* common : Changed tuple to struct (TODO fix)
Use struct `llama_init_result` to replace the previous
std::tuple<struct llama_model *, struct llama_context *>
* delete llama_init_default_params()
* delete the extra whitespace
* [example] batched-bench "segmentation fault"
When `llama-batched-bench` is invoked _without_ setting `-npl`, "number
of parallel prompts", it segfaults.
The segfault is caused by invoking `max_element()` on a zero-length
vector, `n_pl`
This commit addresses that by first checking to see if the number of
parallel prompts is zero, and if so sets the maximum sequence size to 1;
otherwise, sets it to the original, the result of `max_element()`.
Fixes, when running `lldb build/bin/llama-batched-bench -- -m models/Meta-Llama-3-8B.gguf`
```
* thread #1, queue = 'com.apple.main-thread', stop reason = EXC_BAD_ACCESS (code=1, address=0x0)
frame #0: 0x000000010000366c llama-batched-bench`main(argc=3, argv=0x000000016fdff268) at batched-bench.cpp:72:28
69 llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
70
71 // ensure enough sequences are available
-> 72 ctx_params.n_seq_max = *std::max_element(n_pl.begin(), n_pl.end());
```
* Update examples/batched-bench/batched-bench.cpp
Co-authored-by: compilade <git@compilade.net>
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: compilade <git@compilade.net>
* llama : refactor session file management
* llama : saving and restoring state checks for overflow
The size of the buffers should now be given to the functions working
with them, otherwise a truncated file could cause out of bound reads.
* llama : stream from session file instead of copying into a big buffer
Loading session files should no longer cause a memory usage spike.
* llama : llama_state_get_size returns the actual size instead of max
This is a breaking change, but makes that function *much* easier
to keep up to date, and it also makes it reflect the behavior
of llama_state_seq_get_size.
* llama : share code between whole and seq_id-specific state saving
Both session file types now use a more similar format.
* llama : no longer store all hparams in session files
Instead, the model arch name is stored.
The layer count and the embedding dimensions of the KV cache
are still verified when loading.
Storing all the hparams is not necessary.
* llama : fix uint64_t format type
* llama : various integer type cast and format string fixes
Some platforms use "%lu" and others "%llu" for uint64_t.
Not sure how to handle that, so casting to size_t when displaying errors.
* llama : remove _context suffix for llama_data_context
* llama : fix session file loading
llama_state_get_size cannot be used to get the max size anymore.
* llama : more graceful error handling of invalid session files
* llama : remove LLAMA_MAX_RNG_STATE
It's no longer necessary to limit the size of the RNG state,
because the max size of session files is not estimated anymore.
* llama : cast seq_id in comparison with unsigned n_seq_max
Changes:
- Move each example into its own function. This makes the code much
easier to read and understand.
- Make the program easy to only run one test by commenting out function
calls in main().
- Make the output easy to parse by indenting the output for each example.
- Add shebang and +x bit to make it clear it's an executable.
- Make the host configurable via --host with a default 127.0.0.1:8080.
- Make the code look in the tools list to call the registered tool,
instead of hardcoding the returned values. This makes the code more
copy-pastable.
- Add error checking, so that the program exits 1 if the LLM didn't
returned expected values. It's super useful to check for correctness.
Testing:
- Tested with Mistral-7B-Instruct-v0.3 in F16 and Q5_K_M and
Meta-Llama-3-8B-Instruct in F16 and Q5_K_M.
- I did not observe a failure even once in Mistral-7B-Instruct-v0.3.
- Llama-3 failed about a third of the time in example_concurrent: it
only returned one call instead of 3. Even for F16.
Potential follow ups:
- Do not fix the prompt encoding yet. Surprisingly it mostly works even
if the prompt encoding is not model optimized.
- Add chained answer and response.
Test only change.
* fix continuing generating blank lines after getting EOT token or EOS token from LLM
* change variable name to is_done (variable name suggested by ggerganov)
* minor : fix trailing whitespace
* minor : add space
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Main thing is that the default output filename will take this form
{name}{parameters}{finetune}{version}{encoding}{kind}
In addition this add and remove some entries in the KV store and adds a metadata class with automatic heuristics capability to derive some values based on model card content
* No Change:
- Internal GGUF Spec
- `general.architecture`
- `general.quantization_version`
- `general.alignment`
- `general.file_type`
- General Model Details
- `general.name`
- `general.author`
- `general.version`
- `general.description`
- Licensing details
- `general.license`
- Typically represents the converted GGUF repo (Unless made from scratch)
- `general.url`
- Model Source during conversion
- `general.source.url`
* Removed:
- Model Source during conversion
- `general.source.huggingface.repository`
* Added:
- General Model Details
- `general.organization`
- `general.finetune`
- `general.basename`
- `general.quantized_by`
- `general.size_label`
- Licensing details
- `general.license.name`
- `general.license.link`
- Typically represents the converted GGUF repo (Unless made from scratch)
- `general.doi`
- `general.uuid`
- `general.repo_url`
- Model Source during conversion
- `general.source.doi`
- `general.source.uuid`
- `general.source.repo_url`
- Base Model Source
- `general.base_model.count`
- `general.base_model.{id}.name`
- `general.base_model.{id}.author`
- `general.base_model.{id}.version`
- `general.base_model.{id}.organization`
- `general.base_model.{id}.url` (Model Website/Paper)
- `general.base_model.{id}.doi`
- `general.base_model.{id}.uuid`
- `general.base_model.{id}.repo_url` (Model Source Repository (git/svn/etc...))
