The original file name, `ggml-alpaca-7b-q4.bin`, implied the first-generation GGML. After the breaking changes (mentioned in https://github.com/ggerganov/llama.cpp/issues/382), `llama.cpp` requires GGML V3 now. Those model files are named `*ggmlv3*.bin`. We should change the example to an actually working model file, so that this thing is more likely to run out-of-the-box for more people, and less people would waste time downloading the old Alpaca model.
* use javascript generators as much cleaner API
Also add ways to access completion as promise and EventSource
* export llama_timings as struct and expose them in server
* update readme, update baked includes
* llama : uniform variable names + struct init
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update server instructions for web front end
* Update server README
* Remove duplicate OAI instructions
* Fix duplicate text
---------
Co-authored-by: Jesse Johnson <thatguy@jessejojojohnson.com>
* Generalize quantize_fns for simpler FP16 handling
* Remove call to ggml_cuda_mul_mat_get_wsize
* ci : disable FMA for mac os actions
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* expose simple web interface on root domain
* embed index and add --path for choosing static dir
* allow server to multithread
because web browsers send a lot of garbage requests we want the server
to multithread when serving 404s for favicon's etc. To avoid blowing up
llama we just take a mutex when it's invoked.
* let's try this with the xxd tool instead and see if msvc is happier with that
* enable server in Makefiles
* add /completion.js file to make it easy to use the server from js
* slightly nicer css
* rework state management into session, expose historyTemplate to settings
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* server: add option to output probabilities for completion
* server: fix issue when handling probability output for incomplete tokens for multibyte character generation
* server: fix llama_sample_top_k order
* examples/common.h: put all bool variables in gpt_params together
* add interface for float input
* fixed inpL shape and type
* add examples of input floats
* add test example for embd input
* fixed sampling
* add free for context
* fixed add end condition for generating
* add examples for llava.py
* add READMD for llava.py
* add READMD for llava.py
* add example of PandaGPT
* refactor the interface and fixed the styles
* add cmake build for embd-input
* add cmake build for embd-input
* Add MiniGPT-4 example
* change the order of the args of llama_eval_internal
* fix ci error
* Clean up compiler warnings in train-text
Some brackets to disambiguate order of operations
* Increase GGML_MAX_NAME
Avoiding strncpy danger in train-text-from-scratch and reducing potential future name length issues
* detect NUMA systems and pin work threads to nodes (linux)
* disable mmap prefetch/readahead for NUMA systems
* avoid sending finalize op to thread pool if it does nothing
* silence robot
* fix args
* make --numa a param
* recommendation that n_nodes evenly divide n_threads did not warrant such aggressive enforcement
* lower synchronization overhead
* statically allocate
* move numa state to g_state
* add description for --numa
* ggml : minor style changes
* ggml : minor style + try fix sanitizer build
* llama : allow to initialize backend with NUMA support
* llama : avoid ggml include in llama-util.h
* ggml : style / formatting
* ggml : fix handling of ops with n_threads > n_tasks > 1
* server : utilize numa parameter
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : make model stateless and context stateful
* llama : minor cleanup
* llama : update internal API declaration
* Apply suggestions from code review
fix style
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Missing model memory release
* Fix style
* Add deprecated warning for public API function llama_init_from_file
* Update public API use cases: move away from deprecated llama_init_from_file
* Deprecate public API function llama_apply_lora_from_file
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
Small, non-functional changes were made to non-compliant files.
These include breaking up long lines, whitespace sanitation and
unused import removal.
Maximum line length in python files was set to a generous 125 chars,
in order to minimize number of changes needed in scripts and general
annoyance. The "txt" prompts directory is excluded from the checks
as it may contain oddly formatted files and strings for a good reason.
Signed-off-by: Jiri Podivin <jpodivin@gmail.com>
* Update baby-llama.cpp
Seems to be an error in the implementation of the operator!= function. It attempts to compare the this pointer (a llama_hparams_lora object) with the other pointer (a llama_hparams object) using memcmp. This can lead to incorrect results because the sizes of the objects being compared (sizeof(llama_hparams) and sizeof(llama_hparams_lora)) are different, should now be able to compare two llama_hparams_lora objects for inequality.
