc, alloc->talloc, graph);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// utils
|
||||||
|
ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, ggml_backend_buffer_type_t buft) {
|
||||||
|
GGML_ASSERT(ggml_get_no_alloc(ctx) == true);
|
||||||
|
|
||||||
|
size_t alignment = ggml_backend_buft_get_alignment(buft);
|
||||||
|
|
||||||
|
size_t nbytes = 0;
|
||||||
|
for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||||
|
if (t->data == NULL && t->view_src == NULL) {
|
||||||
|
nbytes += GGML_PAD(ggml_backend_buft_get_alloc_size(buft, t), alignment);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (nbytes == 0) {
|
||||||
|
fprintf(stderr, "%s: no tensors to allocate\n", __func__);
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, nbytes);
|
||||||
|
ggml_tallocr_t tallocr = ggml_tallocr_new_from_buffer(buffer);
|
||||||
|
|
||||||
|
for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||||
|
if (t->data == NULL) {
|
||||||
|
if (t->view_src == NULL) {
|
||||||
|
ggml_tallocr_alloc(tallocr, t);
|
||||||
|
} else {
|
||||||
|
ggml_backend_view_init(buffer, t);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
ggml_tallocr_free(tallocr);
|
||||||
|
|
||||||
|
return buffer;
|
||||||
|
}
|
||||||
|
|
||||||
|
ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors(struct ggml_context * ctx, ggml_backend_t backend) {
|
||||||
|
return ggml_backend_alloc_ctx_tensors_from_buft(ctx, ggml_backend_get_default_buffer_type(backend));
|
||||||
|
}
|
||||||
|
@ -8,6 +8,7 @@ extern "C" {
|
|||||||
|
|
||||||
struct ggml_backend;
|
struct ggml_backend;
|
||||||
struct ggml_backend_buffer;
|
struct ggml_backend_buffer;
|
||||||
|
struct ggml_backend_buffer_type;
|
||||||
|
|
||||||
//
|
//
|
||||||
// Legacy API
|
// Legacy API
|
||||||
@ -80,6 +81,12 @@ GGML_API void ggml_gallocr_alloc_graph_n(
|
|||||||
struct ggml_hash_set hash_set,
|
struct ggml_hash_set hash_set,
|
||||||
ggml_tallocr_t * hash_node_talloc);
|
ggml_tallocr_t * hash_node_talloc);
|
||||||
|
|
||||||
|
|
||||||
|
// Utils
|
||||||
|
// Create a buffer and allocate all the tensors in a ggml_context
|
||||||
|
GGML_API struct ggml_backend_buffer * ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, struct ggml_backend_buffer_type * buft);
|
||||||
|
GGML_API struct ggml_backend_buffer * ggml_backend_alloc_ctx_tensors(struct ggml_context * ctx, struct ggml_backend * backend);
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
@ -12,31 +12,50 @@ extern "C" {
|
|||||||
// Backend buffer
|
// Backend buffer
|
||||||
//
|
//
|
||||||
|
|
||||||
|
// buffer type
|
||||||
|
typedef void * ggml_backend_buffer_type_context_t;
|
||||||
|
|
||||||
|
struct ggml_backend_buffer_type_i {
|
||||||
|
ggml_backend_buffer_t (*alloc_buffer) (ggml_backend_buffer_type_t buft, size_t size);
|
||||||
|
size_t (*get_alignment) (ggml_backend_buffer_type_t buft); // tensor alignment
|
||||||
|
size_t (*get_alloc_size) (ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor); // data size needed to allocate the tensor, including padding
|
||||||
|
bool (*supports_backend)(ggml_backend_buffer_type_t buft, ggml_backend_t backend); // check if the buffer type is usable by the backend
|
||||||
|
};
|
||||||
|
|
||||||
|
struct ggml_backend_buffer_type {
|
||||||
|
struct ggml_backend_buffer_type_i iface;
|
||||||
|
ggml_backend_buffer_type_context_t context;
|
||||||
|
};
|
||||||
|
|
||||||
|
// buffer
|
||||||
typedef void * ggml_backend_buffer_context_t;
|
typedef void * ggml_backend_buffer_context_t;
|
||||||
|
|
||||||
struct ggml_backend_buffer_i {
|
struct ggml_backend_buffer_i {
|
||||||
void (*free_buffer) (ggml_backend_buffer_t buffer);
|
void (*free_buffer)(ggml_backend_buffer_t buffer);
|
||||||
void * (*get_base) (ggml_backend_buffer_t buffer); // get base pointer
|
//void (*reset) (ggml_backend_buffer_t buffer); // reset any internal state due to tensor initialization, such as tensor extras
|
||||||
size_t (*get_alloc_size)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // pre-allocation callback
|
void * (*get_base) (ggml_backend_buffer_t buffer);
|
||||||
void (*init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // post-allocation callback
|
void (*init_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||||
void (*free_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // pre-free callback
|
void (*set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||||
|
void (*get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||||
|
// (optional) copy tensor between different buffer-type, allow for single-copy tranfers
|
||||||
|
void (*cpy_tensor_from)(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||||
|
void (*cpy_tensor_to) (ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||||
};
|
};
|
||||||
|
|
||||||
struct ggml_backend_buffer {
|
struct ggml_backend_buffer {
|
||||||
struct ggml_backend_buffer_i iface;
|
struct ggml_backend_buffer_i iface;
|
||||||
|
ggml_backend_buffer_type_t buft;
|
||||||
ggml_backend_t backend;
|
|
||||||
ggml_backend_buffer_context_t context;
|
ggml_backend_buffer_context_t context;
|
||||||
|
|
||||||
size_t size;
|
size_t size;
|
||||||
};
|
};
|
||||||
|
|
||||||
GGML_API ggml_backend_buffer_t ggml_backend_buffer_init(
|
ggml_backend_buffer_t ggml_backend_buffer_init(
|
||||||
struct ggml_backend * backend,
|
ggml_backend_buffer_type_t buft,
|
||||||
struct ggml_backend_buffer_i iface,
|
struct ggml_backend_buffer_i iface,
|
||||||
ggml_backend_buffer_context_t context,
|
ggml_backend_buffer_context_t context,
|
||||||
size_t size);
|
size_t size);
|
||||||
|
|
||||||
|
|
||||||
//
|
//
|
||||||
// Backend
|
// Backend
|
||||||
//
|
//
|
||||||
@ -49,20 +68,17 @@ extern "C" {
|
|||||||
void (*free)(ggml_backend_t backend);
|
void (*free)(ggml_backend_t backend);
|
||||||
|
|
||||||
// buffer allocation
|
// buffer allocation
|
||||||
ggml_backend_buffer_t (*alloc_buffer)(ggml_backend_t backend, size_t size);
|
ggml_backend_buffer_type_t (*get_default_buffer_type)(ggml_backend_t backend);
|
||||||
|
|
||||||
// get buffer alignment
|
// (optional) asynchroneous tensor data access
|
||||||
size_t (*get_alignment)(ggml_backend_t backend);
|
|
||||||
|
|
||||||
// tensor data access
|
|
||||||
// these functions can be asynchronous, helper functions are provided for synchronous access that automatically call synchronize
|
|
||||||
void (*set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
void (*set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||||
void (*get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
void (*get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||||
void (*synchronize) (ggml_backend_t backend);
|
|
||||||
|
|
||||||
// (optional) copy tensor between different backends, allow for single-copy tranfers
|
// (optional) asynchroneous tensor copy
|
||||||
void (*cpy_tensor_from)(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
|
void (*cpy_tensor_from_async)(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||||
void (*cpy_tensor_to) (ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
|
void (*cpy_tensor_to_async) (ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||||
|
|
||||||
|
void (*synchronize) (ggml_backend_t backend);
|
||||||
|
|
||||||
// compute graph with a plan
|
// compute graph with a plan
|
||||||
ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||||
@ -82,6 +98,15 @@ extern "C" {
|
|||||||
ggml_backend_context_t context;
|
ggml_backend_context_t context;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
|
//
|
||||||
|
// Backend registry
|
||||||
|
//
|
||||||
|
|
||||||
|
typedef ggml_backend_t (*ggml_backend_init_fn)(const char * params, void * user_data);
|
||||||
|
|
||||||
|
void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data);
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
771
ggml-backend.c
771
ggml-backend.c
File diff suppressed because it is too large
Load Diff
@ -7,41 +7,44 @@
|
|||||||
extern "C" {
|
extern "C" {
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
typedef struct ggml_backend_buffer_type * ggml_backend_buffer_type_t;
|
||||||
|
typedef struct ggml_backend_buffer * ggml_backend_buffer_t;
|
||||||
|
typedef struct ggml_backend * ggml_backend_t;
|
||||||
|
typedef void * ggml_backend_graph_plan_t;
|
||||||
|
|
||||||
//
|
//
|
||||||
// Backend buffer
|
// Backend buffer
|
||||||
//
|
//
|
||||||
|
|
||||||
struct ggml_backend_buffer;
|
// buffer type
|
||||||
typedef struct ggml_backend_buffer * ggml_backend_buffer_t;
|
GGML_API ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size);
|
||||||
|
GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft);
|
||||||
|
GGML_API size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor);
|
||||||
|
GGML_API bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend);
|
||||||
|
|
||||||
// backend buffer functions
|
// buffer
|
||||||
GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer);
|
GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer);
|
||||||
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
|
|
||||||
GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer);
|
GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer);
|
||||||
GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer);
|
GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer);
|
||||||
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
|
||||||
GGML_API void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
GGML_API void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||||
GGML_API void ggml_backend_buffer_free_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
|
||||||
|
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||||
|
GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_type(ggml_backend_buffer_t buffer);
|
||||||
|
|
||||||
//
|
//
|
||||||
// Backend
|
// Backend
|
||||||
//
|
//
|
||||||
|
|
||||||
struct ggml_backend;
|
|
||||||
typedef struct ggml_backend * ggml_backend_t;
|
|
||||||
typedef void * ggml_backend_graph_plan_t;
|
|
||||||
|
|
||||||
GGML_API ggml_backend_t ggml_get_backend(const struct ggml_tensor * tensor);
|
|
||||||
|
|
||||||
GGML_API const char * ggml_backend_name(ggml_backend_t backend);
|
GGML_API const char * ggml_backend_name(ggml_backend_t backend);
|
||||||
GGML_API void ggml_backend_free(ggml_backend_t backend);
|
GGML_API void ggml_backend_free(ggml_backend_t backend);
|
||||||
|
|
||||||
GGML_API ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size);
|
GGML_API ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend);
|
||||||
|
GGML_API ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size);
|
||||||
|
GGML_API size_t ggml_backend_get_alignment(ggml_backend_t backend);
|
||||||
|
|
||||||
GGML_API size_t ggml_backend_get_alignment(ggml_backend_t backend);
|
GGML_API void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||||
|
GGML_API void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||||
GGML_API void ggml_backend_tensor_set_async( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
|
||||||
GGML_API void ggml_backend_tensor_get_async(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
|
||||||
|
|
||||||
GGML_API void ggml_backend_tensor_set( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
GGML_API void ggml_backend_tensor_set( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||||
GGML_API void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
GGML_API void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||||
@ -57,6 +60,7 @@ extern "C" {
|
|||||||
|
|
||||||
// tensor copy between different backends
|
// tensor copy between different backends
|
||||||
GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst);
|
GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||||
|
GGML_API void ggml_backend_tensor_copy_async(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst); // automatic fallback to sync copy
|
||||||
|
|
||||||
//
|
//
|
||||||
// CPU backend
|
// CPU backend
|
||||||
@ -68,8 +72,23 @@ extern "C" {
|
|||||||
GGML_API void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads);
|
GGML_API void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads);
|
||||||
|
|
||||||
// Create a backend buffer from an existing pointer
|
// Create a backend buffer from an existing pointer
|
||||||
GGML_API ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(ggml_backend_t backend_cpu, void * ptr, size_t size);
|
GGML_API ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size);
|
||||||
|
|
||||||
|
GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void);
|
||||||
|
|
||||||
|
//
|
||||||
|
// Backend registry
|
||||||
|
//
|
||||||
|
|
||||||
|
// The backend registry is a registry of all the available backends, and allows initializing backends in a generic way
|
||||||
|
|
||||||
|
GGML_API size_t ggml_backend_reg_get_count(void);
|
||||||
|
GGML_API size_t ggml_backend_reg_find_by_name(const char * name);
|
||||||
|
GGML_API ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str); // str is name[:params]
|
||||||
|
GGML_API const char * ggml_backend_reg_get_name(size_t i);
|
||||||
|
GGML_API ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params); // params is backend-specific
|
||||||
|
GGML_API ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i);
|
||||||
|
GGML_API ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size);
|
||||||
|
|
||||||
//
|
//
|
||||||
// Backend scheduler
|
// Backend scheduler
|
||||||
@ -131,6 +150,32 @@ extern "C" {
|
|||||||
ggml_backend_sched_t sched,
|
ggml_backend_sched_t sched,
|
||||||
struct ggml_cgraph * graph);
|
struct ggml_cgraph * graph);
|
||||||
|
|
||||||
|
|
||||||
|
//
|
||||||
|
// Utils
|
||||||
|
//
|
||||||
|
|
||||||
|
struct ggml_backend_graph_copy {
|
||||||
|
ggml_backend_buffer_t buffer;
|
||||||
|
struct ggml_context * ctx_allocated;
|
||||||
|
struct ggml_context * ctx_unallocated;
|
||||||
|
struct ggml_cgraph * graph;
|
||||||
|
};
|
||||||
|
|
||||||
|
// Copy a graph to a different backend
|
||||||
|
