- Change '--embedding' to '--embeddings' in the README
- Update the description to match the latest --help output
- Added a caution about defining physical batch size
* [server] Cleanup a memory leak on exit
There are a couple memory leaks on exit of the server. This hides others.
After cleaning this up, you can see leaks on slots. But that is another
patch to be sent after this.
* make tab into spaces
* feat: first things to do
* feat: create tensors for Jina architecture
* fix: use other tensors
* feat: embedding gets results
* fix: fix usage of ALIBI
* fix: clean prints
* fix: do some cleanup unused vars
* fix: revert changes to Makefile and CMakeLists
* fix: revert some changes
* fix: fix small detail
* fix: fix convert formatting
* fix: fix linting and editor
* feat: set proper vocab settings
* fix: JinaBertForMaskedLM registration
* feat: support q_normalization and k_normalization in Jina arch
* feat: handle gpt2 tokenizer with Jina architecture
* feat: example comments in embedding
* feat: rename Jina Bert to Jina Bert V2
* fix: add some changes as per review
* feat: proper KQ_pos for Jina embeddings
* feat: add capacity to load models ES and DE for Spanish
* llama : fix pre-tokenizers
* ggml : full ALiBi support
* ggml : update ggml_soft_max_ext() CUDA, SYCL
* ggml : ggml_flash_attn_ext() support ALiBi (CPU)
* ggml : ggml_flash_attn_ext() support ALiBi (Metal)
* ggml : fix warning
* ggml : ggml_flash_attn_ext() support ALiBi (CUDA)
ggml-ci
* minor : clean-up
* embedding : add warning about missing SEP
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
The llama.cpp grammar parser had a bug where forgetting to add a closing
quotation mark to strings would cause parsing to crash. Anyone running a
server on a public endpoint is advised to upgrade. To reproduce this bug
./llamafile -m foo.gguf -p bar --grammar 'root::="'
Credit for discovering and reporting this issue goes to Eclypsium
Security Researcher Richard Johnson <Richard.johnson@eclypsium.com>.
* Revert "Revert "llava : add support for moondream vision language model (#6899)""
This reverts commit 9da243b36a.
* Fix num_positions and embeddings initialization
* convert-hf : begin refactoring write_tensor
* convert : upgrade to sentencepiece v0.2.0
* convert-hf : remove unused n_dims in extra_*_tensors
* convert-hf : simplify MoE weights stacking
* convert-hf : flake8 linter doesn't like semicolons
* convert-hf : allow unusual model part names
For example, loading `model-00001-of-00001.safetensors` now works.
* convert-hf : fix stacking MoE expert tensors
`torch.stack` and `torch.cat` don't do the same thing.
* convert-hf : fix Mamba conversion
Tested to work even with a SentencePiece-based tokenizer.
* convert : use a string for the SentencePiece tokenizer path
* convert-hf : display tensor shape
* convert-hf : convert norms to f32 by default
* convert-hf : sort model part names
`os.listdir` is said to list files in arbitrary order.
Sorting the file names should let "model-00009-of-00042.safetensors"
be loaded before "model-00010-of-00042.safetensors".
* convert-hf : use an ABC for Model again
It seems Protocol can't be used as a statically type-checked ABC,
because its subclasses also can't be instantiated. (why did it seem to work?)
At least there's still a way to throw an error when forgetting to define
the `model_arch` property of any registered Model subclasses.
* convert-hf : use a plain class for Model, and forbid direct instantiation
There are no abstract methods used anyway,
so using ABC isn't really necessary.
* convert-hf : more consistent formatting of cmdline args
* convert-hf : align the message logged for converted tensors
* convert-hf : fix Refact conversion
* convert-hf : save memory with lazy evaluation
* convert-hf : flake8 doesn't like lowercase L as a variable name
* convert-hf : remove einops requirement for InternLM2
* convert-hf : faster model parts loading
Instead of pre-loading them all into a dict, iterate on the tensors
in the model parts progressively as needed in Model.write_tensors
Conversion for some architectures relies on checking for the presence
of specific tensor names, so for multi-part models, the weight map is read
from the relevant json file to quickly get these names up-front.
* convert-hf : minor changes for consistency
* gguf-py : add tqdm as a dependency
It's small, and used for a progress bar
in GGUFWriter.write_tensors_to_file
* Added themes support with two sample themes and a favicon.
* Newline
* Newline
* Newline
* Trailing whitespace
* Increased opacity for contrast
* Increase opacity.
Check actions cancelled for some other priority job and I can't seem to manually re-run them, so MOAR OPACITY
* Opacity action trigger.
Trying to re-trigger the cancelled action.
* One more opacity adjustment
This Actions pipeline is failing for random issues.
* Delete examples/server/themes/buttons_top/completion.js
This will be served from the static string built-in to server.
* Delete examples/server/themes/buttons_top/index.js
This will be served from the static string built-in to server.
* Delete examples/server/themes/wild/completion.js
This will be served from the static string built-in to server.
* Delete examples/server/themes/buttons_top/json-schema-to-grammar.mjs
This will be served from the static string built-in to server.