* Update baby-llama.cpp
* Update baby-llama.cpp
* add python wrapper
https://gist.github.com/abetlen/2b90e5f153f6efd00931d098de5c73ce
* fix decoding error. adds errors=ignore parameter
* add python bindings for functions to get and set the whole llama state
(rng, logits, embedding and kv_cache)
* update python bindings
* add text generating baby-llama from scratch example
* fix race condition bug in ggml_compute_forward_diag_mask_f32
* implement ggml_soft_max_back for more performant backward pass of soft_max
avoids creating big intermediate matrices of size n_embd x n_embd for llama layers and n_vocab x n_vocab for cross entropy loss
* improve softmax backward pass
go from quadratic runtime to linear runtime by simplifying the formulas
* fix race condition bug in non-inplace ggml_compute_forward_diag_mask_f32
memcpy needs to be synchronized across threads to avoid race conditions.
=> do it in INIT phase
* fix bug in ggml_compute_forward_soft_max_back_f32 on DEBUG build
* improve performance of mul_mat backward pass
avoid transpose by using mul_mat with swapped arguments
* avoid printing too much newlines in baby-llama-text
* activate threading in baby-llama-text
* add ggml_out_prod and use it for mul_mat backward pass for improved performance
performance stats report improvement from 37 seconds to 16 seconds runtime during my training tests
* better weight initialization improves training convergence at start
* better weight initialization improves training convergence at start
* improve ggml_out_prod performance
- change iteration order (>15s -> 10s runtime)
- parallelize over one more dimension: over dst matrix rows (10s -> <5s runtime)
* add llama sampler, shuffle samples and constrain sampling to tokens occurring in train data
* fix get_samples call, add model tensor names, increase model size, start training samples after newline
* save train trained model to checkpoint and load model to be trained from checkpoint
* use inplace functions where possible
* initialize rng with srand
* use different arguments for input and output checkpoint
* ggml fixes to support backward pass on inplace operations
* remove duplicate include
* fix cross entropy loss
- add target probabilities for each sample which is then used in cross entropy loss
* print used memory before and after optimization
* sample with non-greedy sampling parameters at the end of training
* add cmake target for baby-llama-text
* add ggml_add1_inplace to header
* enable gradient propagation for inplace add1 and scale operations
those functions backward passes don't need the original src0, so they also work when forward is inplace
* implement AdamW in ggml_opt_adam by adding weight decay parameter (default 0.001f)
also add a schedule parameter (default 1.0f) that can be used to scale alpha and decay according to learning schedule.
setting the decay parameter to zero disables AdamW resulting in normal Adam optimizer.
since the difference between Adam and AdamW is minimal it is not implemented as another optimizer, but integrated into the existing Adam optimizer.
* use inplace operations in cross_entropy_loss
* fix random weight initialization scale
* add missing default parameters for adam optimizer
* add ggml_opt_context, so that we can properly resume training
otherwise the optimizer states, tracking statistics about the error function and its derivates,
will reset to zero each time ggml_opt is called, hindering convergence on resumed training.
now the optimizer context and all its memory is stored in a separate struct.
* fix bug in llama_sample_token_mirostat_v2
when all candidates are filtered out through mu threshold, the following soft_max operation will fail.
so keep at least one.
* add forward function without using cache, for more performant training
during training on whole samples no cache is required.
removing the cache and simplifying the remaining code results in performance and memory usage improvement.
* print suppressed newline tokens as string "\n"
printing too much actual newlines is suppressed to avoid flooding the console.
* store optimizer state in training checkpoint and add learning schedule
persistent optimizer state allows to resume training without resetting the optimizer
learning schedule consists of linear warmup ramp followed by cosine decay with restarts
* remove unused functions
* fix bug in get_samples which corrupted training targets
* save checkpoint only when it was trained
* simplify code
* remove trailing whitespace
* simplify backward pass for SQRT
* replace inefficient repeat backward pass with dedicated repeat_back operation
* add ggml_cross_entropy_loss with backward pass for faster training
cross entropy loss can also be implemented using softmax and log, but as dedicated operation it is faster and especially avoids unnecessary memory overhead.
* add tests for cross_entropy_loss backward pass
finite differences regularly results in estimated gradient of zero, despite the backward pass giving non zero gradient.