GGML_API struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph);
|
||||||
|
GGML_API void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy);
|
||||||
|
|
||||||
|
typedef bool (*ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data);
|
||||||
|
|
||||||
|
// Compare the output of two backends
|
||||||
|
GGML_API void ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data);
|
||||||
|
|
||||||
|
// Tensor initialization
|
||||||
|
GGML_API void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr);
|
||||||
|
GGML_API void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||||
|
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
1353
ggml-cuda.cu
1353
ggml-cuda.cu
File diff suppressed because it is too large
Load Diff
10
ggml-cuda.h
10
ggml-cuda.h
@ -49,7 +49,15 @@ GGML_API int ggml_cuda_get_device_count(void);
|
|||||||
GGML_API void ggml_cuda_get_device_description(int device, char * description, size_t description_size);
|
GGML_API void ggml_cuda_get_device_description(int device, char * description, size_t description_size);
|
||||||
|
|
||||||
// backend API
|
// backend API
|
||||||
GGML_API ggml_backend_t ggml_backend_cuda_init(void); // TODO: take a list of devices to use
|
GGML_API ggml_backend_t ggml_backend_cuda_init(int device);
|
||||||
|
|
||||||
|
GGML_API bool ggml_backend_is_cuda(ggml_backend_t backend);
|
||||||
|
GGML_API int ggml_backend_cuda_get_device(ggml_backend_t backend);
|
||||||
|
|
||||||
|
GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device);
|
||||||
|
|
||||||
|
// pinned host buffer for use with CPU backend for faster copies between CPU and GPU
|
||||||
|
GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void);
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
}
|
}
|
||||||
|
@ -232,7 +232,7 @@ bool ggml_hash_contains (const struct ggml_hash_set hash_set, struct ggml
|
|||||||
// returns GGML_HASHTABLE_FULL if table is full, otherwise the current index of the key or where it should be inserted
|
// returns GGML_HASHTABLE_FULL if table is full, otherwise the current index of the key or where it should be inserted
|
||||||
size_t ggml_hash_find (const struct ggml_hash_set hash_set, struct ggml_tensor * key);
|
size_t ggml_hash_find (const struct ggml_hash_set hash_set, struct ggml_tensor * key);
|
||||||
|
|
||||||
// returns GGML_HAHSHTABLE_ALREADY_EXISTS if key already exists, index otherwise, asserts if table is full
|
// returns GGML_HASHTABLE_ALREADY_EXISTS if key already exists, index otherwise, asserts if table is full
|
||||||
size_t ggml_hash_insert ( struct ggml_hash_set hash_set, struct ggml_tensor * key);
|
size_t ggml_hash_insert ( struct ggml_hash_set hash_set, struct ggml_tensor * key);
|
||||||
|
|
||||||
// return index, asserts if table is full
|
// return index, asserts if table is full
|
||||||
|
@ -99,6 +99,12 @@ GGML_API ggml_backend_t ggml_backend_metal_init(void);
|
|||||||
GGML_API bool ggml_backend_is_metal(ggml_backend_t backend);
|
GGML_API bool ggml_backend_is_metal(ggml_backend_t backend);
|
||||||
|
|
||||||
GGML_API void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb);
|
GGML_API void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb);
|
||||||
|
GGML_API ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
|
||||||
|
|
||||||
|
// helper to check if the device supports a specific family
|
||||||
|
// ideally, the user code should be doing these checks
|
||||||
|
// ref: https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
|
||||||
|
GGML_API bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family);
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
}
|
}
|
||||||
|
676
ggml-metal.m
676
ggml-metal.m
@ -62,6 +62,8 @@ struct ggml_metal_context {
|
|||||||
GGML_METAL_DECL_KERNEL(add_row); // TODO: avoid this extra kernel, instead extend the "add" kernel to support broadcast
|
GGML_METAL_DECL_KERNEL(add_row); // TODO: avoid this extra kernel, instead extend the "add" kernel to support broadcast
|
||||||
GGML_METAL_DECL_KERNEL(mul);
|
GGML_METAL_DECL_KERNEL(mul);
|
||||||
GGML_METAL_DECL_KERNEL(mul_row); // TODO: avoid this extra kernel, instead extend the "mul" kernel to support broadcast
|
GGML_METAL_DECL_KERNEL(mul_row); // TODO: avoid this extra kernel, instead extend the "mul" kernel to support broadcast
|
||||||
|
GGML_METAL_DECL_KERNEL(div);
|
||||||
|
GGML_METAL_DECL_KERNEL(div_row);
|
||||||
GGML_METAL_DECL_KERNEL(scale);
|
GGML_METAL_DECL_KERNEL(scale);
|
||||||
GGML_METAL_DECL_KERNEL(scale_4);
|
GGML_METAL_DECL_KERNEL(scale_4);
|
||||||
GGML_METAL_DECL_KERNEL(silu);
|
GGML_METAL_DECL_KERNEL(silu);
|
||||||
@ -112,10 +114,24 @@ struct ggml_metal_context {
|
|||||||
GGML_METAL_DECL_KERNEL(mul_mm_q4_K_f32);
|
GGML_METAL_DECL_KERNEL(mul_mm_q4_K_f32);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mm_q5_K_f32);
|
GGML_METAL_DECL_KERNEL(mul_mm_q5_K_f32);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mm_q6_K_f32);
|
GGML_METAL_DECL_KERNEL(mul_mm_q6_K_f32);
|
||||||
|
GGML_METAL_DECL_KERNEL(mul_mm_id_f32_f32);
|
||||||
|
GGML_METAL_DECL_KERNEL(mul_mm_id_f16_f32);
|
||||||
|
GGML_METAL_DECL_KERNEL(mul_mm_id_q4_0_f32);
|
||||||
|
GGML_METAL_DECL_KERNEL(mul_mm_id_q4_1_f32);
|
||||||
|
GGML_METAL_DECL_KERNEL(mul_mm_id_q5_0_f32);
|
||||||
|
GGML_METAL_DECL_KERNEL(mul_mm_id_q5_1_f32);
|
||||||
|
GGML_METAL_DECL_KERNEL(mul_mm_id_q8_0_f32);
|
||||||
|
GGML_METAL_DECL_KERNEL(mul_mm_id_q2_K_f32);
|
||||||
|
GGML_METAL_DECL_KERNEL(mul_mm_id_q3_K_f32);
|
||||||
|
GGML_METAL_DECL_KERNEL(mul_mm_id_q4_K_f32);
|
||||||
|
GGML_METAL_DECL_KERNEL(mul_mm_id_q5_K_f32);
|
||||||
|
GGML_METAL_DECL_KERNEL(mul_mm_id_q6_K_f32);
|
||||||
GGML_METAL_DECL_KERNEL(rope_f32);
|
GGML_METAL_DECL_KERNEL(rope_f32);
|
||||||
GGML_METAL_DECL_KERNEL(rope_f16);
|
GGML_METAL_DECL_KERNEL(rope_f16);
|
||||||
GGML_METAL_DECL_KERNEL(alibi_f32);
|
GGML_METAL_DECL_KERNEL(alibi_f32);
|
||||||
GGML_METAL_DECL_KERNEL(im2col_f16);
|
GGML_METAL_DECL_KERNEL(im2col_f16);
|
||||||
|
GGML_METAL_DECL_KERNEL(argsort_f32_i32_asc);
|
||||||
|
GGML_METAL_DECL_KERNEL(argsort_f32_i32_desc);
|
||||||
GGML_METAL_DECL_KERNEL(cpy_f32_f16);
|
GGML_METAL_DECL_KERNEL(cpy_f32_f16);
|
||||||
GGML_METAL_DECL_KERNEL(cpy_f32_f32);
|
GGML_METAL_DECL_KERNEL(cpy_f32_f32);
|
||||||
GGML_METAL_DECL_KERNEL(cpy_f32_q8_0);
|
GGML_METAL_DECL_KERNEL(cpy_f32_q8_0);
|
||||||
@ -126,6 +142,7 @@ struct ggml_metal_context {
|
|||||||
GGML_METAL_DECL_KERNEL(cpy_f16_f16);
|
GGML_METAL_DECL_KERNEL(cpy_f16_f16);
|
||||||
GGML_METAL_DECL_KERNEL(concat);
|
GGML_METAL_DECL_KERNEL(concat);
|
||||||
GGML_METAL_DECL_KERNEL(sqr);
|
GGML_METAL_DECL_KERNEL(sqr);
|
||||||
|
GGML_METAL_DECL_KERNEL(sum_rows);
|
||||||
|
|
||||||
#undef GGML_METAL_DECL_KERNEL
|
#undef GGML_METAL_DECL_KERNEL
|
||||||
};
|
};
|
||||||
@ -169,12 +186,10 @@ static void ggml_metal_log(enum ggml_log_level level, const char * format, ...){
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||||
GGML_METAL_LOG_INFO("%s: allocating\n", __func__);
|
GGML_METAL_LOG_INFO("%s: allocating\n", __func__);
|
||||||
|
|
||||||
id <MTLDevice> device;
|
id<MTLDevice> device;
|
||||||
NSString * s;
|
NSString * s;
|
||||||
|
|
||||||
#if TARGET_OS_OSX
|
#if TARGET_OS_OSX
|
||||||
@ -220,6 +235,9 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||||||
|
|
||||||
NSString * sourcePath;
|
NSString * sourcePath;
|
||||||
NSString * ggmlMetalPathResources = [[NSProcessInfo processInfo].environment objectForKey:@"GGML_METAL_PATH_RESOURCES"];
|
NSString * ggmlMetalPathResources = [[NSProcessInfo processInfo].environment objectForKey:@"GGML_METAL_PATH_RESOURCES"];
|
||||||
|
|
||||||
|
GGML_METAL_LOG_INFO("%s: GGML_METAL_PATH_RESOURCES = %s\n", __func__, ggmlMetalPathResources ? [ggmlMetalPathResources UTF8String] : "nil");
|
||||||
|
|
||||||
if (ggmlMetalPathResources) {
|
if (ggmlMetalPathResources) {
|
||||||
sourcePath = [ggmlMetalPathResources stringByAppendingPathComponent:@"ggml-metal.metal"];
|
sourcePath = [ggmlMetalPathResources stringByAppendingPathComponent:@"ggml-metal.metal"];
|
||||||
} else {
|
} else {
|
||||||
@ -250,6 +268,29 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#if TARGET_OS_OSX
|
||||||
|
// print MTL GPU family:
|
||||||
|
GGML_METAL_LOG_INFO("%s: GPU name: %s\n", __func__, [[ctx->device name] UTF8String]);
|
||||||
|
|
||||||
|
// determine max supported GPU family
|
||||||
|
// https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
|
||||||
|
// https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
|
||||||
|
for (int i = MTLGPUFamilyApple1 + 20; i >= MTLGPUFamilyApple1; --i) {
|
||||||
|
if ([ctx->device supportsFamily:i]) {
|
||||||
|
GGML_METAL_LOG_INFO("%s: GPU family: MTLGPUFamilyApple%d (%d)\n", __func__, i - (int) MTLGPUFamilyApple1 + 1, i);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
|
||||||
|
GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1e6);
|
||||||
|
if (ctx->device.maxTransferRate != 0) {
|
||||||
|
GGML_METAL_LOG_INFO("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1e6);
|
||||||
|
} else {
|
||||||
|
GGML_METAL_LOG_INFO("%s: maxTransferRate = built-in GPU\n", __func__);
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
// load kernels
|
// load kernels
|
||||||
{
|
{
|
||||||
NSError * error = nil;
|
NSError * error = nil;
|
||||||
@ -271,6 +312,8 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||||||
GGML_METAL_ADD_KERNEL(add_row);
|
GGML_METAL_ADD_KERNEL(add_row);
|
||||||
GGML_METAL_ADD_KERNEL(mul);
|
GGML_METAL_ADD_KERNEL(mul);
|
||||||
GGML_METAL_ADD_KERNEL(mul_row);
|
GGML_METAL_ADD_KERNEL(mul_row);
|
||||||
|
GGML_METAL_ADD_KERNEL(div);
|
||||||
|
GGML_METAL_ADD_KERNEL(div_row);
|
||||||
GGML_METAL_ADD_KERNEL(scale);
|
GGML_METAL_ADD_KERNEL(scale);
|
||||||
GGML_METAL_ADD_KERNEL(scale_4);
|
GGML_METAL_ADD_KERNEL(scale_4);
|
||||||
GGML_METAL_ADD_KERNEL(silu);
|
GGML_METAL_ADD_KERNEL(silu);
|
||||||
@ -322,11 +365,25 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||||||
GGML_METAL_ADD_KERNEL(mul_mm_q4_K_f32);
|
GGML_METAL_ADD_KERNEL(mul_mm_q4_K_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mm_q5_K_f32);
|
GGML_METAL_ADD_KERNEL(mul_mm_q5_K_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mm_q6_K_f32);
|
GGML_METAL_ADD_KERNEL(mul_mm_q6_K_f32);
|
||||||
|
GGML_METAL_ADD_KERNEL(mul_mm_id_f32_f32);
|
||||||
|
GGML_METAL_ADD_KERNEL(mul_mm_id_f16_f32);
|
||||||
|
GGML_METAL_ADD_KERNEL(mul_mm_id_q4_0_f32);
|
||||||
|
GGML_METAL_ADD_KERNEL(mul_mm_id_q4_1_f32);
|
||||||
|
GGML_METAL_ADD_KERNEL(mul_mm_id_q5_0_f32);
|
||||||
|
GGML_METAL_ADD_KERNEL(mul_mm_id_q5_1_f32);
|
||||||
|
GGML_METAL_ADD_KERNEL(mul_mm_id_q8_0_f32);
|
||||||
|
GGML_METAL_ADD_KERNEL(mul_mm_id_q2_K_f32);
|
||||||
|
GGML_METAL_ADD_KERNEL(mul_mm_id_q3_K_f32);
|
||||||
|
GGML_METAL_ADD_KERNEL(mul_mm_id_q4_K_f32);
|
||||||
|
GGML_METAL_ADD_KERNEL(mul_mm_id_q5_K_f32);
|
||||||
|
GGML_METAL_ADD_KERNEL(mul_mm_id_q6_K_f32);
|
||||||
}
|
}
|
||||||
GGML_METAL_ADD_KERNEL(rope_f32);
|
GGML_METAL_ADD_KERNEL(rope_f32);
|
||||||
GGML_METAL_ADD_KERNEL(rope_f16);
|
GGML_METAL_ADD_KERNEL(rope_f16);
|
||||||
GGML_METAL_ADD_KERNEL(alibi_f32);
|
GGML_METAL_ADD_KERNEL(alibi_f32);
|
||||||
GGML_METAL_ADD_KERNEL(im2col_f16);
|
GGML_METAL_ADD_KERNEL(im2col_f16);
|
||||||
|
GGML_METAL_ADD_KERNEL(argsort_f32_i32_asc);
|
||||||
|
GGML_METAL_ADD_KERNEL(argsort_f32_i32_desc);
|
||||||
GGML_METAL_ADD_KERNEL(cpy_f32_f16);
|
GGML_METAL_ADD_KERNEL(cpy_f32_f16);
|
||||||
GGML_METAL_ADD_KERNEL(cpy_f32_f32);
|
GGML_METAL_ADD_KERNEL(cpy_f32_f32);
|
||||||
GGML_METAL_ADD_KERNEL(cpy_f32_q8_0);
|
GGML_METAL_ADD_KERNEL(cpy_f32_q8_0);
|
||||||
@ -337,33 +394,11 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||||||
GGML_METAL_ADD_KERNEL(cpy_f16_f16);
|
GGML_METAL_ADD_KERNEL(cpy_f16_f16);
|
||||||
GGML_METAL_ADD_KERNEL(concat);
|
GGML_METAL_ADD_KERNEL(concat);
|
||||||
GGML_METAL_ADD_KERNEL(sqr);
|
GGML_METAL_ADD_KERNEL(sqr);
|
||||||
|
GGML_METAL_ADD_KERNEL(sum_rows);
|
||||||
|
|
||||||
#undef GGML_METAL_ADD_KERNEL
|
#undef GGML_METAL_ADD_KERNEL
|
||||||
}
|
}
|
||||||
|
|
||||||
#if TARGET_OS_OSX
|
|
||||||
// print MTL GPU family:
|
|
||||||
GGML_METAL_LOG_INFO("%s: GPU name: %s\n", __func__, [[ctx->device name] UTF8String]);
|
|
||||||
|
|
||||||
// determine max supported GPU family
|
|
||||||
// https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
|
|
||||||
// https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
|
|
||||||
for (int i = MTLGPUFamilyApple1 + 20; i >= MTLGPUFamilyApple1; --i) {
|
|
||||||
if ([ctx->device supportsFamily:i]) {
|
|
||||||
GGML_METAL_LOG_INFO("%s: GPU family: MTLGPUFamilyApple%d (%d)\n", __func__, i - (int) MTLGPUFamilyApple1 + 1, i);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
|
|
||||||
GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MiB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
|
|
||||||
if (ctx->device.maxTransferRate != 0) {
|
|
||||||
GGML_METAL_LOG_INFO("%s: maxTransferRate = %8.2f MiB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0);
|
|
||||||
} else {
|
|
||||||
GGML_METAL_LOG_INFO("%s: maxTransferRate = built-in GPU\n", __func__);
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
return ctx;
|
return ctx;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -377,6 +412,8 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
|
|||||||
GGML_METAL_DEL_KERNEL(add_row);
|
GGML_METAL_DEL_KERNEL(add_row);
|
||||||
GGML_METAL_DEL_KERNEL(mul);
|
GGML_METAL_DEL_KERNEL(mul);
|
||||||
GGML_METAL_DEL_KERNEL(mul_row);
|
GGML_METAL_DEL_KERNEL(mul_row);
|
||||||
|
GGML_METAL_DEL_KERNEL(div);
|
||||||
|
GGML_METAL_DEL_KERNEL(div_row);
|
||||||
GGML_METAL_DEL_KERNEL(scale);
|
GGML_METAL_DEL_KERNEL(scale);
|
||||||
GGML_METAL_DEL_KERNEL(scale_4);
|
GGML_METAL_DEL_KERNEL(scale_4);
|
||||||
GGML_METAL_DEL_KERNEL(silu);
|
GGML_METAL_DEL_KERNEL(silu);
|
||||||
@ -428,11 +465,25 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
|
|||||||
GGML_METAL_DEL_KERNEL(mul_mm_q4_K_f32);
|
GGML_METAL_DEL_KERNEL(mul_mm_q4_K_f32);
|
||||||
GGML_METAL_DEL_KERNEL(mul_mm_q5_K_f32);
|
GGML_METAL_DEL_KERNEL(mul_mm_q5_K_f32);
