Commit Graph

65 Commits

Author SHA1 Message Date
Georgi Gerganov
e76d630df1
llama : grouped-query attention + LLaMAv2 70B support (#2276)
* CUDA: GQA implementation

* llama : support for GQA and LLaMAv2 70B

ggml-ci

* py : fix hparams parsing (if-else blocks)

ggml-ci

* py : oh boy ..

ggml-ci

* help : fix gqa value for 70B

ggml-ci

---------

Co-authored-by: JohannesGaessler <johannesg@5d6.de>
2023-07-23 15:09:47 +03:00
Guillaume "Vermeille" Sanchez
ab0e26bdfb
llama : remove cfg smooth factor as it is only a reparameterization of the guidance scale (#2280) 2023-07-21 13:58:36 +03:00
Georgi Gerganov
ae178ab46b
llama : make tensor_split ptr instead of array (#2272) 2023-07-21 13:10:51 +03:00
Rinne
294f424554
llama : extend API to get max devices at runtime (#2253) 2023-07-19 10:06:40 +03:00
Xiao-Yong Jin
6e7cca4047
llama : add custom RoPE (#2054)
* Implement customizable RoPE

The original RoPE has pre-defined parameters

theta_i = 10000^(−2(i−1)/d), for i in [1, 2, ..., d/2]

Our customizable RoPE, ggml_rope_custom_inplace, uses

theta_i = scale * base^(−2(i−1)/d), for i in [1, 2, ..., d/2]

with the default matches the original

scale = 1.0
base = 10000

The new command line arguments
--rope-freq-base
--rope-freq-scale
set the two new RoPE parameter.

Recent researches show changing these two parameters extends the context limit with minimal loss.

1. Extending Context to 8K
   kaiokendev
   https://kaiokendev.github.io/til#extending-context-to-8k

2. Extending Context Window of Large Language Models via Positional Interpolation
   Shouyuan Chen, Sherman Wong, Liangjian Chen, Yuandong Tian
   https://arxiv.org/abs/2306.15595

3. NTK-Aware Scaled RoPE allows LLaMA models to have extended (8k+) context size without any fine-tuning and minimal perplexity degradation.
   https://www.reddit.com/user/bloc97
   https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/

For the bold, try adding the following command line parameters to your favorite model:
-c 16384 --rope-freq-base 80000 --rope-freq-scale 0.5

* ggml-metal: fix custom rope

* common: fix argument names in help

* llama: increase MEM_REQ_EVAL for MODEL_3B

It avoids crashing for quantized weights on CPU.
Better ways to calculate the required buffer size would be better.

* llama: make MEM_REQ_EVAL depend on n_ctx

* server: use proper Content-Type in curl examples

Without the header Content-Type: application/json, curl will POST with
Content-Type: application/x-www-form-urlencoded

Though our simple server doesn't care, the httplib.h used has a limit
with CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 8192

With Content-Type: application/json, we can send large json data.

* style : minor fixes, mostly indentations

* ggml : fix asserts

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-07-15 13:34:16 +03:00
Bach Le
7513b7b0a1
llama : add functions that work directly on model (#2197)
* Remove vocab reference from context

* Add functions that works directly with model
2023-07-14 21:55:24 +03:00
Bach Le
c9c74b4e3f
llama : add classifier-free guidance (#2135)
* Initial implementation

* Remove debug print

* Restore signature of llama_init_from_gpt_params

* Free guidance context

* Make freeing of guidance_ctx conditional

* Make Classifier-Free Guidance a sampling function

* Correct typo. CFG already means context-free grammar.

* Record sampling time in llama_sample_classifier_free_guidance

* Shift all values by the max value before applying logsoftmax

* Fix styling based on review
2023-07-11 19:18:43 +03:00
Evan Miller
5656d10599
mpi : add support for distributed inference via MPI (#2099)
* MPI support, first cut

* fix warnings, update README

* fixes

* wrap includes

* PR comments

* Update CMakeLists.txt

* Add GH workflow, fix test

* Add info to README

* mpi : trying to move more MPI stuff into ggml-mpi (WIP) (#2099)

* mpi : add names for layer inputs + prep ggml_mpi_graph_compute()

* mpi : move all MPI logic into ggml-mpi

Not tested yet

* mpi : various fixes - communication now works but results are wrong

* mpi : fix output tensor after MPI compute (still not working)