_probably_ the finite differences fails due to numerical issues
* use ggml_cross_entropy_loss in text training example
* remove trailing whitespace
* slightly improve how cross entropy loss is compute
btw: directly implemented cross entropy loss seems to have way lower magnitudes than when implemented with softmax and log.
probably the input to log gets closer to zero due to float numerics.
maybe the multiplication by (1.0-eps)/sum is more accurate..
* add llama_get_vocab to get the vocabulary as output parameters
* set default model.type for unknown models with few layers
* add export of training checkpoint to llama compatible model file
* get vocabulary for exporting training checkpoint to llama compatible model file
* implement backward pass of flash attention
* bugfixes for backward pass of flash attention
* test flash attention backward pass
need to set loose error bounds to pass.
the finitie differences are close to numeric limits and often return quite different values than the backward pass.
reducing eps further lets the gradients vanish completely.
likewise setting eps to big results in wronger values.
the softmax in the middle of the function is probably the most responsible for the numeric issues using finite differences.
* add option to train with flash attention and move options to the top of the main function
training from scratch also works with flash attention
training convergence and generation results after fix number of iterations are worse than when not using flash attention.
maybe there still lingers a bug in the flash attention backward pass?
but training works, just with slower convergence.
flash attention is still worth to use, because it requires way less memory and is faster with high n_ctx
* add train_params and command line option parser
* remove unnecessary comments
* add train params to specify memory size
* remove python bindings
* rename baby-llama-text to train-text-from-scratch
* replace auto parameters in lambda function
* add #include <climits>
* add explicit cast to fix compile error
"error: non-constant-expression cannot be narrowed from type 'int64_t' (aka 'long long') to 'uint32_t' (aka 'unsigned int') in initializer list [-Wc++11-narrowing]"
* remove trailing whitespace
* add ggml_opt_resume_g which accepts forward and backward cgraphs
* fix formulas in comments
* bug fix for ggml_compute_forward_get_rows_back_f32
the result should be set to zero, not to whatever data is in opt0
* improve training memory usage with scratch buffers
instead of relying on the automatic backward pass, we manually create the graph for the backward pass.
it turns out that all backward pass operations need only temporary memory which can be reused after each layer.
will compute backward pass for ALL model parameters
* add option to use scratch buffers in training or not
make it configurable because currently training with scratch buffers implies flash attention and optimization over all parameters.
* ci : disable temporary
* store view offset and permute axes in opt[0] instead of storing it in padding
use memcpy to store offset, because offset is of type size_t.
when storing it as int32_t offset would have to be smaller than 2^31 which is not necessarily true.
* minor : fix compile warnings + minor style changes
* fix bug in threaded indices calculation of ggml_compute_forward_flash_attn_back_f32
* store view offset like in master branch
* bug fix in forward_batch_wo_cache_flash_attn_train
* scratch buffer bug fixes in forward_batch_wo_cache_flash_attn_train
data of permute and reshape is the same as their input.
if we want to preserve the output of permute/reshape, we also need to preserve their inputs.
replace reshape(src0, src1) with reshape_nd calls so that we don't need src1.
replace (temporary) t03 with ggml_repeat(ctx0, layer.attention_norm, t02).
in the future we could also use the new broadcasting ggml_mul to avoid these repeat calls.
for this we need backward pass of broadcasting ggml_mul.
* remove unnecessary scratch buffer 0
buf 0 is persistent memory, so we can just disable scratch for this by using buf -1
* avoid creating unnecessary grad tensors
previously we need to create grads for model parameters, so that expand(..) correctly populates cgraph->leafs & cgraph->grads
this wasted memory, because unnecessary grad for each op were automatically created:
the automatically generated grad was unnecessary because we later manually set the grad (e.g. t35->grad = expand(gb, ...) ).
this discarded the automatically generated grad resulting in wasted memory.
improved this by changing expand(..) to not use ggml_build_forward_expand.
expand set cgraph->nodes but not the leafs.
cgraph->leafs & cgraph->grads are set in another pass after the last expand call.
* print used training seed
* zero initialize gfbuf and gbbuf
* ci : re-enable workflows + add README for training
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Allow "quantizing" to f16 and f32
Fix an issue where quantizing didn't respect LLAMA_NO_K_QUANTS
Add brief help to the list of quantization types in the quantize tool
Ignore case for quantization type arguments in the quantize tool
* Fix issue where interactive mode in the main example crashes when input exceeds ctx size
* Ensure the context size is at least 8 tokens in the main example.