|
||||||
GGML_METAL_DEL_KERNEL(mul_mm_q6_K_f32);
|
GGML_METAL_DEL_KERNEL(mul_mm_q6_K_f32);
|
||||||
|
GGML_METAL_DEL_KERNEL(mul_mm_id_f32_f32);
|
||||||
|
GGML_METAL_DEL_KERNEL(mul_mm_id_f16_f32);
|
||||||
|
GGML_METAL_DEL_KERNEL(mul_mm_id_q4_0_f32);
|
||||||
|
GGML_METAL_DEL_KERNEL(mul_mm_id_q4_1_f32);
|
||||||
|
GGML_METAL_DEL_KERNEL(mul_mm_id_q5_0_f32);
|
||||||
|
GGML_METAL_DEL_KERNEL(mul_mm_id_q5_1_f32);
|
||||||
|
GGML_METAL_DEL_KERNEL(mul_mm_id_q8_0_f32);
|
||||||
|
GGML_METAL_DEL_KERNEL(mul_mm_id_q2_K_f32);
|
||||||
|
GGML_METAL_DEL_KERNEL(mul_mm_id_q3_K_f32);
|
||||||
|
GGML_METAL_DEL_KERNEL(mul_mm_id_q4_K_f32);
|
||||||
|
GGML_METAL_DEL_KERNEL(mul_mm_id_q5_K_f32);
|
||||||
|
GGML_METAL_DEL_KERNEL(mul_mm_id_q6_K_f32);
|
||||||
}
|
}
|
||||||
GGML_METAL_DEL_KERNEL(rope_f32);
|
GGML_METAL_DEL_KERNEL(rope_f32);
|
||||||
GGML_METAL_DEL_KERNEL(rope_f16);
|
GGML_METAL_DEL_KERNEL(rope_f16);
|
||||||
GGML_METAL_DEL_KERNEL(alibi_f32);
|
GGML_METAL_DEL_KERNEL(alibi_f32);
|
||||||
GGML_METAL_DEL_KERNEL(im2col_f16);
|
GGML_METAL_DEL_KERNEL(im2col_f16);
|
||||||
|
GGML_METAL_DEL_KERNEL(argsort_f32_i32_asc);
|
||||||
|
GGML_METAL_DEL_KERNEL(argsort_f32_i32_desc);
|
||||||
GGML_METAL_DEL_KERNEL(cpy_f32_f16);
|
GGML_METAL_DEL_KERNEL(cpy_f32_f16);
|
||||||
GGML_METAL_DEL_KERNEL(cpy_f32_f32);
|
GGML_METAL_DEL_KERNEL(cpy_f32_f32);
|
||||||
GGML_METAL_DEL_KERNEL(cpy_f32_q8_0);
|
GGML_METAL_DEL_KERNEL(cpy_f32_q8_0);
|
||||||
@ -443,6 +494,7 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
|
|||||||
GGML_METAL_DEL_KERNEL(cpy_f16_f16);
|
GGML_METAL_DEL_KERNEL(cpy_f16_f16);
|
||||||
GGML_METAL_DEL_KERNEL(concat);
|
GGML_METAL_DEL_KERNEL(concat);
|
||||||
GGML_METAL_DEL_KERNEL(sqr);
|
GGML_METAL_DEL_KERNEL(sqr);
|
||||||
|
GGML_METAL_DEL_KERNEL(sum_rows);
|
||||||
|
|
||||||
#undef GGML_METAL_DEL_KERNEL
|
#undef GGML_METAL_DEL_KERNEL
|
||||||
|
|
||||||
@ -486,6 +538,13 @@ int * ggml_metal_get_concur_list(struct ggml_metal_context * ctx) {
|
|||||||
return ctx->concur_list;
|
return ctx->concur_list;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// temporarily defined here for compatibility between ggml-backend and the old API
|
||||||
|
struct ggml_backend_metal_buffer_context {
|
||||||
|
void * data;
|
||||||
|
|
||||||
|
id<MTLBuffer> metal;
|
||||||
|
};
|
||||||
|
|
||||||
// finds the Metal buffer that contains the tensor data on the GPU device
|
// finds the Metal buffer that contains the tensor data on the GPU device
|
||||||
// the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the
|
// the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the
|
||||||
// Metal buffer based on the host memory pointer
|
// Metal buffer based on the host memory pointer
|
||||||
@ -495,8 +554,17 @@ static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_metal_context * ctx, stru
|
|||||||
|
|
||||||
const int64_t tsize = ggml_nbytes(t);
|
const int64_t tsize = ggml_nbytes(t);
|
||||||
|
|
||||||
if (t->buffer && t->buffer->backend && t->buffer->backend->context) {
|
// compatibility with ggml-backend
|
||||||
ctx = t->buffer->backend->context;
|
if (t->buffer && t->buffer->buft == ggml_backend_metal_buffer_type()) {
|
||||||
|
struct ggml_backend_metal_buffer_context * buf_ctx = (struct ggml_backend_metal_buffer_context *) t->buffer->context;
|
||||||
|
|
||||||
|
const int64_t ioffs = (int64_t) t->data - (int64_t) buf_ctx->data;
|
||||||
|
|
||||||
|
GGML_ASSERT(ioffs >= 0 && ioffs + tsize <= (int64_t) t->buffer->size);
|
||||||
|
|
||||||
|
*offs = (size_t) ioffs;
|
||||||
|
|
||||||
|
return buf_ctx->metal;
|
||||||
}
|
}
|
||||||
|
|
||||||
// find the view that contains the tensor fully
|
// find the view that contains the tensor fully
|
||||||
@ -721,6 +789,51 @@ void ggml_metal_graph_find_concurrency(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static bool ggml_metal_supports_op(const struct ggml_tensor * op) {
|
||||||
|
switch (op->op) {
|
||||||
|
case GGML_OP_UNARY:
|
||||||
|
switch (ggml_get_unary_op(op)) {
|
||||||
|
case GGML_UNARY_OP_SILU:
|
||||||
|
case GGML_UNARY_OP_RELU:
|
||||||
|
case GGML_UNARY_OP_GELU:
|
||||||
|
return true;
|
||||||
|
default:
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
case GGML_OP_NONE:
|
||||||
|
case GGML_OP_RESHAPE:
|
||||||
|
case GGML_OP_VIEW:
|
||||||
|
case GGML_OP_TRANSPOSE:
|
||||||
|
case GGML_OP_PERMUTE:
|
||||||
|
case GGML_OP_CONCAT:
|
||||||
|
case GGML_OP_ADD:
|
||||||
|
case GGML_OP_MUL:
|
||||||
|
case GGML_OP_DIV:
|
||||||
|
case GGML_OP_SCALE:
|
||||||
|
case GGML_OP_SQR:
|
||||||
|
case GGML_OP_SUM_ROWS:
|
||||||
|
case GGML_OP_SOFT_MAX:
|
||||||
|
case GGML_OP_RMS_NORM:
|
||||||
|
case GGML_OP_NORM:
|
||||||
|
case GGML_OP_ALIBI:
|
||||||
|
case GGML_OP_ROPE:
|
||||||
|
case GGML_OP_IM2COL:
|
||||||
|
case GGML_OP_ARGSORT:
|
||||||
|
case GGML_OP_DUP:
|
||||||
|
case GGML_OP_CPY:
|
||||||
|
case GGML_OP_CONT:
|
||||||
|
case GGML_OP_MUL_MAT:
|
||||||
|
case GGML_OP_MUL_MAT_ID:
|
||||||
|
return true;
|
||||||
|
case GGML_OP_DIAG_MASK_INF:
|
||||||
|
case GGML_OP_GET_ROWS:
|
||||||
|
{
|
||||||
|
return op->ne[0] % 4 == 0;
|
||||||
|
}
|
||||||
|
default:
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
void ggml_metal_graph_compute(
|
void ggml_metal_graph_compute(
|
||||||
struct ggml_metal_context * ctx,
|
struct ggml_metal_context * ctx,
|
||||||
struct ggml_cgraph * gf) {
|
struct ggml_cgraph * gf) {
|
||||||
@ -791,6 +904,8 @@ void ggml_metal_graph_compute(
|
|||||||
} break;
|
} break;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
GGML_ASSERT(ggml_metal_supports_op(dst));
|
||||||
|
|
||||||
const int64_t ne00 = src0 ? src0->ne[0] : 0;
|
const int64_t ne00 = src0 ? src0->ne[0] : 0;
|
||||||
const int64_t ne01 = src0 ? src0->ne[1] : 0;
|
const int64_t ne01 = src0 ? src0->ne[1] : 0;
|
||||||
const int64_t ne02 = src0 ? src0->ne[2] : 0;
|
const int64_t ne02 = src0 ? src0->ne[2] : 0;
|
||||||
@ -883,6 +998,8 @@ void ggml_metal_graph_compute(
|
|||||||
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||||
} break;
|
} break;
|
||||||
case GGML_OP_ADD:
|
case GGML_OP_ADD:
|
||||||
|
case GGML_OP_MUL:
|
||||||
|
case GGML_OP_DIV:
|
||||||
{
|
{
|
||||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||||
GGML_ASSERT(ggml_is_contiguous(src1));
|
GGML_ASSERT(ggml_is_contiguous(src1));
|
||||||
@ -896,11 +1013,21 @@ void ggml_metal_graph_compute(
|
|||||||
GGML_ASSERT(ne11 == 1);
|
GGML_ASSERT(ne11 == 1);
|
||||||
|
|
||||||
nb = ne00 / 4;
|
nb = ne00 / 4;
|
||||||
[encoder setComputePipelineState:ctx->pipeline_add_row];
|
switch (dst->op) {
|
||||||
|
case GGML_OP_ADD: [encoder setComputePipelineState:ctx->pipeline_add_row]; break;
|
||||||
|
case GGML_OP_MUL: [encoder setComputePipelineState:ctx->pipeline_mul_row]; break;
|
||||||
|
case GGML_OP_DIV: [encoder setComputePipelineState:ctx->pipeline_div_row]; break;
|
||||||
|
default: GGML_ASSERT(false);
|
||||||
|
}
|
||||||
|
|
||||||
bcast_row = true;
|
bcast_row = true;
|
||||||
} else {
|
} else {
|
||||||
[encoder setComputePipelineState:ctx->pipeline_add];
|
switch (dst->op) {
|
||||||
|
case GGML_OP_ADD: [encoder setComputePipelineState:ctx->pipeline_add]; break;
|
||||||
|
case GGML_OP_MUL: [encoder setComputePipelineState:ctx->pipeline_mul]; break;
|
||||||
|
case GGML_OP_DIV: [encoder setComputePipelineState:ctx->pipeline_div]; break;
|
||||||
|
default: GGML_ASSERT(false);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
||||||
@ -941,31 +1068,6 @@ void ggml_metal_graph_compute(
|
|||||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||||
}
|
}
|
||||||
} break;
|
} break;
|
||||||
case GGML_OP_MUL:
|
|
||||||
{
|
|
||||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
||||||
GGML_ASSERT(ggml_is_contiguous(src1));
|
|
||||||
|
|
||||||
// utilize float4
|
|
||||||
GGML_ASSERT(ne00 % 4 == 0);
|
|
||||||
const int64_t nb = ne00/4;
|
|
||||||
|
|
||||||
if (ggml_nelements(src1) == ne10) {
|
|
||||||
// src1 is a row
|
|
||||||
GGML_ASSERT(ne11 == 1);
|
|
||||||
[encoder setComputePipelineState:ctx->pipeline_mul_row];
|
|
||||||
} else {
|
|
||||||
[encoder setComputePipelineState:ctx->pipeline_mul];
|
|
||||||
}
|
|
||||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
||||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
|
||||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
|
||||||
[encoder setBytes:&nb length:sizeof(nb) atIndex:3];
|
|
||||||
|
|
||||||
const int64_t n = ggml_nelements(dst)/4;
|
|
||||||
|
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
|
||||||
} break;
|
|
||||||
case GGML_OP_SCALE:
|
case GGML_OP_SCALE:
|
||||||
{
|
{
|
||||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||||
@ -1038,6 +1140,40 @@ void ggml_metal_graph_compute(
|
|||||||
const int64_t n = ggml_nelements(dst);
|
const int64_t n = ggml_nelements(dst);
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||||
} break;
|
} break;
|
||||||
|
case GGML_OP_SUM_ROWS:
|
||||||
|
{
|
||||||
|
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
|
||||||
|
|
||||||
|
[encoder setComputePipelineState:ctx->pipeline_sum_rows];
|
||||||
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||||
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||||
|
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
|
||||||
|
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
|
||||||
|
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
|
||||||
|
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
|
||||||
|
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
|
||||||
|
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
|
||||||
|
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
|
||||||
|
[encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9];
|
||||||
|
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:10];
|
||||||
|
[encoder setBytes:&ne11 length:sizeof(ne11) atIndex:11];
|
||||||
|
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:12];
|
||||||
|
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:13];
|
||||||
|
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:14];
|
||||||
|
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:15];
|
||||||
|
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:16];
|
||||||
|
[encoder setBytes:&nb13 length:sizeof(nb13) atIndex:17];
|
||||||
|
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:18];
|
||||||
|
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:19];
|
||||||
|
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:20];
|
||||||
|
[encoder setBytes:&ne3 length:sizeof(ne3) atIndex:21];
|
||||||
|
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:22];
|
||||||
|
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:23];
|
||||||
|
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:24];
|
||||||
|
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:25];
|
||||||
|
|
||||||
|
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||||
|
} break;
|
||||||
case GGML_OP_SOFT_MAX:
|
case GGML_OP_SOFT_MAX:
|
||||||
{
|
{
|
||||||
int nth = 32; // SIMD width
|
int nth = 32; // SIMD width
|
||||||
@ -1092,13 +1228,17 @@ void ggml_metal_graph_compute(
|
|||||||
case GGML_OP_MUL_MAT:
|
case GGML_OP_MUL_MAT:
|
||||||
{
|
{
|
||||||
GGML_ASSERT(ne00 == ne10);
|
GGML_ASSERT(ne00 == ne10);
|
||||||
GGML_ASSERT(ne03 == ne13);
|
|
||||||
|
|
||||||
const uint gqa = ne12/ne02;
|
// TODO: assert that dim2 and dim3 are contiguous
|
||||||
|
GGML_ASSERT(ne12 % ne02 == 0);
|
||||||
|
GGML_ASSERT(ne13 % ne03 == 0);
|
||||||
|
|
||||||
|
const uint r2 = ne12/ne02;
|
||||||
|
const uint r3 = ne13/ne03;
|
||||||
|
|
||||||
// find the break-even point where the matrix-matrix kernel becomes more efficient compared
|
// find the break-even point where the matrix-matrix kernel becomes more efficient compared
|
||||||
// to the matrix-vector kernel
|
// to the matrix-vector kernel
|
||||||
int ne11_mm_min = src0t == GGML_TYPE_F16 ? 1 : 16;
|
int ne11_mm_min = 1;
|
||||||
|
|
||||||
#if 0
|
#if 0
|
||||||
// the numbers below are measured on M2 Ultra for 7B and 13B models
|
// the numbers below are measured on M2 Ultra for 7B and 13B models
|
||||||
@ -1159,9 +1299,10 @@ void ggml_metal_graph_compute(
|
|||||||
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:10];
|
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:10];
|
||||||
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:11];
|
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:11];
|
||||||
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:12];
|
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:12];
|
||||||
[encoder setBytes:&gqa length:sizeof(gqa) atIndex:13];
|
[encoder setBytes:&r2 length:sizeof(r2) atIndex:13];
|
||||||
|
[encoder setBytes:&r3 length:sizeof(r3) atIndex:14];
|
||||||
[encoder setThreadgroupMemoryLength:8192 atIndex:0];
|
[encoder setThreadgroupMemoryLength:8192 atIndex:0];
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake( (ne11 + 31)/32, (ne01 + 63)/64, ne12) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake( (ne11 + 31)/32, (ne01 + 63)/64, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
|
||||||
} else {
|
} else {
|
||||||
int nth0 = 32;
|
int nth0 = 32;
|
||||||
int nth1 = 1;
|
int nth1 = 1;
|
||||||
@ -1197,90 +1338,60 @@ void ggml_metal_graph_compute(
|
|||||||
} break;
|
} break;
|
||||||
case GGML_TYPE_Q4_0:
|
case GGML_TYPE_Q4_0:
|
||||||
{
|
{
|
||||||
GGML_ASSERT(ne02 == 1);
|
|
||||||
GGML_ASSERT(ne12 == 1);
|
|
||||||
|
|
||||||
nth0 = 8;
|
nth0 = 8;
|
||||||
nth1 = 8;
|
nth1 = 8;
|
||||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q4_0_f32];
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q4_0_f32];
|
||||||
} break;
|
} break;
|
||||||
case GGML_TYPE_Q4_1:
|
case GGML_TYPE_Q4_1:
|
||||||
{
|
{
|
||||||
GGML_ASSERT(ne02 == 1);
|
|
||||||
GGML_ASSERT(ne12 == 1);
|
|
||||||
|
|
||||||
nth0 = 8;
|
nth0 = 8;
|
||||||
nth1 = 8;
|
nth1 = 8;
|
||||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q4_1_f32];
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q4_1_f32];
|
||||||
} break;
|
} break;
|
||||||
case GGML_TYPE_Q5_0:
