llava-cli : multiple images (#6969)

Co-authored-by: root <root@nenya.lothlorien.ca>
This commit is contained in:
cpumaxx 2024-04-29 07:34:24 -07:00 committed by GitHub
parent 24affa7db3
commit ffe666572f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 42 additions and 33 deletions

View File

@ -893,7 +893,7 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
invalid_param = true;
return true;
}
params.image = argv[i];
params.image.emplace_back(argv[i]);
return true;
}
if (arg == "-i" || arg == "--interactive") {
@ -1495,7 +1495,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" -ps N, --p-split N speculative decoding split probability (default: %.1f)\n", (double)params.p_split);
printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA. see examples/llava/README.md\n");
printf(" --image IMAGE_FILE path to an image file. use with multimodal models\n");
printf(" --image IMAGE_FILE path to an image file. use with multimodal models. Specify multiple times for batching\n");
if (llama_supports_mlock()) {
printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
}

View File

@ -168,7 +168,7 @@ struct gpt_params {
// multimodal models (see examples/llava)
std::string mmproj = ""; // path to multimodal projector
std::string image = ""; // path to an image file
std::vector<std::string> image; // path to image file(s)
};
bool parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);

View File

@ -113,11 +113,11 @@ struct llava_context {
};
static void show_additional_info(int /*argc*/, char ** argv) {
LOG_TEE("\n example usage: %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
LOG_TEE("\n example usage: %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
LOG_TEE(" note: a lower temperature value like 0.1 is recommended for better quality.\n");
}
static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_params * params) {
static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_params * params, const std::string & fname) {
// load and preprocess the image
llava_image_embed * embed = NULL;
@ -133,9 +133,9 @@ static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_para
}
params->prompt = remove_image_from_prompt(prompt);
} else {
embed = llava_image_embed_make_with_filename(ctx_llava->ctx_clip, params->n_threads, params->image.c_str());
embed = llava_image_embed_make_with_filename(ctx_llava->ctx_clip, params->n_threads, fname.c_str());
if (!embed) {
LOG_TEE("%s: is %s really an image file?\n", __func__, params->image.c_str());
fprintf(stderr, "%s: is %s really an image file?\n", __func__, fname.c_str());
return NULL;
}
}
@ -207,17 +207,7 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
printf("\n");
}
static struct llava_context * llava_init(gpt_params * params) {
const char * clip_path = params->mmproj.c_str();
auto prompt = params->prompt;
if (prompt.empty()) {
prompt = "describe the image in detail.";
}
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
static struct llama_model * llava_init(gpt_params * params) {
llama_backend_init();
llama_numa_init(params->numa);
@ -228,6 +218,19 @@ static struct llava_context * llava_init(gpt_params * params) {
LOG_TEE("%s: error: unable to load model\n" , __func__);
return NULL;
}
return model;
}
static struct llava_context * llava_init_context(gpt_params * params, llama_model * model) {
const char * clip_path = params->mmproj.c_str();
auto prompt = params->prompt;
if (prompt.empty()) {
prompt = "describe the image in detail.";
}
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
llama_context_params ctx_params = llama_context_params_from_gpt_params(*params);
ctx_params.n_ctx = params->n_ctx < 2048 ? 2048 : params->n_ctx; // we need a longer context size to process image embeddings
@ -286,15 +289,18 @@ int main(int argc, char ** argv) {
show_additional_info(argc, argv);
return 1;
}
auto ctx_llava = llava_init(&params);
if (ctx_llava == NULL) {
LOG_TEE("%s: error: failed to init llava\n", __func__);
auto model = llava_init(&params);
if (model == NULL) {
fprintf(stderr, "%s: error: failed to init llava model\n", __func__);
return 1;
}
auto image_embed = load_image(ctx_llava, &params);
for (auto & image : params.image) {
auto ctx_llava = llava_init_context(&params, model);
auto image_embed = load_image(ctx_llava, &params, image);
if (!image_embed) {
std::cerr << "error: failed to load image " << image << ". Terminating\n\n";
return 1;
}
@ -302,8 +308,11 @@ int main(int argc, char ** argv) {
process_prompt(ctx_llava, image_embed, &params, params.prompt);
llama_print_timings(ctx_llava->ctx_llama);
llava_image_embed_free(image_embed);
ctx_llava->model = NULL;
llava_free(ctx_llava);
}
llama_free_model(model);
return 0;
}