Closes#1768
* Add support for quantizing already quantized models
* Threaded dequantizing and f16 to f32 conversion
* Clean up thread blocks with spares calculation a bit
* Use std::runtime_error exceptions.
The prompt cache constitutes a nice speed up when using the same prompt
prefix across multiple evaluations, but when using it, it will also be
updated, which is not always desirable. One use case is to have a large
prompt containing some context and usage rules, and a second part
containing variable data of the problem being studied. In this case it's
desirable to be able to save the first part once, and to always reuse it
as-is without updating it with the second part.
The new argument --prompt-cache-ro enables this read-only mode on the
prompt cache. The prompt's contents that match the cache are loaded
from the cache but the rest is not modified. This allowed to reduce a
total analysis time from 112s to 49.7s here, without having to backup
and restore a copy of the prompt, which takes significant time at 500
MB.
Signed-off-by: Willy Tarreau <w@1wt.eu>
* Starting to add k-quantization to ggml
I think it is better to have quantization separate from
ggml. For now just adding the k-quants there, but it would be
better to also factor out the existing ggml quantizations.
* Adding Q3_K and Q8_K (de)-quantization
* Q3_K now working on CUDA and AVX2/scalar
CUDA is not ideal - ~50% slower than Q4_0 for
single token prediction, about the same in batch
mode (perplexity). CPU single token is ~55 ms
(on Ryzen 7950X).
* Some improvement for Q3_K on CUDA
It is now ~22.5 ms/token on my GPU, so ~30% slower than Q4_0.
* Some more CUDA optimizations for Q3_K
Single token is now 20.5 ms/token (~20% slower than Q4_0).
Perplexity is on par with Q4_0.
* Adding Q4_K - scalar, AVX2, CUDA
Performance is the same or perhaps very slightly better than Q4_0 on the CPU.
On the GPU, single token prediction is ~10% better than Q4_0,
batch mode (perplexity is about the same).
* Adding Q6_K - scalar, AVX2, CUDA
Performance is ~40% lower compared to Q4_K on the CPU.
This is to be expected, considering that we are memory bound
on the CPU and the 6-bit model is ~44% larger than the 4-bit.
On the GPU, single token prediction is ~6% lower than Q4_0,
batch mode (perplexity) is even closer (but still slower).
* Adding Q5_K - scalar, AVX2, CUDA
Performance is ~20% lower compared to Q4_K on the CPU.
This is to be expected, considering that we are memory bound
on the CPU and the 5-bit model is ~22% larger than the 4-bit.
On the GPU, single token prediction is about the same as Q4_0
for both, single token and batch prediction.
* Per convention, all QX_K quantizations use Q5_K for output.weight
* Adding quantization mixes
* Quantization mixes: didn't quite get what I wanted in the last commit
* Q4_K dot product for ARM_NEON
* Q6_K dot product for ARM_NEON
* Q5_K dot product for ARM_NEON
* Adding Q3_K dot for ARM_NEON
It is 22% slower than Q4_K, despite the smaller model size.
On x86_64, where we are memory bound, the Q3_K model is
quite a bit faster than Q4_K.
* A very slightly faster ARM_NEON Q3_K dot
* Adding Q2_K - just CUDA for now
Token prediction is pretty good - about 15.5 ms on a RTX 4080.
Perplexity is about the same as Q4_K.
* Adding scalar and AVX2 Q2_K dot
* Adding ARM_NEON Q2_K dot
About the same performance as Q4_K.
* A slightly faster ARM_NEON Q2_K dot
Single token prediction is now ~36 ms on M2 Max.
The code is much simpler too.
* Fixed bug in Q2_K CUDA dot product kernel
Stranegly enough, for the few prompts I tried with the 7B model
the responses looked perfectly reasonable. Only realized something
is not quite right when I tried the larger models and started getting
nonse back.
In any case, Q2_K single token evaluation time on an RTX 4080 in a Ryzen7950X
box iusing CUDA and model fully loaded on the GPU are
~15.5 ms for 7B, ~25.4 ms for 13B, and ~55.8 ms for 30B.
The max number of layers that fit in VRAM for The 65B is 32.
With that, we get ~330 ms per token, which is not that much faster
than just running on the CPU (~470 ms per token).