|
case GGML_TYPE_Q5_0:
|
||||||
{
|
{
|
||||||
GGML_ASSERT(ne02 == 1);
|
|
||||||
GGML_ASSERT(ne12 == 1);
|
|
||||||
|
|
||||||
nth0 = 8;
|
nth0 = 8;
|
||||||
nth1 = 8;
|
nth1 = 8;
|
||||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q5_0_f32];
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q5_0_f32];
|
||||||
} break;
|
} break;
|
||||||
case GGML_TYPE_Q5_1:
|
case GGML_TYPE_Q5_1:
|
||||||
{
|
{
|
||||||
GGML_ASSERT(ne02 == 1);
|
|
||||||
GGML_ASSERT(ne12 == 1);
|
|
||||||
|
|
||||||
nth0 = 8;
|
nth0 = 8;
|
||||||
nth1 = 8;
|
nth1 = 8;
|
||||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q5_1_f32];
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q5_1_f32];
|
||||||
} break;
|
} break;
|
||||||
case GGML_TYPE_Q8_0:
|
case GGML_TYPE_Q8_0:
|
||||||
{
|
{
|
||||||
GGML_ASSERT(ne02 == 1);
|
|
||||||
GGML_ASSERT(ne12 == 1);
|
|
||||||
|
|
||||||
nth0 = 8;
|
nth0 = 8;
|
||||||
nth1 = 8;
|
nth1 = 8;
|
||||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q8_0_f32];
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q8_0_f32];
|
||||||
} break;
|
} break;
|
||||||
case GGML_TYPE_Q2_K:
|
case GGML_TYPE_Q2_K:
|
||||||
{
|
{
|
||||||
GGML_ASSERT(ne02 == 1);
|
|
||||||
GGML_ASSERT(ne12 == 1);
|
|
||||||
|
|
||||||
nth0 = 2;
|
nth0 = 2;
|
||||||
nth1 = 32;
|
nth1 = 32;
|
||||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q2_K_f32];
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q2_K_f32];
|
||||||
} break;
|
} break;
|
||||||
case GGML_TYPE_Q3_K:
|
case GGML_TYPE_Q3_K:
|
||||||
{
|
{
|
||||||
GGML_ASSERT(ne02 == 1);
|
|
||||||
GGML_ASSERT(ne12 == 1);
|
|
||||||
|
|
||||||
nth0 = 2;
|
nth0 = 2;
|
||||||
nth1 = 32;
|
nth1 = 32;
|
||||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q3_K_f32];
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q3_K_f32];
|
||||||
} break;
|
} break;
|
||||||
case GGML_TYPE_Q4_K:
|
case GGML_TYPE_Q4_K:
|
||||||
{
|
{
|
||||||
GGML_ASSERT(ne02 == 1);
|
|
||||||
GGML_ASSERT(ne12 == 1);
|
|
||||||
|
|
||||||
nth0 = 4; //1;
|
nth0 = 4; //1;
|
||||||
nth1 = 8; //32;
|
nth1 = 8; //32;
|
||||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q4_K_f32];
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q4_K_f32];
|
||||||
} break;
|
} break;
|
||||||
case GGML_TYPE_Q5_K:
|
case GGML_TYPE_Q5_K:
|
||||||
{
|
{
|
||||||
GGML_ASSERT(ne02 == 1);
|
|
||||||
GGML_ASSERT(ne12 == 1);
|
|
||||||
|
|
||||||
nth0 = 2;
|
nth0 = 2;
|
||||||
nth1 = 32;
|
nth1 = 32;
|
||||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q5_K_f32];
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q5_K_f32];
|
||||||
} break;
|
} break;
|
||||||
case GGML_TYPE_Q6_K:
|
case GGML_TYPE_Q6_K:
|
||||||
{
|
{
|
||||||
GGML_ASSERT(ne02 == 1);
|
|
||||||
GGML_ASSERT(ne12 == 1);
|
|
||||||
|
|
||||||
nth0 = 2;
|
nth0 = 2;
|
||||||
nth1 = 32;
|
nth1 = 32;
|
||||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q6_K_f32];
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q6_K_f32];
|
||||||
@ -1309,34 +1420,127 @@ void ggml_metal_graph_compute(
|
|||||||
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:14];
|
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:14];
|
||||||
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:15];
|
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:15];
|
||||||
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:16];
|
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:16];
|
||||||
[encoder setBytes:&gqa length:sizeof(gqa) atIndex:17];
|
[encoder setBytes:&r2 length:sizeof(r2) atIndex:17];
|
||||||
|
[encoder setBytes:&r3 length:sizeof(r3) atIndex:18];
|
||||||
|
|
||||||
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 ||
|
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 ||
|
||||||
src0t == GGML_TYPE_Q5_0 || src0t == GGML_TYPE_Q5_1 || src0t == GGML_TYPE_Q8_0 ||
|
src0t == GGML_TYPE_Q5_0 || src0t == GGML_TYPE_Q5_1 || src0t == GGML_TYPE_Q8_0 ||
|
||||||
src0t == GGML_TYPE_Q2_K) { // || src0t == GGML_TYPE_Q4_K) {
|
src0t == GGML_TYPE_Q2_K) { // || src0t == GGML_TYPE_Q4_K) {
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
}
|
}
|
||||||
else if (src0t == GGML_TYPE_Q4_K) {
|
else if (src0t == GGML_TYPE_Q4_K) {
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
}
|
}
|
||||||
else if (src0t == GGML_TYPE_Q3_K) {
|
else if (src0t == GGML_TYPE_Q3_K) {
|
||||||
#ifdef GGML_QKK_64
|
#ifdef GGML_QKK_64
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
#else
|
#else
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
else if (src0t == GGML_TYPE_Q5_K) {
|
else if (src0t == GGML_TYPE_Q5_K) {
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
}
|
}
|
||||||
else if (src0t == GGML_TYPE_Q6_K) {
|
else if (src0t == GGML_TYPE_Q6_K) {
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
} else {
|
} else {
|
||||||
int64_t ny = (ne11 + nrows - 1)/nrows;
|
int64_t ny = (ne11 + nrows - 1)/nrows;
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ny, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ny, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
} break;
|
} break;
|
||||||
|
case GGML_OP_MUL_MAT_ID:
|
||||||
|
{
|
||||||
|
//GGML_ASSERT(ne00 == ne10);
|
||||||
|
//GGML_ASSERT(ne03 == ne13);
|
||||||
|
|
||||||
|
GGML_ASSERT(src0t == GGML_TYPE_I32);
|
||||||
|
|
||||||
|
const int n_as = ne00;
|
||||||
|
|
||||||
|
// TODO: make this more general
|
||||||
|
GGML_ASSERT(n_as <= 8);
|
||||||
|
|
||||||
|
struct ggml_tensor * src2 = gf->nodes[i]->src[2];
|
||||||
|
|
||||||
|
const int64_t ne20 = src2 ? src2->ne[0] : 0;
|
||||||
|
const int64_t ne21 = src2 ? src2->ne[1] : 0;
|
||||||
|
const int64_t ne22 = src2 ? src2->ne[2] : 0;
|
||||||
|
const int64_t ne23 = src2 ? src2->ne[3] : 0; GGML_UNUSED(ne23);
|
||||||
|
|
||||||
|
const uint64_t nb20 = src2 ? src2->nb[0] : 0; GGML_UNUSED(nb20);
|
||||||
|
const uint64_t nb21 = src2 ? src2->nb[1] : 0;
|
||||||
|
const uint64_t nb22 = src2 ? src2->nb[2] : 0;
|
||||||
|
const uint64_t nb23 = src2 ? src2->nb[3] : 0; GGML_UNUSED(nb23);
|
||||||
|
|
||||||
|
const enum ggml_type src2t = src2 ? src2->type : GGML_TYPE_COUNT; GGML_UNUSED(src2t);
|
||||||
|
|
||||||
|
GGML_ASSERT(!ggml_is_transposed(src2));
|
||||||
|
GGML_ASSERT(!ggml_is_transposed(src1));
|
||||||
|
|
||||||
|
GGML_ASSERT(ne20 % 32 == 0);
|
||||||
|
// !!!!!!!!! TODO: this assert is probably required but not sure!
|
||||||
|
//GGML_ASSERT(ne20 >= 64);
|
||||||
|
GGML_ASSERT(src1t == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
const uint r2 = ne12/ne22;
|
||||||
|
const uint r3 = ne13/ne23;
|
||||||
|
|
||||||
|
// find the break-even point where the matrix-matrix kernel becomes more efficient compared
|
||||||
|
// to the matrix-vector kernel
|
||||||
|
int ne11_mm_min = 0;
|
||||||
|
|
||||||
|
const int idx = ((int32_t *) dst->op_params)[0];
|
||||||
|
|
||||||
|
// for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
|
||||||
|
// AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
|
||||||
|
if ([ctx->device supportsFamily:MTLGPUFamilyApple7] &&
|
||||||
|
ne11 > ne11_mm_min) {
|
||||||
|
switch (src2->type) {
|
||||||
|
case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_mul_mm_id_f32_f32]; break;
|
||||||
|
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_mul_mm_id_f16_f32]; break;
|
||||||
|
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_id_q4_0_f32]; break;
|
||||||
|
case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_mul_mm_id_q4_1_f32]; break;
|
||||||
|
case GGML_TYPE_Q5_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_id_q5_0_f32]; break;
|
||||||
|
case GGML_TYPE_Q5_1: [encoder setComputePipelineState:ctx->pipeline_mul_mm_id_q5_1_f32]; break;
|
||||||
|
case GGML_TYPE_Q8_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_id_q8_0_f32]; break;
|
||||||
|
case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_id_q2_K_f32]; break;
|
||||||
|
case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_id_q3_K_f32]; break;
|
||||||
|
case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_id_q4_K_f32]; break;
|
||||||
|
case GGML_TYPE_Q5_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_id_q5_K_f32]; break;
|
||||||
|
case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_id_q6_K_f32]; break;
|
||||||
|
default: GGML_ASSERT(false && "MUL_MAT_ID not implemented");
|
||||||
|
}
|
||||||
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||||
|
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
||||||
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
||||||
|
[encoder setBytes:&ne20 length:sizeof(ne20) atIndex:3];
|
||||||
|
[encoder setBytes:&ne22 length:sizeof(ne22) atIndex:4];
|
||||||
|
[encoder setBytes:&nb21 length:sizeof(nb21) atIndex:5];
|
||||||
|
[encoder setBytes:&nb22 length:sizeof(nb22) atIndex:6];
|
||||||
|
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:7];
|
||||||
|
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:8];
|
||||||
|
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:9];
|
||||||
|
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:10];
|
||||||
|
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:11];
|
||||||
|
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:12];
|
||||||
|
[encoder setBytes:&r2 length:sizeof(r2) atIndex:13];
|
||||||
|
[encoder setBytes:&r3 length:sizeof(r3) atIndex:14];
|
||||||
|
[encoder setBytes:&idx length:sizeof(idx) atIndex:15];
|
||||||
|
// TODO: how to make this an array? read Metal docs
|
||||||
|
for (int j = 0; j < n_as; ++j) {
|
||||||
|
struct ggml_tensor * src_cur = dst->src[2 + j];
|
||||||
|
|
||||||
|
size_t offs_src_cur = 0;
|
||||||
|
id<MTLBuffer> id_src_cur = ggml_metal_get_buffer(ctx, src_cur, &offs_src_cur);
|
||||||
|
|
||||||
|
[encoder setBuffer:id_src_cur offset:offs_src_cur atIndex:16 + j];
|
||||||
|
}
|
||||||
|
|
||||||
|
[encoder setThreadgroupMemoryLength:8192 atIndex:0];
|
||||||
|
[encoder dispatchThreadgroups:MTLSizeMake( (ne11 + 31)/32, (ne21 + 63)/64, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
|
||||||
|
}
|
||||||
|
} break;
|
||||||
case GGML_OP_GET_ROWS:
|
case GGML_OP_GET_ROWS:
|
||||||
{
|
{
|
||||||
switch (src0->type) {
|
switch (src0->type) {
|
||||||
@ -1560,6 +1764,27 @@ void ggml_metal_graph_compute(
|
|||||||
|
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake(IC, OH, OW) threadsPerThreadgroup:MTLSizeMake(N, KH, KW)];
|
[encoder dispatchThreadgroups:MTLSizeMake(IC, OH, OW) threadsPerThreadgroup:MTLSizeMake(N, KH, KW)];
|
||||||
} break;
|
} break;
|
||||||
|
case GGML_OP_ARGSORT:
|
||||||
|
{
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_I32);
|
||||||
|
|
||||||
|
const int nrows = ggml_nrows(src0);
|
||||||
|
|
||||||
|
enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
|
||||||
|
|
||||||
|
switch (order) {
|
||||||
|
case GGML_SORT_ASC: [encoder setComputePipelineState:ctx->pipeline_argsort_f32_i32_asc]; break;
|
||||||
|
case GGML_SORT_DESC: [encoder setComputePipelineState:ctx->pipeline_argsort_f32_i32_desc]; break;
|
||||||
|
default: GGML_ASSERT(false);
|
||||||
|
};
|
||||||
|
|
||||||
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||||
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||||
|
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
|
||||||
|
|
||||||
|
[encoder dispatchThreadgroups:MTLSizeMake(1, nrows, 1) threadsPerThreadgroup:MTLSizeMake(ne00, 1, 1)];
|
||||||
|
} break;
|
||||||
case GGML_OP_DUP:
|
case GGML_OP_DUP:
|
||||||
case GGML_OP_CPY:
|
case GGML_OP_CPY:
|
||||||
case GGML_OP_CONT:
|
case GGML_OP_CONT:
|
||||||
@ -1655,6 +1880,132 @@ void ggml_metal_graph_compute(
|
|||||||
|
|
||||||
// backend interface
|
// backend interface
|
||||||
|
|
||||||
|
static id<MTLDevice> g_backend_device = nil;
|
||||||
|
static int g_backend_device_ref_count = 0;
|
||||||
|
|
||||||
|
static id<MTLDevice> ggml_backend_metal_get_device(void) {
|
||||||
|
if (g_backend_device == nil) {
|
||||||
|
g_backend_device = MTLCreateSystemDefaultDevice();
|
||||||
|
}
|
||||||
|
|
||||||
|
g_backend_device_ref_count++;
|
||||||
|
|
||||||
|
return g_backend_device;
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_backend_metal_free_device(void) {
|
||||||
|
assert(g_backend_device_ref_count > 0);
|
||||||
|
|
||||||
|
g_backend_device_ref_count--;
|
||||||
|
|
||||||
|
if (g_backend_device_ref_count == 0) {
|
||||||
|
[g_backend_device release];
|
||||||
|
g_backend_device = nil;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||||
|
struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
|
||||||
|
|
||||||
|
return ctx->data;
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||||
|
struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
|
||||||
|
|
||||||
|
[ctx->metal release];
|
||||||
|
ggml_backend_metal_free_device();
|
||||||
|
|
||||||
|
free(ctx->data);
|
||||||
|
free(ctx);
|
||||||
|
|
||||||
|
UNUSED(buffer);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_backend_metal_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||||
|
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
|
||||||
|
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
||||||
|
|
||||||
|
memcpy((char *)tensor->data + offset, data, size);
|
||||||
|
|
||||||
|
UNUSED(buffer);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_backend_metal_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||||
|
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
|
||||||
|
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
||||||
|
|
||||||
|
memcpy(data, (const char *)tensor->data + offset, size);
|
||||||
|
|
||||||
|
UNUSED(buffer);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_backend_metal_buffer_cpy_tensor_from(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||||
|
ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
|
||||||
|
|
||||||
|
UNUSED(buffer);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_backend_metal_buffer_cpy_tensor_to(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||||
|
ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
|
||||||
|
|
||||||
|
UNUSED(buffer);
|
||||||
|
}
|
||||||
|
|