- Array based KV stores
- `general.tags`
- `general.languages`
- `general.datasets`
---------
Co-authored-by: compilade <git@compilade.net>
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
* [CANN] Add Ascend NPU backend
Ascend is a full-stack AI computing infrastructure for industry
applications and services based on Huawei Ascend processors and
software.
CANN (Compute Architecture of Neural Networks), developped by
Huawei, is a heterogeneous computing architecture for AI.
Co-authored-by: wangshuai09 <391746016@qq.com>
* delete trailing whitespaces
* Modify the code based on review comment
* Rename LLAMA_CANN to GGML_CANN
* Make ggml-common.h private
* add ggml_cann prefix for acl funcs
* Add logging for CANN backend
* Delete Trailing whitespace
---------
Co-authored-by: wangshuai09 <391746016@qq.com>
* Update clib.json to point to Cyan4973 original xxhash
Convinced Cyan4973 to add clib.json directly to his repo, so can now point the clib package directly to him now. Previously pointed to my fork with the clib.json package metadata
https://github.com/Cyan4973/xxHash/pull/954
* gguf-hash: readme update to point to Cyan4973 xxHash repo [no ci]
The --help option on export-lora isn't accepted as valid. The help still gets displayed by default, but the script exits with an error message and nonzero status.
The README.md had a stale information. In particular, the --ctx-size
"defaults to 512" confused me and I had to check the code to confirm
this was false. This the server is evolving rapidly, it's probably
better to keep the source of truth at a single place (in the source) and
generate the README.md based on that.
Did:
make llama-server
./llama-server --help > t.txt
vimdiff t.txt examples/server/README.md
I copied the content inside a backquote block. I would have preferred
proper text but it would require a fair amount of surgery to make the
current output compatible with markdown. A follow up could be to
automate this process with a script.
No functional change.
* server : handle content array in chat API
* Update examples/server/utils.hpp
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
---------
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
* Arm AArch64: optimized GEMV and GEMM kernels for q4_0_q8_0, and q8_0_q8_0 quantization
* Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions
* Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions
* Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions
* Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions
* Arm AArch64: add copyright claim only to ggml-aarch64.cpp and ggml-aarch64.h files
* Arm AArch64: minor code refactoring for rebase
* Arm AArch64: minor code refactoring for resolving a build issue with cmake
* Arm AArch64: minor code refactoring to split the Q4_0_AARC64 type into three separate types: Q4_0_4_4, Q4_0_4_8, and Q4_0_8_8
* Arm AArch64: minor code change for resolving a build issue with server-windows
* retrigger checks
* Arm AArch64: minor code changes for rebase
* Arm AArch64: minor changes to skip the pr#7433 vec_dot code for arm cpus with SVE VL not equal to 256 bits
* Arm AArch64: remove stale LLAMA_QKK_64 from CMakeLists.txt and delete build.zig
* Arm AArch64: add reference scalar gemm and gemv, and avoid dynamic memory allocations during quantization for Q4_0_4_4, Q4_0_4_8, and Q4_0_8_8
* Arm AArch64: add multithreaded quantization support for the new types: Q4_0_4_4, Q4_0_4_8, and Q4_0_8_8
* Arm AArch64: minor code refactoring
* Arm AArch64: simplify logic for calling gemm and gemv functions in ggml_compute_forward_mul_mat
* Arm AArch64: minimize changes in ggml_compute_forward_mul_mat
* Arm AArch64: minor code refactoring, and add reference scalar code to quantize routines for new quant types
* Arm AArch64: minor code refactoring
* Arm AArch64: minor code refactoring
* Arm AArch64: minor code refactoring
* rebase on the latest master commit 3fd62a6 and adapt to the new directory structure
* Arm AArch64: remove a redundant comment
* Arm AArch64: add pragma in ggml-aarch64.c to turn -Woverlength-strings warning off
* Arm AArch64: use __aarch64__ check to guard 64-bit neon kernels
* Arm AArch64: update docs/build.md README to include compile time flags for buiilding the Q4_0_4_4 quant type
* Adding a simple program to provide a deprecation warning that can exist to help people notice the binary name change from #7809 and migrate to the new filenames.
* Build legacy replacement binaries only if they already exist. Check for their existence every time so that they are not ignored.
* py : type-check all Python scripts with Pyright
* server-tests : use trailing slash in openai base_url
* server-tests : add more type annotations
* server-tests : strip "chat" from base_url in oai_chat_completions
* server-tests : model metadata is a dict
* ci : disable pip cache in type-check workflow
The cache is not shared between branches, and it's 250MB in size,
so it would become quite a big part of the 10GB cache limit of the repo.
* py : fix new type errors from master branch
* tests : fix test-tokenizer-random.py
Apparently, gcc applies optimisations even when pre-processing,
which confuses pycparser.
* ci : only show warnings and errors in python type-check
The "information" level otherwise has entries
from 'examples/pydantic_models_to_grammar.py',
which could be confusing for someone trying to figure out what failed,
considering that these messages can safely be ignored
even though they look like errors.
CLI to hash GGUF files to detect difference on a per model and per tensor level
The hash type we support is:
- `--xxh64`: use xhash 64bit hash mode (default)
- `--sha1`: use sha1
- `--uuid`: use uuid
- `--sha256`: use sha256
While most POSIX systems already have hash checking programs like sha256sum, it
is designed to check entire files. This is not ideal for our purpose if we want
to check for consistency of the tensor data even if the metadata content of the
gguf KV store has been updated.
This program is designed to hash a gguf tensor payload on a 'per tensor layer'
in addition to a 'entire tensor model' hash. The intent is that the entire
tensor layer can be checked first but if there is any detected inconsistencies,
then the per tensor hash can be used to narrow down the specific tensor layer
that has inconsistencies.
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>