* Don't print zeros/NaNs when no count histogram has been collected
* A 10% faster CUDA vector dot kernel for Q3_K
Q3_K is now running at ~18.5 ms / token on CUDA,
so the gap to Q4_0 is only 10%.
It seems memory acccess pattern is more important for
performance than the amount of computation the kernel
does.
* A slightly daster Q4_K AVX2 dot product
For perplexity, where we are less memory bound, time per
pass drops by ~5%. Barely measurable difference for single
token prediction.
* A slightly faster ARM_NEON A4_K dot product
* Minor
* Fix quantization error test
We cannot possibly be expecting rmse < 0.002 for 2- and 3-bit
quantization variants.
* Fix docker build
I have been sloppy with vector reinterpret casts on ARM_NEON.
It seems clang is very forgiving in that regard.
* Added forgotten ggml.o dependence on k_quants.h to the Makefile
* Had unintentionally committed the Makefile with -Ofast enabled
* ggml : rename k_quants -> ggml-quants-k, use lowercase in code
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* mtl : export the LLaMA computation graph
* ci : disable temporary
* mtl : adapt the MNIST example as starter
* mtl : no need for mtl-export tool, add cli arg for main instead
* mtl : export just a small part of the graph for now to make it easier
* mtl : move MSL code into separate file for easy editing
* mtl : initial get_rows_q4_0 kernel
* mtl : confirmed get_rows_q4_0 is working correctly
* mtl : add rms_norm kernel + confirm working
* mtl : add mul kernel + confirm working
* mtl : initial mul_mat Q4 kernel (wrong results)
* mtl : mul_mat fixes (still wrong)
* mtl : another mul_mat Q4 (still does not work)
* mtl : working mul_mat q4
* ggml : fix handling of "view" ops in ggml_graph_import()
* mtl : add rope kernel
* mtl : add reshape and transpose handling
* ggml : store offset as opt arg for ggml_view_xd() operators
* mtl : add cpy kernel + handle view ops
* mtl : confirm f16 x f32 attention mul mat
* mtl : add scale kernel
* mtl : add diag_mask_inf kernel
* mtl : fix soft_max kernel
* ggml : update ggml_nbytes() to handle non-contiguous tensors
* mtl : verify V tensor contents
* mtl : add f32 -> f32 cpy kernel
* mtl : add silu kernel
* mtl : add non-broadcast mul kernel
* mtl : full GPU inference of the computation graph
* mtl : optimize rms_norm and soft_max kernels
* mtl : add f16 mat x f32 vec multiplication kernel
* mtl : fix bug in f16 x f32 mul mat + speed-up computation
* mtl : faster mul_mat_q4_0_f32 kernel
* mtl : fix kernel signature + roll inner loop
* mtl : more threads for rms_norm + better timing
* mtl : remove printfs from inner loop
* mtl : simplify implementation
* mtl : add save/load vocab to ggml file
* mtl : plug Metal inference into llama.cpp (very quick-n-dirty)
* mtl : make it work with main example
Lots of hacks but at least now it generates text
* mtl : preparing for merge
* mtl : clean-up ggml mtl interface + suport scratch / inplace
* mtl : remove temp / debug code
* metal : final refactoring and simplification
* Revert "ci : disable temporary"
This reverts commit 98c267fc77.
* metal : add comments
* metal : clean-up stuff, fix typos
* readme : add Metal instructions
* readme : add example for main
1. Add a `LLAMA_SUPPORTS_GPU_OFFLOAD` define to `llama.h` (defined when compiled with CLBlast or cuBLAS)
2. Update the argument handling in the common example code to only show the `-ngl`, `--n-gpu-layers` option when GPU offload is possible.
3. Add an entry for the `-ngl`, `--n-gpu-layers` option to the `main` and `server` examples documentation
4. Update `main` and `server` examples documentation to use the new style dash separator argument format
5. Update the `server` example to use dash separators for its arguments and adds `-ngl` to `--help` (only shown when compiled with appropriate support). It will still support `--memory_f32` and `--ctx_size` for compatibility.
6. Add a warning discouraging use of `--memory-f32` for the `main` and `server` examples `--help` text as well as documentation. Rationale: https://github.com/ggerganov/llama.cpp/discussions/1593#discussioncomment-6004356