||||||
|
static struct ggml_backend_buffer_i metal_backend_buffer_i = {
|
||||||
|
/* .free_buffer = */ ggml_backend_metal_buffer_free_buffer,
|
||||||
|
/* .get_base = */ ggml_backend_metal_buffer_get_base,
|
||||||
|
/* .init_tensor = */ NULL,
|
||||||
|
/* .set_tensor = */ ggml_backend_metal_buffer_set_tensor,
|
||||||
|
/* .get_tensor = */ ggml_backend_metal_buffer_get_tensor,
|
||||||
|
/* .cpy_tensor_from = */ ggml_backend_metal_buffer_cpy_tensor_from,
|
||||||
|
/* .cpy_tensor_to = */ ggml_backend_metal_buffer_cpy_tensor_to,
|
||||||
|
};
|
||||||
|
|
||||||
|
static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||||
|
struct ggml_backend_metal_buffer_context * ctx = malloc(sizeof(struct ggml_backend_metal_buffer_context));
|
||||||
|
|
||||||
|
const size_t size_page = sysconf(_SC_PAGESIZE);
|
||||||
|
|
||||||
|
size_t size_aligned = size;
|
||||||
|
if ((size_aligned % size_page) != 0) {
|
||||||
|
size_aligned += (size_page - (size_aligned % size_page));
|
||||||
|
}
|
||||||
|
|
||||||
|
ctx->data = ggml_metal_host_malloc(size);
|
||||||
|
ctx->metal = [ggml_backend_metal_get_device() newBufferWithBytesNoCopy:ctx->data
|
||||||
|
length:size_aligned
|
||||||
|
options:MTLResourceStorageModeShared
|
||||||
|
deallocator:nil];
|
||||||
|
|
||||||
|
return ggml_backend_buffer_init(buft, metal_backend_buffer_i, ctx, size);
|
||||||
|
}
|
||||||
|
|
||||||
|
static size_t ggml_backend_metal_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
||||||
|
return 32;
|
||||||
|
UNUSED(buft);
|
||||||
|
}
|
||||||
|
|
||||||
|
static bool ggml_backend_metal_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
|
||||||
|
return ggml_backend_is_metal(backend) || ggml_backend_is_cpu(backend);
|
||||||
|
|
||||||
|
GGML_UNUSED(buft);
|
||||||
|
}
|
||||||
|
|
||||||
|
ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) {
|
||||||
|
static struct ggml_backend_buffer_type ggml_backend_buffer_type_metal = {
|
||||||
|
/* .iface = */ {
|
||||||
|
/* .alloc_buffer = */ ggml_backend_metal_buffer_type_alloc_buffer,
|
||||||
|
/* .get_alignment = */ ggml_backend_metal_buffer_type_get_alignment,
|
||||||
|
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
||||||
|
/* .supports_backend = */ ggml_backend_metal_buffer_type_supports_backend,
|
||||||
|
},
|
||||||
|
/* .context = */ NULL,
|
||||||
|
};
|
||||||
|
|
||||||
|
return &ggml_backend_buffer_type_metal;
|
||||||
|
}
|
||||||
|
|
||||||
static const char * ggml_backend_metal_name(ggml_backend_t backend) {
|
static const char * ggml_backend_metal_name(ggml_backend_t backend) {
|
||||||
return "Metal";
|
return "Metal";
|
||||||
|
|
||||||
@ -1667,69 +2018,12 @@ static void ggml_backend_metal_free(ggml_backend_t backend) {
|
|||||||
free(backend);
|
free(backend);
|
||||||
}
|
}
|
||||||
|
|
||||||
static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) {
|
|
||||||
return (void *)buffer->context;
|
|
||||||
}
|
|
||||||
|
|
||||||
static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
|
||||||
free(buffer->context);
|
|
||||||
UNUSED(buffer);
|
|
||||||
}
|
|
||||||
|
|
||||||
static struct ggml_backend_buffer_i metal_backend_buffer_i = {
|
|
||||||
/* .free_buffer = */ ggml_backend_metal_buffer_free_buffer,
|
|
||||||
/* .get_base = */ ggml_backend_metal_buffer_get_base,
|
|
||||||
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
|
||||||
/* .init_tensor = */ NULL, // no initialization required
|
|
||||||
/* .free_tensor = */ NULL, // no cleanup required
|
|
||||||
};
|
|
||||||
|
|
||||||
static ggml_backend_buffer_t ggml_backend_metal_alloc_buffer(ggml_backend_t backend, size_t size) {
|
|
||||||
struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context;
|
|
||||||
|
|
||||||
void * data = ggml_metal_host_malloc(size);
|
|
||||||
|
|
||||||
// TODO: set proper name of the buffers
|
|
||||||
ggml_metal_add_buffer(ctx, "backend", data, size, 0);
|
|
||||||
|
|
||||||
return ggml_backend_buffer_init(backend, metal_backend_buffer_i, data, size);
|
|
||||||
}
|
|
||||||
|
|
||||||
static size_t ggml_backend_metal_get_alignment(ggml_backend_t backend) {
|
|
||||||
return 32;
|
|
||||||
UNUSED(backend);
|
|
||||||
}
|
|
||||||
|
|
||||||
static void ggml_backend_metal_set_tensor_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
|
||||||
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
|
|
||||||
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
|
||||||
|
|
||||||
memcpy((char *)tensor->data + offset, data, size);
|
|
||||||
|
|
||||||
UNUSED(backend);
|
|
||||||
}
|
|
||||||
|
|
||||||
static void ggml_backend_metal_get_tensor_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
|
||||||
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
|
|
||||||
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
|
||||||
|
|
||||||
memcpy(data, (const char *)tensor->data + offset, size);
|
|
||||||
|
|
||||||
UNUSED(backend);
|
|
||||||
}
|
|
||||||
|
|
||||||
static void ggml_backend_metal_synchronize(ggml_backend_t backend) {
|
static void ggml_backend_metal_synchronize(ggml_backend_t backend) {
|
||||||
UNUSED(backend);
|
UNUSED(backend);
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_backend_metal_cpy_tensor_from(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) {
|
static ggml_backend_buffer_type_t ggml_backend_metal_get_default_buffer_type(ggml_backend_t backend) {
|
||||||
ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
|
return ggml_backend_metal_buffer_type();
|
||||||
|
|
||||||
UNUSED(backend);
|
|
||||||
}
|
|
||||||
|
|
||||||
static void ggml_backend_metal_cpy_tensor_to(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) {
|
|
||||||
ggml_backend_tensor_set_async(dst, src->data, 0, ggml_nbytes(src));
|
|
||||||
|
|
||||||
UNUSED(backend);
|
UNUSED(backend);
|
||||||
}
|
}
|
||||||
@ -1741,32 +2035,43 @@ static void ggml_backend_metal_graph_compute(ggml_backend_t backend, struct ggml
|
|||||||
}
|
}
|
||||||
|
|
||||||
static bool ggml_backend_metal_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
static bool ggml_backend_metal_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
||||||
return true;
|
return ggml_metal_supports_op(op);
|
||||||
|
|
||||||
UNUSED(backend);
|
UNUSED(backend);
|
||||||
UNUSED(op);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
static struct ggml_backend_i metal_backend_i = {
|
static struct ggml_backend_i metal_backend_i = {
|
||||||
/* .get_name = */ ggml_backend_metal_name,
|
/* .get_name = */ ggml_backend_metal_name,
|
||||||
/* .free = */ ggml_backend_metal_free,
|
/* .free = */ ggml_backend_metal_free,
|
||||||
/* .alloc_buffer = */ ggml_backend_metal_alloc_buffer,
|
/* .get_default_buffer_type = */ ggml_backend_metal_get_default_buffer_type,
|
||||||
/* .get_alignment = */ ggml_backend_metal_get_alignment,
|
/* .set_tensor_async = */ NULL,
|
||||||
/* .set_tensor_async = */ ggml_backend_metal_set_tensor_async,
|
/* .get_tensor_async = */ NULL,
|
||||||
/* .get_tensor_async = */ ggml_backend_metal_get_tensor_async,
|
/* .cpy_tensor_from_async = */ NULL,
|
||||||
/* .synchronize = */ ggml_backend_metal_synchronize,
|
/* .cpy_tensor_to_async = */ NULL,
|
||||||
/* .cpy_tensor_from = */ ggml_backend_metal_cpy_tensor_from,
|
/* .synchronize = */ ggml_backend_metal_synchronize,
|
||||||
/* .cpy_tensor_to = */ ggml_backend_metal_cpy_tensor_to,
|
/* .graph_plan_create = */ NULL, // the metal implementation does not require creating graph plans atm
|
||||||
/* .graph_plan_create = */ NULL, // the metal implementation does not require creating graph plans atm
|
/* .graph_plan_free = */ NULL,
|
||||||
/* .graph_plan_free = */ NULL,
|
/* .graph_plan_compute = */ NULL,
|
||||||
/* .graph_plan_compute = */ NULL,
|
/* .graph_compute = */ ggml_backend_metal_graph_compute,
|
||||||
/* .graph_compute = */ ggml_backend_metal_graph_compute,
|
/* .supports_op = */ ggml_backend_metal_supports_op,
|
||||||
/* .supports_op = */ ggml_backend_metal_supports_op,
|
|
||||||
};
|
};
|
||||||
|
|
||||||
ggml_backend_t ggml_backend_metal_init(void) {
|
// TODO: make a common log callback for all backends in ggml-backend
|
||||||
struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context));
|
static void ggml_backend_log_callback(enum ggml_log_level level, const char * msg, void * user_data) {
|
||||||
|
fprintf(stderr, "%s", msg);
|
||||||
|
|
||||||
ctx = ggml_metal_init(GGML_DEFAULT_N_THREADS);
|
UNUSED(level);
|
||||||
|
UNUSED(user_data);
|
||||||
|
}
|
||||||
|
|
||||||
|
ggml_backend_t ggml_backend_metal_init(void) {
|
||||||
|
ggml_metal_log_set_callback(ggml_backend_log_callback, NULL);
|
||||||
|
|
||||||
|
struct ggml_metal_context * ctx = ggml_metal_init(GGML_DEFAULT_N_THREADS);
|
||||||
|
|
||||||
|
if (ctx == NULL) {
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
ggml_backend_t metal_backend = malloc(sizeof(struct ggml_backend));
|
ggml_backend_t metal_backend = malloc(sizeof(struct ggml_backend));
|
||||||
|
|
||||||
@ -1783,7 +2088,26 @@ bool ggml_backend_is_metal(ggml_backend_t backend) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb) {
|
void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb) {
|
||||||
|
GGML_ASSERT(ggml_backend_is_metal(backend));
|
||||||
|
|
||||||
struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context;
|
struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context;
|
||||||
|
|
||||||
ggml_metal_set_n_cb(ctx, n_cb);
|
ggml_metal_set_n_cb(ctx, n_cb);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family) {
|
||||||
|
GGML_ASSERT(ggml_backend_is_metal(backend));
|
||||||
|
|
||||||
|
struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context;
|
||||||
|
|
||||||
|
return [ctx->device supportsFamily:(MTLGPUFamilyApple1 + family - 1)];
|
||||||
|
}
|
||||||
|
|
||||||
|
ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data); // silence warning
|
||||||
|
|
||||||
|
ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data) {
|
||||||
|
return ggml_backend_metal_init();
|
||||||
|
|
||||||
|
GGML_UNUSED(params);
|
||||||
|
GGML_UNUSED(user_data);
|
||||||
|
}
|
||||||
|
755
ggml-metal.metal
755
ggml-metal.metal
File diff suppressed because it is too large
Load Diff
414
ggml.c
414
ggml.c
@ -233,24 +233,6 @@ inline static void * ggml_aligned_malloc(size_t size) {
|
|||||||
#define UNUSED GGML_UNUSED
|
#define UNUSED GGML_UNUSED
|
||||||
#define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
|
#define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
|
||||||
|
|
||||||
//
|
|
||||||
// tensor access macros
|
|
||||||
//
|
|
||||||
|
|
||||||
#define GGML_TENSOR_UNARY_OP_LOCALS \
|
|
||||||
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
|
|
||||||
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
|
|
||||||
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
|
|
||||||
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
|
|
||||||
|
|
||||||
#define GGML_TENSOR_BINARY_OP_LOCALS \
|
|
||||||
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
|
|
||||||
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
|
|
||||||
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
|
|
||||||
GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
|
|
||||||
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
|
|
||||||
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
|
|
||||||
|
|
||||||
#if defined(GGML_USE_ACCELERATE)
|
#if defined(GGML_USE_ACCELERATE)
|
||||||
#include <Accelerate/Accelerate.h>
|
#include <Accelerate/Accelerate.h>
|
||||||
#if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
|
#if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
|
||||||
@ -1613,6 +1595,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
|
|||||||
"GROUP_NORM",
|
"GROUP_NORM",
|
||||||
|
|
||||||
"MUL_MAT",
|
"MUL_MAT",
|
||||||
|
"MUL_MAT_ID",
|
||||||
"OUT_PROD",
|
"OUT_PROD",
|
||||||
|
|
||||||
"SCALE",
|
"SCALE",
|
||||||
@ -1640,6 +1623,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
|
|||||||
"POOL_1D",
|
"POOL_1D",
|
||||||
"POOL_2D",
|
"POOL_2D",
|
||||||
"UPSCALE",
|
"UPSCALE",
|
||||||
|
"ARGSORT",
|
||||||
|
|
||||||
"FLASH_ATTN",
|
"FLASH_ATTN",
|
||||||
"FLASH_FF",
|
"FLASH_FF",
|
||||||
@ -1666,7 +1650,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
|
|||||||
"CROSS_ENTROPY_LOSS_BACK",
|
"CROSS_ENTROPY_LOSS_BACK",
|
||||||
};
|
};
|
||||||
|
|
||||||
static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
|
static_assert(GGML_OP_COUNT == 70, "GGML_OP_COUNT != 70");
|
||||||
|
|
||||||
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
||||||
"none",
|
"none",
|
||||||
@ -1695,6 +1679,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
|||||||
"group_norm(x)",
|
"group_norm(x)",
|
||||||
|
|
||||||
"X*Y",
|
"X*Y",
|
||||||
|
"X[i]*Y",
|
||||||
"X*Y",
|
"X*Y",
|
||||||
|
|
||||||
"x*v",
|
"x*v",
|
||||||
@ -1722,6 +1707,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
|||||||
"pool_1d(x)",
|
"pool_1d(x)",
|
||||||
"pool_2d(x)",
|
"pool_2d(x)",
|
||||||
"upscale(x)",
|
"upscale(x)",
|
||||||
|
"argsort(x)",
|
||||||
|
|
||||||
"flash_attn(x)",
|
"flash_attn(x)",
|
||||||
"flash_ff(x)",
|
"flash_ff(x)",
|
||||||
@ -1748,10 +1734,28 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
|||||||
"cross_entropy_loss_back(x,y)",
|
"cross_entropy_loss_back(x,y)",
|
||||||
};
|
};
|
||||||
|
|
||||||
static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
|
static_assert(GGML_OP_COUNT == 70, "GGML_OP_COUNT != 70");
|
||||||
|
|
||||||
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
|
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
|
||||||
|
|
||||||
|
|
||||||
|
static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
|
||||||
|
"ABS",
|
||||||
|
"SGN",
|
||||||
|
"NEG",
|
||||||
|
"STEP",
|
||||||
|
"TANH",
|
||||||
|
"ELU",
|
||||||
|
"RELU",
|
||||||
|
"GELU",
|
||||||
|
"GELU_QUICK",
|
||||||
|
"SILU",
|
||||||
|
"LEAKY",
|
||||||
|
};
|
||||||
|
|
||||||
|
static_assert(GGML_UNARY_OP_COUNT == 11, "GGML_UNARY_OP_COUNT != 11");
|
||||||
|
|
||||||
|
|
||||||
static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