* mpi : fix inference

* mpi : minor

* Add OpenMPI to GH action

* [mpi] continue-on-error: true

* mpi : fix after master merge

* [mpi] Link MPI C++ libraries to fix OpenMPI

* tests : fix new llama_backend API

* [mpi] use MPI_INT32_T

* mpi : factor out recv / send in functions and reuse

* mpi : extend API to allow usage with outer backends (e.g. Metal)

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-07-10 18:49:56 +03:00
Tobias Lütke
31cfbb1013
Expose generation timings from server & update completions.js (#2116)
* use javascript generators as much cleaner API

Also add ways to access completion as promise and EventSource

* export llama_timings as struct and expose them in server

* update readme, update baked includes

* llama : uniform variable names + struct init

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-07-05 16:51:13 -04:00
Howard Su
b8c8dda75f
Use unsigned for random seed (#2006)
* Use unsigned for random seed. Keep -1 as the value to use a time based seed.

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-29 06:15:15 -07:00
ningshanwutuobang
cfa0750bc9
llama : support input embeddings directly (#1910)
* add interface for float input

* fixed inpL shape and type

* add examples of input floats

* add test example for embd input

* fixed sampling

* add free for context

* fixed add end condition for generating

* add examples for llava.py

* add READMD for llava.py

* add READMD for llava.py

* add example of PandaGPT

* refactor the interface and fixed the styles

* add cmake build for embd-input

* add cmake build for embd-input

* Add MiniGPT-4 example

* change the order of the args of llama_eval_internal

* fix ci error
2023-06-28 18:53:37 +03:00
zrm
b853d45601
ggml : add NUMA support (#1556)
* detect NUMA systems and pin work threads to nodes (linux)

* disable mmap prefetch/readahead for NUMA systems

* avoid sending finalize op to thread pool if it does nothing

* silence robot

* fix args

* make --numa a param

* recommendation that n_nodes evenly divide n_threads did not warrant such aggressive enforcement

* lower synchronization overhead

* statically allocate

* move numa state to g_state

* add description for --numa

* ggml : minor style changes

* ggml : minor style + try fix sanitizer build

* llama : allow to initialize backend with NUMA support

* llama : avoid ggml include in llama-util.h

* ggml : style / formatting

* ggml : fix handling of ops with n_threads > n_tasks > 1

* server : utilize numa parameter

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-26 20:57:59 +03:00
Didzis Gosko
527b6fba1d
llama : make model stateless and context stateful (llama_state) (#1797)
* llama : make model stateless and context stateful

* llama : minor cleanup

* llama : update internal API declaration

* Apply suggestions from code review

fix style

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Missing model memory release

* Fix style

* Add deprecated warning for public API function llama_init_from_file

* Update public API use cases: move away from deprecated llama_init_from_file

* Deprecate public API function llama_apply_lora_from_file

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-24 11:47:58 +03:00
Ettore Di Giacinto
aacdbd4056
llama : fix params struct slignment (#1936)
* Workaround struct misalignment during value-copy

Signed-off-by: mudler <mudler@localai.io>

* Move booleans at the bottom of the structure

Signed-off-by: mudler <mudler@localai.io>

* Add comment

Signed-off-by: mudler <mudler@localai.io>

---------

Signed-off-by: mudler <mudler@localai.io>
2023-06-20 04:24:39 +03:00
yangli2
c36e81da62
examples : add chat-vicuna.sh (#1854)
Co-authored-by: Yang Li <yangliyl@google.com>
2023-06-15 21:05:53 +03:00
Johannes Gäßler
254a7a7a5f
CUDA full GPU acceleration, KV cache in VRAM (#1827)
* Fixed CUDA RoPE

* ggml_cuda_mul_mat_vec_p021

* ggml_cuda_scale

* ggml_cuda_diag_mask_inf

* ggml_is_permuted

* ggml_cuda_cpy

* flatten rows for ggml_cuda_op

* Added a --low-vram option

* Fixed Windows performance

* Fixed LLAMA_CUDA_DMMV_Y > 1 for WizardLM
2023-06-14 19:47:19 +02:00
xaedes
e32089b2c2
train : improved training-from-scratch example (#1652)
* add python wrapper

https://gist.github.com/abetlen/2b90e5f153f6efd00931d098de5c73ce

* fix decoding error. adds errors=ignore parameter

* add python bindings for functions to get and set the whole llama state
(rng, logits, embedding and kv_cache)