* Delete examples/server/themes/wild/index.js
This will be served from the static string built-in to server.
* Delete examples/server/themes/wild/json-schema-to-grammar.mjs
This will be served from the static string built-in to server.
* Replaced underscore.
* Introduce bfloat16 support
Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as
their canonical floating point format.
┌sign
│
│ ┌exponent
│ │
│ │ ┌mantissa
│ │ │
│┌──┴───┐┌─┴───┐
0b0000000000000000 brain16
This encoding has the same number of exponent bits as float32. That
makes conversion relatively straightforward, even in the absence of
hardware support. For example, converting brain16 to binary32 means
simply shifting 16 bits to the left.
┌sign
│
│ ┌exponent
│ │
│ │ ┌mantissa
│ │ │
│┌──┴───┐┌─┴───────────────────┐
0b00000000000000000000000000000000 IEEE binary32
The issue is that converting bf16 to fp16 can result in information
loss. Only 13% of bf16 numbers can be precisely represented in fp16
which in practice ends up being 99.71% of Mistral 7b v0.2's weights
however there is currently no way other than fp32 to get the others
┌sign
│
│ ┌exponent
│ │
│ │ ┌mantissa
│ │ │
│┌─┴─┐┌─┴──────┐
0b0000000000000000 IEEE binary16
This change fixes that, by adding a bf16 data type to GGML. Support
for CPU inference has been implemented along with optimizations for
the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2
improves somewhere around -0.0024 to -0.0046 compared to using fp16
* Remove GGML code that's not needed
* Minimize the GGML API surface area for BF16
* Remove bf16 luts
* Make the GGML header look nicer
* Fix documentation
* Apply ggerganov's fixes for test-backend-ops
* Add BF16 code for new ggml_validate_row_data() function
* Fixed save_imatrix to match old behaviour for MoE
This fix is simple and clear, but unnecessarily doubles the memory overhead..
* Fixed missing idx variable
* Unconditionally increment ncall
Co-authored-by: slaren <slarengh@gmail.com>
* Fixed 2 bugs in save_imatrix()
- Fixed segfault bug because the counts vector needed to be created.
- Fixed pre-existing bug didn't actually add to the counts for "--combine" option.
* ncall needs summing too
* Trailing whitespace
---------
Co-authored-by: slaren <slarengh@gmail.com>
* Update log text (EOS to EOG)
The log text "found EOS" is no longer always correct, here, because there is now an is-EOG check that also returns true for EOT.
* Improve log msg. further by using "an" instead of "some".
As suggested, to avoid misunderstanding (no multiple EOG tokens found, just one).
This will reproduce the issue in llama13b
{
'prompt': 'Q: hello world \nA: ',
'stop': ['\n'],
'temperature': 0.0,
'n_predict': 10,
'cache_prompt': True,
'n_probs': 10
}
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
* imatrix: save the dataset file used in the output file
* llama: support kv overrides type string string
* common: factorize KV Overrides parsing between common and server
* quantize: add imatrix n entries and dataset KV metadata
quantize: factorize KV Overrides parsing between common
#6656
* llama: remove kv override str_value initialization as it does not compile on some toolchain
* quantize: add imatrix m_last_call as `quantize.imatrix.chunks_count`
* quantize: add imatrix filename in KV
* llama: add llama_model_kv_override_free
* common: add llama_model_kv_override_free
common: free kv override if used after model loading
* llama: finally move the string KV override value to the stack
* llama : minor
* no need to add a NUL to the std::vector, std::string can be initialized from a pair of iterators.
Co-authored-by: slaren <slarengh@gmail.com>
* kv override: ensure string termination
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
* server: cap n_predict if not set to n_ctx_train
* server: fix infinite loop
* server: infinite loop, move in process_token
server: infinite loop: set stop limit to true
* minor: spaces
* minor: spaces
* server: include prompt tokens in the EOS limit
* add support for moondream vision language model
This required making the following changes to the CLIP model:
1. Support for patch embedding bias.
2. Make class embedding and pre-layernorm optional.
3. Add support for post-layernorm.
* Update examples/llava/clip.cpp
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit renamesthe lerp (linear interpolation) function in clip.cpp
to avoid a conflict with the lerp function in the <cmath> standard C++
library when using c++20.
The motivation for this change is to enable projects that use c++20 to
be able to compile clip.cpp without having to resort to patching it. The
lerp function was added to cmath in version C++20 (202002L) and is why
this is not causing any issue at the moment as C++11/C++17 is currently
used by llama.cpp.
I realize that llama.cpp uses either C++11 (or C++17 in the case for
SYCL) but wanted to ask if this would be an acceptable change just the
same.
Refs: https://en.cppreference.com/w/cpp/numeric/lerp
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* Implement '--keep-split' to quantize model into several shards
* Add test script
* Update examples/quantize/quantize.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Split model correctly even if tensor id is out-of-order
* Update llama_model_quantize_params
* Fix preci failures
---------
Co-authored-by: z5269887 <z5269887@unsw.edu.au>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>