|
static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
|
||||||
static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
|
static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
|
||||||
|
|
||||||
@ -1771,6 +1775,7 @@ static void ggml_setup_op_has_task_pass(void) {
|
|||||||
|
|
||||||
p[GGML_OP_ACC ] = true;
|
p[GGML_OP_ACC ] = true;
|
||||||
p[GGML_OP_MUL_MAT ] = true;
|
p[GGML_OP_MUL_MAT ] = true;
|
||||||
|
p[GGML_OP_MUL_MAT_ID ] = true;
|
||||||
p[GGML_OP_OUT_PROD ] = true;
|
p[GGML_OP_OUT_PROD ] = true;
|
||||||
p[GGML_OP_SET ] = true;
|
p[GGML_OP_SET ] = true;
|
||||||
p[GGML_OP_GET_ROWS_BACK ] = true;
|
p[GGML_OP_GET_ROWS_BACK ] = true;
|
||||||
@ -2023,6 +2028,20 @@ const char * ggml_op_symbol(enum ggml_op op) {
|
|||||||
return GGML_OP_SYMBOL[op];
|
return GGML_OP_SYMBOL[op];
|
||||||
}
|
}
|
||||||
|
|
||||||
|
const char * ggml_unary_op_name(enum ggml_unary_op op) {
|
||||||
|
return GGML_UNARY_OP_NAME[op];
|
||||||
|
}
|
||||||
|
|
||||||
|
const char * ggml_op_desc(const struct ggml_tensor * t) {
|
||||||
|
if (t->op == GGML_OP_UNARY) {
|
||||||
|
enum ggml_unary_op uop = ggml_get_unary_op(t);
|
||||||
|
return ggml_unary_op_name(uop);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
return ggml_op_name(t->op);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
size_t ggml_element_size(const struct ggml_tensor * tensor) {
|
size_t ggml_element_size(const struct ggml_tensor * tensor) {
|
||||||
return ggml_type_size(tensor->type);
|
return ggml_type_size(tensor->type);
|
||||||
}
|
}
|
||||||
@ -3154,9 +3173,7 @@ static struct ggml_tensor * ggml_add_impl(
|
|||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
struct ggml_tensor * b,
|
struct ggml_tensor * b,
|
||||||
bool inplace) {
|
bool inplace) {
|
||||||
// TODO: support less-strict constraint
|
GGML_ASSERT(ggml_can_repeat(b, a));
|
||||||
// GGML_ASSERT(ggml_can_repeat(b, a));
|
|
||||||
GGML_ASSERT(ggml_can_repeat_rows(b, a));
|
|
||||||
|
|
||||||
bool is_node = false;
|
bool is_node = false;
|
||||||
|
|
||||||
@ -3371,9 +3388,7 @@ static struct ggml_tensor * ggml_mul_impl(
|
|||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
struct ggml_tensor * b,
|
struct ggml_tensor * b,
|
||||||
bool inplace) {
|
bool inplace) {
|
||||||
// TODO: support less-strict constraint
|
GGML_ASSERT(ggml_can_repeat(b, a));
|
||||||
// GGML_ASSERT(ggml_can_repeat(b, a));
|
|
||||||
GGML_ASSERT(ggml_can_repeat_rows(b, a));
|
|
||||||
|
|
||||||
bool is_node = false;
|
bool is_node = false;
|
||||||
|
|
||||||
@ -3418,7 +3433,7 @@ static struct ggml_tensor * ggml_div_impl(
|
|||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
struct ggml_tensor * b,
|
struct ggml_tensor * b,
|
||||||
bool inplace) {
|
bool inplace) {
|
||||||
GGML_ASSERT(ggml_are_same_shape(a, b));
|
GGML_ASSERT(ggml_can_repeat(b, a));
|
||||||
|
|
||||||
bool is_node = false;
|
bool is_node = false;
|
||||||
|
|
||||||
@ -4056,6 +4071,49 @@ struct ggml_tensor * ggml_mul_mat(
|
|||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// ggml_mul_mat_id
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_mul_mat_id(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * as[],
|
||||||
|
struct ggml_tensor * ids,
|
||||||
|
int id,
|
||||||
|
struct ggml_tensor * b) {
|
||||||
|
|
||||||
|
int64_t n_as = ids->ne[0];
|
||||||
|
|
||||||
|
GGML_ASSERT(ids->type == GGML_TYPE_I32);
|
||||||
|
GGML_ASSERT(ggml_is_vector(ids));
|
||||||
|
GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
|
||||||
|
GGML_ASSERT(id >= 0 && id < n_as);
|
||||||
|
|
||||||
|
bool is_node = false;
|
||||||
|
|
||||||
|
if (as[0]->grad || b->grad) {
|
||||||
|
is_node = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
|
||||||
|
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(as[0]->n_dims, b->n_dims), ne);
|
||||||
|
|
||||||
|
ggml_set_op_params_i32(result, 0, id);
|
||||||
|
|
||||||
|
result->op = GGML_OP_MUL_MAT_ID;
|
||||||
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||||
|
result->src[0] = ids;
|
||||||
|
result->src[1] = b;
|
||||||
|
|
||||||
|
for (int64_t i = 0; i < n_as; i++) {
|
||||||
|
struct ggml_tensor * a = as[i];
|
||||||
|
GGML_ASSERT(ggml_are_same_shape(as[0], a));
|
||||||
|
GGML_ASSERT(ggml_can_mul_mat(a, b));
|
||||||
|
GGML_ASSERT(!ggml_is_transposed(a));
|
||||||
|
result->src[i + 2] = a;
|
||||||
|
}
|
||||||
|
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
// ggml_out_prod
|
// ggml_out_prod
|
||||||
|
|
||||||
struct ggml_tensor * ggml_out_prod(
|
struct ggml_tensor * ggml_out_prod(
|
||||||
@ -4209,7 +4267,7 @@ struct ggml_tensor * ggml_set_2d_inplace(
|
|||||||
struct ggml_tensor * b,
|
struct ggml_tensor * b,
|
||||||
size_t nb1,
|
size_t nb1,
|
||||||
size_t offset) {
|
size_t offset) {
|
||||||
return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
|
return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
|
||||||
}
|
}
|
||||||
|
|
||||||
// ggml_cpy
|
// ggml_cpy
|
||||||
@ -5468,6 +5526,43 @@ struct ggml_tensor * ggml_upscale(
|
|||||||
return ggml_upscale_impl(ctx, a, scale_factor);
|
return ggml_upscale_impl(ctx, a, scale_factor);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// ggml_argsort
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_argsort(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
enum ggml_sort_order order) {
|
||||||
|
bool is_node = false;
|
||||||
|
|
||||||
|
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, a->ne);
|
||||||
|
|
||||||
|
ggml_set_op_params_i32(result, 0, (int32_t) order);
|
||||||
|
|
||||||
|
result->op = GGML_OP_ARGSORT;
|
||||||
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||||
|
result->src[0] = a;
|
||||||
|
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
// ggml_top_k
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_top_k(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
int k) {
|
||||||
|
GGML_ASSERT(a->ne[0] >= k);
|
||||||
|
|
||||||
|
struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_DESC);
|
||||||
|
|
||||||
|
result = ggml_view_4d(ctx, result,
|
||||||
|
k, result->ne[1], result->ne[2], result->ne[3],
|
||||||
|
result->nb[1], result->nb[2], result->nb[3],
|
||||||
|
0);
|
||||||
|
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
// ggml_flash_attn
|
// ggml_flash_attn
|
||||||
|
|
||||||
struct ggml_tensor * ggml_flash_attn(
|
struct ggml_tensor * ggml_flash_attn(
|
||||||
@ -6827,7 +6922,7 @@ static void ggml_compute_forward_add_f32(
|
|||||||
const struct ggml_tensor * src0,
|
const struct ggml_tensor * src0,
|
||||||
const struct ggml_tensor * src1,
|
const struct ggml_tensor * src1,
|
||||||
struct ggml_tensor * dst) {
|
struct ggml_tensor * dst) {
|
||||||
GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
|
GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
|
||||||
|
|
||||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||||
return;
|
return;
|
||||||
@ -6860,16 +6955,19 @@ static void ggml_compute_forward_add_f32(
|
|||||||
const int64_t i13 = i03 % ne13;
|
const int64_t i13 = i03 % ne13;
|
||||||
const int64_t i12 = i02 % ne12;
|
const int64_t i12 = i02 % ne12;
|
||||||
const int64_t i11 = i01 % ne11;
|
const int64_t i11 = i01 % ne11;
|
||||||
|
const int64_t nr0 = ne00 / ne10;
|
||||||
|
|
||||||
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
|
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
|
||||||
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
|
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
|
||||||
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
|
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
|
||||||
|
|
||||||
|
for (int64_t r = 0; r < nr0; ++r) {
|
||||||
#ifdef GGML_USE_ACCELERATE
|
#ifdef GGML_USE_ACCELERATE
|
||||||
vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
|
vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
|
||||||
#else
|
#else
|
||||||
ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
|
ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
|
||||||
#endif
|
#endif
|
||||||
|
}
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
// src1 is not contiguous
|
// src1 is not contiguous
|
||||||
@ -6886,8 +6984,9 @@ static void ggml_compute_forward_add_f32(
|
|||||||
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
|
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
|
||||||
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
|
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
|
||||||
|
|
||||||
for (int i0 = 0; i0 < ne0; i0++) {
|
for (int64_t i0 = 0; i0 < ne0; ++i0) {
|
||||||
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
|
const int64_t i10 = i0 % ne10;
|
||||||
|
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
|
||||||
|
|
||||||
dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
|
dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
|
||||||
}
|
}
|
||||||
@ -7607,7 +7706,7 @@ static void ggml_compute_forward_mul_f32(
|
|||||||
const struct ggml_tensor * src0,
|
const struct ggml_tensor * src0,
|
||||||
const struct ggml_tensor * src1,
|
const struct ggml_tensor * src1,
|
||||||
struct ggml_tensor * dst) {
|
struct ggml_tensor * dst) {
|
||||||
GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
|
GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
|
||||||
|
|
||||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||||
return;
|
return;
|
||||||
@ -7630,7 +7729,6 @@ static void ggml_compute_forward_mul_f32(
|
|||||||
|
|
||||||
GGML_ASSERT( nb0 == sizeof(float));
|
GGML_ASSERT( nb0 == sizeof(float));
|
||||||
GGML_ASSERT(nb00 == sizeof(float));
|
GGML_ASSERT(nb00 == sizeof(float));
|
||||||
GGML_ASSERT(ne00 == ne10);
|
|
||||||
|
|
||||||
if (nb10 == sizeof(float)) {
|
if (nb10 == sizeof(float)) {
|
||||||
for (int64_t ir = ith; ir < nr; ir += nth) {
|
for (int64_t ir = ith; ir < nr; ir += nth) {
|
||||||
@ -7642,20 +7740,21 @@ static void ggml_compute_forward_mul_f32(
|
|||||||
const int64_t i13 = i03 % ne13;
|
const int64_t i13 = i03 % ne13;
|
||||||
const int64_t i12 = i02 % ne12;
|
const int64_t i12 = i02 % ne12;
|
||||||
const int64_t i11 = i01 % ne11;
|
const int64_t i11 = i01 % ne11;
|
||||||
|
const int64_t nr0 = ne00 / ne10;
|
||||||
|
|
||||||
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
|
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
|
||||||
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
|
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
|
||||||
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
|
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
|
||||||
|
|
||||||
|
for (int64_t r = 0 ; r < nr0; ++r) {
|
||||||
#ifdef GGML_USE_ACCELERATE
|
#ifdef GGML_USE_ACCELERATE
|
||||||
UNUSED(ggml_vec_mul_f32);
|
UNUSED(ggml_vec_mul_f32);
|
||||||
|
|
||||||
vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
|
vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
|
||||||
#else
|
#else
|
||||||
ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
|
ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
|
||||||
#endif
|
#endif
|
||||||
// }
|
}
|
||||||
// }
|
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
// src1 is not contiguous
|
// src1 is not contiguous
|
||||||
@ -7673,8 +7772,9 @@ static void ggml_compute_forward_mul_f32(
|
|||||||
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
|
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
|
||||||
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
|
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
|
||||||
|
|
||||||
for (int64_t i0 = 0; i0 < ne00; i0++) {
|
for (int64_t i0 = 0; i0 < ne00; ++i0) {
|
||||||
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
|
const int64_t i10 = i0 % ne10;
|
||||||
|
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
|
||||||
|
|
||||||
dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
|
dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
|
||||||
}
|
}
|
||||||
@ -7708,14 +7808,16 @@ static void ggml_compute_forward_div_f32(
|
|||||||
const struct ggml_tensor * src0,
|
const struct ggml_tensor * src0,
|
||||||
const struct ggml_tensor * src1,
|
const struct ggml_tensor * src1,
|
||||||
struct ggml_tensor * dst) {
|
struct ggml_tensor * dst) {
|
||||||
assert(params->ith == 0);
|
GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
|
||||||
assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
|
|
||||||
|
|
||||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
const int nr = ggml_nrows(src0);
|
const int ith = params->ith;
|
||||||
|
const int nth = params->nth;
|
||||||
|
|
||||||
|
const int64_t nr = ggml_nrows(src0);
|
||||||
|
|
||||||
GGML_TENSOR_BINARY_OP_LOCALS
|
GGML_TENSOR_BINARY_OP_LOCALS
|
||||||
|
|
||||||
@ -7723,41 +7825,50 @@ static void ggml_compute_forward_div_f32(
|
|||||||
GGML_ASSERT(nb00 == sizeof(float));
|
GGML_ASSERT(nb00 == sizeof(float));
|
||||||
|
|
||||||
if (nb10 == sizeof(float)) {
|
if (nb10 == sizeof(float)) {
|
||||||
for (int ir = 0; ir < nr; ++ir) {
|
for (int64_t ir = ith; ir < nr; ir += nth) {
|
||||||
// src0, src1 and dst are same shape => same indices
|
// src0 and dst are same shape => same indices
|
||||||
const int i3 = ir/(ne2*ne1);
|
const int64_t i03 = ir/(ne02*ne01);
|
||||||
const int i2 = (ir - i3*ne2*ne1)/ne1;
|
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
|
||||||
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
|
||||||
|
|
||||||
|
const int64_t i13 = i03 % ne13;
|
||||||
|
const int64_t i12 = i02 % ne12;
|
||||||
|
const int64_t i11 = i01 % ne11;
|
||||||
|
const int64_t nr0 = ne00 / ne10;
|
||||||
|
|
||||||
|
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
|
||||||
|
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
|
||||||
|
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
|
||||||
|
|
||||||
|
for (int64_t r = 0; r < nr0; ++r) {
|
||||||
#ifdef GGML_USE_ACCELERATE
|
#ifdef GGML_USE_ACCELERATE
|
||||||
UNUSED(ggml_vec_div_f32);
|
UNUSED(ggml_vec_div_f32);
|
||||||
|
|
||||||
vDSP_vdiv(
|
vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
|
||||||
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
|
|
||||||
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
|
|
||||||
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
|
|
||||||
ne0);
|
|
||||||
#else
|
#else
|
||||||
ggml_vec_div_f32(ne0,
|
ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
|
||||||
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
|
|
||||||
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
|
|
||||||
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
|
|
||||||
#endif
|
#endif
|
||||||
// }
|
}
|
||||||
// }
|
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
// src1 is not contiguous
|
// src1 is not contiguous
|
||||||
for (int ir = 0; ir < nr; ++ir) {
|
for (int64_t ir = ith; ir < nr; ir += nth) {
|
||||||
// src0, src1 and dst are same shape => same indices
|
// src0 and dst are same shape => same indices
|
||||||
const int i3 = ir/(ne2*ne1);
|
// src1 is broadcastable across src0 and dst in i1, i2, i3
|
||||||
const int i2 = (ir - i3*ne2*ne1)/ne1;
|
const int64_t i03 = ir/(ne02*ne01);
|
||||||
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
|
||||||
|
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
|
||||||
|
|
||||||
float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
|
const int64_t i13 = i03 % ne13;
|
||||||
float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
|
const int64_t i12 = i02 % ne12;
|
||||||
for (int i0 = 0; i0 < ne0; i0++) {
|
const int64_t i11 = i01 % ne11;
|
||||||
float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
|
|
||||||
|
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
|
||||||
|
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
|
||||||
|
|
||||||
|
for (int64_t i0 = 0; i0 < ne00; ++i0) {
|
||||||
|
const int64_t i10 = i0 % ne10;
|
||||||
|
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
|
||||||
|
|
||||||
dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
|
dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
|
||||||
}
|
}
|
||||||
@ -8203,7 +8314,7 @@ static void ggml_compute_forward_repeat_f16(
|
|||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
GGML_TENSOR_UNARY_OP_LOCALS;
|
GGML_TENSOR_UNARY_OP_LOCALS
|
||||||
|
|
||||||
// guaranteed to be an integer due to the check in ggml_can_repeat
|
// guaranteed to be an integer due to the check in ggml_can_repeat
|
||||||
const int nr0 = (int)(ne0/ne00);
|
const int nr0 = (int)(ne0/ne00);
|
||||||
@ -8348,6 +8459,7 @@ static void ggml_compute_forward_concat_f32(
|
|||||||
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
||||||
|
|
||||||
const int ith = params->ith;
|
const int ith = params->ith;
|
||||||
|
const int nth = params->nth;
|
||||||
|
|
||||||
GGML_TENSOR_BINARY_OP_LOCALS
|
GGML_TENSOR_BINARY_OP_LOCALS
|
||||||
|
|
||||||
@ -8357,7 +8469,7 @@ static void ggml_compute_forward_concat_f32(
|
|||||||
GGML_ASSERT(nb10 == sizeof(float));
|
GGML_ASSERT(nb10 == sizeof(float));
|
||||||
|
|
||||||
for (int i3 = 0; i3 < ne3; i3++) {
|
for (int i3 = 0; i3 < ne3; i3++) {
|
||||||
for (int i2 = ith; i2 < ne2; i2++) {
|
for (int i2 = ith; i2 < ne2; i2 += nth) {
|
||||||
if (i2 < ne02) { // src0
|
if (i2 < ne02) { // src0
|
||||||
for (int i1 = 0; i1 < ne1; i1++) {
|
for (int i1 = 0; i1 < ne1; i1++) {
|
||||||
for (int i0 = 0; i0 < ne0; i0++) {
|
for (int i0 = 0; i0 < ne0; i0++) {
|
||||||
@ -9517,6 +9629,8 @@ static void ggml_compute_forward_mul_mat(
|
|||||||
char * wdata = params->wdata;
|
char * wdata = params->wdata;
|
||||||
const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
|
const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
|
||||||
|
|
||||||
|
assert(params->wsize >= ne11*ne12*ne13*row_size);
|
||||||
|
|
||||||
for (int64_t i13 = 0; i13 < ne13; ++i13) {
|
for (int64_t i13 = 0; i13 < ne13; ++i13) {
|
||||||
for (int64_t i12 = 0; i12 < ne12; ++i12) {
|
for (int64_t i12 = 0; i12 < ne12; ++i12) {
|
||||||
for (int64_t i11 = 0; i11 < ne11; ++i11) {
|
for (int64_t i11 = 0; i11 < ne11; ++i11) {
|
||||||
@ -9618,6 +9732,26 @@ static void ggml_compute_forward_mul_mat(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// ggml_compute_forward_mul_mat_id
|
||||||
|
|
||||||
|
static void ggml_compute_forward_mul_mat_id(
|
||||||
|
const struct ggml_compute_params * params,
|
||||||
|
struct ggml_tensor * dst) {
|
||||||
|
|
||||||
|
const struct ggml_tensor * ids = dst->src[0];
|
||||||
|
const struct ggml_tensor * src1 = dst->src[1];
|
||||||
|
|
||||||
|
const int id = ggml_get_op_params_i32(dst, 0);
|
||||||
|
|
||||||
|
const int a_id = ((int32_t *)ids->data)[id];
|
||||||
|
|
||||||
|
GGML_ASSERT(a_id >= 0 && a_id < ids->ne[0]);
|
||||||
|
|
||||||
|
const struct ggml_tensor * src0 = dst->src[a_id + 2];
|
||||||
|
|
||||||
|
ggml_compute_forward_mul_mat(params, src0, src1, dst);
|
||||||
|
}
|
||||||
|
|
||||||
// ggml_compute_forward_out_prod
|
// ggml_compute_forward_out_prod
|
||||||
|
|
||||||
static void ggml_compute_forward_out_prod_f32(
|
static void ggml_compute_forward_out_prod_f32(
|
||||||
@ -12021,6 +12155,67 @@ static void ggml_compute_forward_upscale(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// ggml_compute_forward_argsort
|
||||||
|
|
||||||
|
static void ggml_compute_forward_argsort_f32(
|
||||||
|
const struct ggml_compute_params * params,
|
||||||
|
const struct ggml_tensor * src0,
|
||||||
|
struct ggml_tensor * dst) {
|
||||||
|
|
||||||
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
GGML_TENSOR_UNARY_OP_LOCALS
|
||||||
|
|
||||||
|
GGML_ASSERT(nb0 == sizeof(float));
|
||||||
|
|
||||||
|
const int ith = params->ith;
|
||||||
|
const int nth = params->nth;
|
||||||
|
|
||||||
|
const int64_t nr = ggml_nrows(src0);
|
||||||
|
|
||||||
|
enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
|
||||||
|
|
||||||
|
for (int64_t i = ith; i < nr; i += nth) {
|
||||||
|
int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
|
||||||
|
const float * src_data = (float *)((char *) src0->data + i*nb01);
|
||||||
|
|
||||||
|
for (int64_t j = 0; j < ne0; j++) {
|
||||||
|
dst_data[j] = j;
|
||||||
|
}
|
||||||
|
|
||||||
|
// C doesn't have a functional sort, so we do a bubble sort instead
|
||||||
|
for (int64_t j = 0; j < ne0; j++) {
|
||||||
|
for (int64_t k = j + 1; k < ne0; k++) {
|
||||||
|
if ((order == GGML_SORT_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
|
||||||
|
(order == GGML_SORT_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
|
||||||
|
int32_t tmp = dst_data[j];
|
||||||
|
dst_data[j] = dst_data[k];
|
||||||
|
dst_data[k] = tmp;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_compute_forward_argsort(
|
||||||
|
const struct ggml_compute_params * params,
|
||||||
|
const struct ggml_tensor * src0,
|
||||||
|
struct ggml_tensor * dst) {
|
||||||
|
|
||||||
|
switch (src0->type) {
|
||||||
|
case GGML_TYPE_F32:
|
||||||
|
{
|
||||||
|
ggml_compute_forward_argsort_f32(params, src0, dst);
|
||||||
|
} break;
|
||||||
|
default:
|
||||||
|
{
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
} break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
// ggml_compute_forward_flash_attn
|
// ggml_compute_forward_flash_attn
|
||||||
|
|
||||||
static void ggml_compute_forward_flash_attn_f32(
|
static void ggml_compute_forward_flash_attn_f32(
|
||||||
@ -13844,6 +14039,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
|||||||
{
|
{
|
||||||
ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
|
ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
|
||||||
} break;
|
} break;
|
||||||
|
case GGML_OP_MUL_MAT_ID:
|
||||||
|
{
|
||||||
|
ggml_compute_forward_mul_mat_id(params, tensor);
|
||||||
|
} break;
|
||||||
case GGML_OP_OUT_PROD:
|
case GGML_OP_OUT_PROD:
|
||||||
{
|
{
|
||||||
ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
|
ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
|
||||||
@ -13948,6 +14147,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
|||||||
{
|
{
|
||||||
ggml_compute_forward_upscale(params, tensor->src[0], tensor);
|
ggml_compute_forward_upscale(params, tensor->src[0], tensor);
|
||||||
} break;
|
} break;
|
||||||
|
case GGML_OP_ARGSORT:
|
||||||
|
{
|
||||||
|
ggml_compute_forward_argsort(params, tensor->src[0], tensor);
|
||||||
|
} break;
|
||||||
case GGML_OP_FLASH_ATTN:
|
case GGML_OP_FLASH_ATTN:
|
||||||
{
|
{
|
||||||
const int32_t t = ggml_get_op_params_i32(tensor, 0);
|
const int32_t t = ggml_get_op_params_i32(tensor, 0);
|
||||||
@ -14598,6 +14801,10 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
|
|||||||
zero_table);
|
zero_table);
|
||||||
}
|
}
|
||||||
} break;
|
} break;
|
||||||
|
case GGML_OP_MUL_MAT_ID:
|
||||||
|
{
|
||||||
|
GGML_ASSERT(false); // TODO: not implemented
|
||||||
|
} break;
|
||||||
case GGML_OP_OUT_PROD:
|
case GGML_OP_OUT_PROD:
|
||||||
{
|
{
|
||||||
GGML_ASSERT(false); // TODO: not implemented
|
GGML_ASSERT(false); // TODO: not implemented
|
||||||
@ -14936,6 +15143,10 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
|
|||||||
{
|
{
|
||||||
GGML_ASSERT(false); // TODO: not implemented
|
GGML_ASSERT(false); // TODO: not implemented
|
||||||
} break;
|
} break;
|
||||||
|
case GGML_OP_ARGSORT:
|
||||||
|
{
|
||||||
|
GGML_ASSERT(false); // TODO: not implemented
|
||||||
|
} break;
|
||||||
case GGML_OP_FLASH_ATTN:
|
case GGML_OP_FLASH_ATTN:
|
||||||
{
|
{
|
||||||
struct ggml_tensor * flash_grad = NULL;
|
struct ggml_tensor * flash_grad = NULL;
|
||||||
@ -15296,12 +15507,8 @@ struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
|
|||||||
return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
|
return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
|
||||||
}
|
}
|
||||||
|
|
||||||
struct ggml_cgraph * ggml_graph_view(struct ggml_context * ctx, struct ggml_cgraph * cgraph0, int i0, int i1) {
|
struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
|
||||||
const size_t obj_size = sizeof(struct ggml_cgraph);
|
struct ggml_cgraph cgraph = {
|
||||||
struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, obj_size);
|
|
||||||
struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
|
|
||||||
|
|
||||||
*cgraph = (struct ggml_cgraph) {
|
|
||||||
/*.size =*/ 0,
|
/*.size =*/ 0,
|
||||||
/*.n_nodes =*/ i1 - i0,
|
/*.n_nodes =*/ i1 - i0,
|
||||||
/*.n_leafs =*/ 0,
|
/*.n_leafs =*/ 0,
|
||||||
@ -15536,7 +15743,6 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
|||||||
n_tasks = n_threads;
|
n_tasks = n_threads;
|
||||||
} break;
|
} break;
|
||||||
case GGML_OP_SUB:
|
case GGML_OP_SUB:
|
||||||
case GGML_OP_DIV:
|
|
||||||
case GGML_OP_SQR:
|
case GGML_OP_SQR:
|
||||||
case GGML_OP_SQRT:
|
case GGML_OP_SQRT:
|
||||||
case GGML_OP_LOG:
|
case GGML_OP_LOG:
|
||||||
@ -15569,10 +15775,13 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
|||||||
{
|
{
|
||||||
n_tasks = n_threads;
|
n_tasks = n_threads;
|
||||||
} break;
|
} break;
|
||||||
|
default:
|
||||||
|
GGML_ASSERT(false);
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
case GGML_OP_SILU_BACK:
|
case GGML_OP_SILU_BACK:
|
||||||
case GGML_OP_MUL:
|
case GGML_OP_MUL:
|
||||||
|
case GGML_OP_DIV:
|
||||||
case GGML_OP_NORM:
|
case GGML_OP_NORM:
|
||||||
case GGML_OP_RMS_NORM:
|
case GGML_OP_RMS_NORM:
|
||||||
case GGML_OP_RMS_NORM_BACK:
|
case GGML_OP_RMS_NORM_BACK:
|
||||||
@ -15610,6 +15819,11 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
|||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
} break;
|
} break;
|
||||||
|
case GGML_OP_MUL_MAT_ID:
|
||||||
|
{
|
||||||
|
// FIXME: blas
|
||||||
|
n_tasks = n_threads;
|
||||||
|
} break;
|
||||||
case GGML_OP_OUT_PROD:
|
case GGML_OP_OUT_PROD:
|
||||||
{
|
{
|
||||||
n_tasks = n_threads;
|
n_tasks = n_threads;
|
||||||
@ -15669,6 +15883,10 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
|||||||
{
|
{
|
||||||
n_tasks = n_threads;
|
n_tasks = n_threads;
|
||||||
} break;
|
} break;
|
||||||
|
case GGML_OP_ARGSORT:
|
||||||
|
{
|
||||||
|
n_tasks = n_threads;
|
||||||
|
} break;
|
||||||
case GGML_OP_FLASH_ATTN:
|
case GGML_OP_FLASH_ATTN:
|
||||||
{
|
{
|
||||||
n_tasks = n_threads;
|
n_tasks = n_threads;
|
||||||
@ -15731,6 +15949,10 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
|||||||
{
|
{
|
||||||
n_tasks = 1;
|
n_tasks = 1;
|
||||||
} break;
|
} break;
|
||||||
|
case GGML_OP_COUNT:
|
||||||
|
{
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
} break;
|
||||||
default:
|
default:
|
||||||
{
|
{
|
||||||
fprintf(stderr, "%s: op not implemented: ", __func__);
|
fprintf(stderr, "%s: op not implemented: ", __func__);
|
||||||
@ -15927,6 +16149,23 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
|
|||||||
cur = ggml_type_size(vec_dot_type)*ggml_nelements(node->src[1])/ggml_blck_size(vec_dot_type);
|
cur = ggml_type_size(vec_dot_type)*ggml_nelements(node->src[1])/ggml_blck_size(vec_dot_type);
|
||||||
}
|
}
|
||||||
} break;
|
} break;
|
||||||
|
case GGML_OP_MUL_MAT_ID:
|
||||||
|
{
|
||||||
|
const struct ggml_tensor * a = node->src[2];
|
||||||
|
const struct ggml_tensor * b = node->src[1];
|
||||||
|
const enum ggml_type vec_dot_type = type_traits[a->type].vec_dot_type;
|
||||||
|
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
|
||||||
|
if (ggml_compute_forward_mul_mat_use_blas(a, b, node)) {
|
||||||
|
if (a->type != GGML_TYPE_F32) {
|
||||||
|
// here we need memory just for single 2D matrix from src0
|
||||||
|
cur = ggml_type_size(GGML_TYPE_F32)*(a->ne[0]*a->ne[1]);
|
||||||
|
}
|
||||||
|
} else
|
||||||
|
#endif
|
||||||
|
if (b->type != vec_dot_type) {
|
||||||
|
cur = ggml_type_size(vec_dot_type)*ggml_nelements(b)/ggml_blck_size(vec_dot_type);
|
||||||
|
}
|
||||||
|
} break;
|
||||||
case GGML_OP_OUT_PROD:
|
case GGML_OP_OUT_PROD:
|
||||||
{
|
{
|
||||||
if (ggml_is_quantized(node->src[0]->type)) {
|
if (ggml_is_quantized(node->src[0]->type)) {
|
||||||
@ -15962,9 +16201,6 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
|
|||||||
GGML_ASSERT(false);
|
GGML_ASSERT(false);
|
||||||
}
|
}
|
||||||
} break;
|
} break;
|
||||||
case GGML_OP_IM2COL:
|
|
||||||
{
|
|
||||||
} break;
|
|
||||||
case GGML_OP_CONV_TRANSPOSE_2D:
|
case GGML_OP_CONV_TRANSPOSE_2D:
|
||||||
{
|
{
|
||||||
const int64_t ne00 = node->src[0]->ne[0]; // W
|
const int64_t ne00 = node->src[0]->ne[0]; // W
|
||||||
@ -17803,8 +18039,8 @@ size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t *
|
|||||||
memcpy(&qh, &y[i].qh, sizeof(qh));
|
memcpy(&qh, &y[i].qh, sizeof(qh));
|
||||||
|
|
||||||
for (int j = 0; j < QK5_0; j += 2) {
|
for (int j = 0; j < QK5_0; j += 2) {
|
||||||
const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
|
const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
|
||||||
const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
|
const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
|
||||||
|
|
||||||
// cast to 16 bins
|
// cast to 16 bins
|
||||||
const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
|
const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
|
||||||
@ -17833,8 +18069,8 @@ size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t *
|
|||||||
memcpy(&qh, &y[i].qh, sizeof(qh));
|
memcpy(&qh, &y[i].qh, sizeof(qh));
|
||||||
|
|
||||||
for (int j = 0; j < QK5_1; j += 2) {
|
for (int j = 0; j < QK5_1; j += 2) {
|
||||||
const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
|
const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
|
||||||
const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
|
const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
|
||||||
|
|
||||||
// cast to 16 bins
|
// cast to 16 bins
|
||||||
const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
|
const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
|
||||||
@ -18024,6 +18260,7 @@ struct gguf_kv {
|
|||||||
|
|
||||||
struct gguf_header {
|
struct gguf_header {
|
||||||
char magic[4];
|
char magic[4];
|
||||||
|
|
||||||
uint32_t version;
|
uint32_t version;
|
||||||
uint64_t n_tensors; // GGUFv2
|
uint64_t n_tensors; // GGUFv2
|
||||||
uint64_t n_kv; // GGUFv2
|
uint64_t n_kv; // GGUFv2
|
||||||
@ -18113,7 +18350,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
|
|||||||
|
|
||||||
for (uint32_t i = 0; i < sizeof(magic); i++) {
|
for (uint32_t i = 0; i < sizeof(magic); i++) {
|
||||||
if (magic[i] != GGUF_MAGIC[i]) {
|
if (magic[i] != GGUF_MAGIC[i]) {
|
||||||
fprintf(stderr, "%s: invalid magic characters %s.\n", __func__, magic);
|
fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
|
||||||
fclose(file);
|
fclose(file);
|
||||||
return NULL;
|
return NULL;
|
||||||
}
|
}
|
||||||
@ -18128,7 +18365,6 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
|
|||||||
{
|
{
|
||||||
strncpy(ctx->header.magic, magic, 4);
|
strncpy(ctx->header.magic, magic, 4);
|
||||||
|
|
||||||
|
|
||||||
ctx->kv = NULL;
|
ctx->kv = NULL;
|
||||||
ctx->infos = NULL;
|
ctx->infos = NULL;
|
||||||
ctx->data = NULL;
|
ctx->data = NULL;
|
||||||
|
53
ggml.h
53
ggml.h
@ -283,6 +283,20 @@
|
|||||||
const type prefix##3 = (pointer)->array[3]; \
|
const type prefix##3 = (pointer)->array[3]; \
|
||||||
GGML_UNUSED(prefix##3);
|
GGML_UNUSED(prefix##3);
|
||||||
|
|
||||||
|
#define GGML_TENSOR_UNARY_OP_LOCALS \
|
||||||
|
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
|
||||||
|
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
|
||||||
|
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
|
||||||
|
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
|
||||||
|
|
||||||
|
#define GGML_TENSOR_BINARY_OP_LOCALS \
|
||||||
|
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
|
||||||
|
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
|
||||||
|
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
|
||||||
|
GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
|
||||||
|
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
|
||||||
|
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
extern "C" {
|
extern "C" {
|
||||||
#endif
|
#endif
|
||||||
@ -381,6 +395,7 @@ extern "C" {
|
|||||||
GGML_OP_GROUP_NORM,
|
GGML_OP_GROUP_NORM,
|
||||||
|
|
||||||
GGML_OP_MUL_MAT,
|
GGML_OP_MUL_MAT,
|
||||||
|
GGML_OP_MUL_MAT_ID,
|
||||||
GGML_OP_OUT_PROD,
|
GGML_OP_OUT_PROD,
|
||||||
|
|
||||||
GGML_OP_SCALE,
|
GGML_OP_SCALE,
|
||||||
@ -407,8 +422,8 @@ extern "C" {
|
|||||||
GGML_OP_CONV_TRANSPOSE_2D,
|
GGML_OP_CONV_TRANSPOSE_2D,
|
||||||
GGML_OP_POOL_1D,
|
GGML_OP_POOL_1D,
|
||||||
GGML_OP_POOL_2D,
|
GGML_OP_POOL_2D,
|
||||||
|
|
||||||
GGML_OP_UPSCALE, // nearest interpolate
|
GGML_OP_UPSCALE, // nearest interpolate
|
||||||
|
GGML_OP_ARGSORT,
|
||||||
|
|
||||||
GGML_OP_FLASH_ATTN,
|
GGML_OP_FLASH_ATTN,
|
||||||
GGML_OP_FLASH_FF,
|
GGML_OP_FLASH_FF,
|
||||||
@ -448,7 +463,9 @@ extern "C" {
|
|||||||
GGML_UNARY_OP_GELU,
|
GGML_UNARY_OP_GELU,
|
||||||
GGML_UNARY_OP_GELU_QUICK,
|
GGML_UNARY_OP_GELU_QUICK,
|
||||||
GGML_UNARY_OP_SILU,
|
GGML_UNARY_OP_SILU,
|
||||||
GGML_UNARY_OP_LEAKY
|
GGML_UNARY_OP_LEAKY,
|
||||||
|
|
||||||
|
GGML_UNARY_OP_COUNT,
|
||||||
};
|
};
|
||||||
|
|
||||||
enum ggml_object_type {
|
enum ggml_object_type {
|
||||||
@ -631,6 +648,9 @@ extern "C" {
|
|||||||
GGML_API const char * ggml_op_name (enum ggml_op op);
|
GGML_API const char * ggml_op_name (enum ggml_op op);
|
||||||
GGML_API const char * ggml_op_symbol(enum ggml_op op);
|
GGML_API const char * ggml_op_symbol(enum ggml_op op);
|
||||||
|
|
||||||
|
GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
|
||||||
|
GGML_API const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
|
||||||
|
|
||||||
GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
|
GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
|
||||||
|
|
||||||
GGML_API bool ggml_is_quantized(enum ggml_type type);
|
GGML_API bool ggml_is_quantized(enum ggml_type type);
|
||||||
@ -1027,6 +1047,15 @@ extern "C" {
|
|||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
struct ggml_tensor * b);
|
struct ggml_tensor * b);
|
||||||
|
|
||||||
|
// indirect matrix multiplication
|
||||||
|
// ggml_mul_mat_id(ctx, as, ids, id, b) ~= ggml_mul_mat(as[ids[id]], b)
|
||||||
|
GGML_API struct ggml_tensor * ggml_mul_mat_id(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * as[],
|
||||||
|
struct ggml_tensor * ids,
|
||||||
|
int id,
|
||||||
|
struct ggml_tensor * b);
|
||||||
|
|
||||||
// A: m columns, n rows,
|
// A: m columns, n rows,
|
||||||
// B: p columns, n rows,
|
// B: p columns, n rows,
|
||||||
// result is m columns, p rows
|
// result is m columns, p rows
|
||||||
@ -1520,6 +1549,23 @@ extern "C" {
|
|||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
int scale_factor);
|
int scale_factor);
|
||||||
|
|
||||||
|
// sort rows
|
||||||
|
enum ggml_sort_order {
|
||||||
|
GGML_SORT_ASC,
|
||||||
|
GGML_SORT_DESC,
|
||||||
|
};
|
||||||
|
|
||||||
|
GGML_API struct ggml_tensor * ggml_argsort(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
enum ggml_sort_order order);
|
||||||
|
|
||||||
|
// top k elements per row
|
||||||
|
GGML_API struct ggml_tensor * ggml_top_k(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
int k);
|
||||||
|
|
||||||
GGML_API struct ggml_tensor * ggml_flash_attn(
|
GGML_API struct ggml_tensor * ggml_flash_attn(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * q,
|
struct ggml_tensor * q,
|
||||||
@ -1581,7 +1627,6 @@ extern "C" {
|
|||||||
int kh);
|
int kh);
|
||||||
|
|
||||||
// used in sam
|
// used in sam
|
||||||
|
|
||||||
GGML_API struct ggml_tensor * ggml_add_rel_pos(
|
GGML_API struct ggml_tensor * ggml_add_rel_pos(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
@ -1756,7 +1801,7 @@ extern "C" {
|
|||||||
GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
|
GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
|
||||||
GGML_API struct ggml_cgraph * ggml_new_graph_custom (struct ggml_context * ctx, size_t size, bool grads);
|
GGML_API struct ggml_cgraph * ggml_new_graph_custom (struct ggml_context * ctx, size_t size, bool grads);
|
||||||
GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
|
GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
|
||||||
GGML_API struct ggml_cgraph * ggml_graph_view (struct ggml_context * ctx, struct ggml_cgraph * cgraph, int i0, int i1);
|
GGML_API struct ggml_cgraph ggml_graph_view (struct ggml_cgraph * cgraph, int i0, int i1);
|
||||||
GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
|
GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
|
||||||
GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // zero grads
|
GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // zero grads
|
||||||
GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
|
GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
|
||||||
|
@ -20,5 +20,6 @@ cp -rpv ../ggml/include/ggml/ggml.h ./ggml.h
|
|||||||
cp -rpv ../ggml/include/ggml/ggml-alloc.h ./ggml-alloc.h
|
cp -rpv ../ggml/include/ggml/ggml-alloc.h ./ggml-alloc.h
|
||||||
cp -rpv ../ggml/include/ggml/ggml-backend.h ./ggml-backend.h
|
cp -rpv ../ggml/include/ggml/ggml-backend.h ./ggml-backend.h
|
||||||
|
|
||||||
cp -rpv ../ggml/tests/test-opt.cpp ./tests/test-opt.cpp
|
cp -rpv ../ggml/tests/test-opt.cpp ./tests/test-opt.cpp
|
||||||
cp -rpv ../ggml/tests/test-grad0.cpp ./tests/test-grad0.cpp
|
cp -rpv ../ggml/tests/test-grad0.cpp ./tests/test-grad0.cpp
|
||||||
|
cp -rpv ../ggml/tests/test-backend-ops.cpp ./tests/test-backend-ops.cpp
|
||||||
|
@ -22,26 +22,32 @@ endfunction()
|
|||||||
llama_build_and_test_executable(test-quantize-fns.cpp)
|
llama_build_and_test_executable(test-quantize-fns.cpp)
|
||||||
llama_build_and_test_executable(test-quantize-perf.cpp)
|
llama_build_and_test_executable(test-quantize-perf.cpp)
|
||||||
llama_build_and_test_executable(test-sampling.cpp)
|
llama_build_and_test_executable(test-sampling.cpp)
|
||||||
|
|
||||||
llama_build_executable(test-tokenizer-0-llama.cpp)
|
llama_build_executable(test-tokenizer-0-llama.cpp)
|
||||||
llama_test_executable (test-tokenizer-0-llama test-tokenizer-0-llama.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama.gguf)
|
llama_test_executable (test-tokenizer-0-llama test-tokenizer-0-llama.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama.gguf)
|
||||||
|
|
||||||
llama_build_executable(test-tokenizer-0-falcon.cpp)
|
llama_build_executable(test-tokenizer-0-falcon.cpp)
|
||||||
llama_test_executable (test-tokenizer-0-falcon test-tokenizer-0-falcon.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-falcon.gguf)
|
llama_test_executable (test-tokenizer-0-falcon test-tokenizer-0-falcon.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-falcon.gguf)
|
||||||
|
|
||||||
llama_build_executable(test-tokenizer-1-llama.cpp)
|
llama_build_executable(test-tokenizer-1-llama.cpp)
|
||||||
llama_test_executable (test-tokenizer-1-llama test-tokenizer-1-llama.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama.gguf)
|
llama_test_executable (test-tokenizer-1-llama test-tokenizer-1-llama.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama.gguf)
|
||||||
llama_test_executable(test-tokenizer-1-baichuan test-tokenizer-1-llama.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-baichuan.gguf)
|
llama_test_executable (test-tokenizer-1-baichuan test-tokenizer-1-llama.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-baichuan.gguf)
|
||||||
|
|
||||||
llama_build_executable(test-tokenizer-1-bpe.cpp)
|
llama_build_executable(test-tokenizer-1-bpe.cpp)
|
||||||
llama_test_executable (test-tokenizer-1-falcon test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-falcon.gguf)
|
llama_test_executable (test-tokenizer-1-falcon test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-falcon.gguf)
|
||||||
llama_test_executable(test-tokenizer-1-aquila test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-aquila.gguf)
|
llama_test_executable (test-tokenizer-1-aquila test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-aquila.gguf)
|
||||||
llama_test_executable(test-tokenizer-1-mpt test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-mpt.gguf)
|
llama_test_executable (test-tokenizer-1-mpt test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-mpt.gguf)
|
||||||
llama_test_executable(test-tokenizer-1-stablelm-3b-4e1t test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-stablelm-3b-4e1t.gguf)
|
llama_test_executable (test-tokenizer-1-stablelm-3b-4e1t test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-stablelm-3b-4e1t.gguf)
|
||||||
llama_test_executable(test-tokenizer-1-gpt-neox test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-gpt-neox.gguf)
|
llama_test_executable (test-tokenizer-1-gpt-neox test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-gpt-neox.gguf)
|
||||||
llama_test_executable(test-tokenizer-1-refact test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-refact.gguf)
|
llama_test_executable (test-tokenizer-1-refact test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-refact.gguf)
|
||||||
llama_test_executable(test-tokenizer-1-starcoder test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-starcoder.gguf)
|
llama_test_executable (test-tokenizer-1-starcoder test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-starcoder.gguf)
|
||||||
# llama_test_executable(test-tokenizer-1-bloom test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-bloom.gguf) # BIG
|
# llama_test_executable (test-tokenizer-1-bloom test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-bloom.gguf) # BIG
|
||||||
|
|
||||||
llama_build_and_test_executable(test-grammar-parser.cpp)
|
llama_build_and_test_executable(test-grammar-parser.cpp)
|
||||||
llama_build_and_test_executable(test-llama-grammar.cpp)
|
llama_build_and_test_executable(test-llama-grammar.cpp)
|
||||||
llama_build_and_test_executable(test-grad0.cpp) # SLOW
|
llama_build_and_test_executable(test-grad0.cpp)
|
||||||
# llama_build_and_test_executable(test-opt.cpp) # SLOW
|
# llama_build_and_test_executable(test-opt.cpp) # SLOW
|
||||||
|
llama_build_and_test_executable(test-backend-ops.cpp)
|
||||||
|
|
||||||
llama_build_and_test_executable(test-rope.cpp)
|
llama_build_and_test_executable(test-rope.cpp)
|
||||||
|
|
||||||
|
1357
tests/test-backend-ops.cpp
Normal file
1357
tests/test-backend-ops.cpp
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user