* update python bindings

* add text generating baby-llama from scratch example

* fix race condition bug in ggml_compute_forward_diag_mask_f32

* implement ggml_soft_max_back for more performant backward pass of soft_max

avoids creating big intermediate matrices of size n_embd x n_embd for llama layers and n_vocab x n_vocab for cross entropy loss

* improve softmax backward pass

go from quadratic runtime to linear runtime by simplifying the formulas

* fix race condition bug in non-inplace ggml_compute_forward_diag_mask_f32

memcpy needs to be synchronized across threads to avoid race conditions.
=> do it in INIT phase

* fix bug in ggml_compute_forward_soft_max_back_f32 on DEBUG build

* improve performance of mul_mat backward pass

avoid transpose by using mul_mat with swapped arguments

* avoid printing too much newlines in baby-llama-text

* activate threading in baby-llama-text

* add ggml_out_prod and use it for mul_mat backward pass for improved performance

performance stats report improvement from 37 seconds to 16 seconds runtime during my training tests

* better weight initialization improves training convergence at start

* better weight initialization improves training convergence at start

* improve ggml_out_prod performance

- change iteration order (>15s -> 10s runtime)
- parallelize over one more dimension: over dst matrix rows (10s -> <5s runtime)

* add llama sampler, shuffle samples and constrain sampling to tokens occurring in train data

* fix get_samples call, add model tensor names, increase model size, start training samples after newline

* save train trained model to checkpoint and load model to be trained from checkpoint

* use inplace functions where possible

* initialize rng with srand

* use different arguments for input and output checkpoint

* ggml fixes to support backward pass on inplace operations

* remove duplicate include

* fix cross entropy loss

- add target probabilities for each sample which is then used in cross entropy loss

* print used memory before and after optimization

* sample with non-greedy sampling parameters at the end of training

* add cmake target for baby-llama-text

* add ggml_add1_inplace to header

* enable gradient propagation for inplace add1 and scale operations

those functions backward passes don't need the original src0, so they also work when forward is inplace

* implement AdamW in ggml_opt_adam by adding weight decay parameter (default 0.001f)

also add a schedule parameter (default 1.0f) that can be used to scale alpha and decay according to learning schedule.
setting the decay parameter to zero disables AdamW resulting in normal Adam optimizer.

since the difference between Adam and AdamW is minimal it is not implemented as another optimizer, but integrated into the existing Adam optimizer.

* use inplace operations in cross_entropy_loss

* fix random weight initialization scale

* add missing default parameters for adam optimizer

* add ggml_opt_context, so that we can properly resume training

otherwise the optimizer states, tracking statistics about the error function and its derivates,
will reset to zero each time ggml_opt is called, hindering convergence on resumed training.

now the optimizer context and all its memory is stored in a separate struct.

* fix bug in llama_sample_token_mirostat_v2

when all candidates are filtered out through mu threshold, the following soft_max operation will fail.
so keep at least one.

* add forward function without using cache, for more performant training

during training on whole samples no cache is required.
removing the cache and simplifying the remaining code results in performance and memory usage improvement.

* print suppressed newline tokens as string "\n"

printing too much actual newlines is suppressed to avoid flooding the console.

* store optimizer state in training checkpoint and add learning schedule

persistent optimizer state allows to resume training without resetting the optimizer
learning schedule consists of linear warmup ramp followed by cosine decay with restarts

* remove unused functions

* fix bug in get_samples which corrupted training targets

* save checkpoint only when it was trained

* simplify code

* remove trailing whitespace

* simplify backward pass for SQRT

* replace inefficient repeat backward pass with dedicated repeat_back operation

* add ggml_cross_entropy_loss with backward pass for faster training

cross entropy loss can also be implemented using softmax and log, but as dedicated operation it is faster and especially avoids unnecessary memory overhead.

* add tests for cross_entropy_loss backward pass

finite differences regularly results in estimated gradient of zero, despite the backward pass giving non zero gradient.
_probably_ the finite differences fails due to numerical issues

* use ggml_cross_entropy_loss in text training example

* remove trailing whitespace

* slightly improve how cross entropy loss is compute

btw: directly implemented cross entropy loss seems to have way lower magnitudes than when implemented with softmax and log.
probably the input to log gets closer to zero due to float numerics.
maybe the multiplication by (1.0-eps)/sum is more accurate..

* add llama_get_vocab to get the vocabulary as output parameters

* set default model.type for unknown models with few layers

* add export of training checkpoint to llama compatible model file

* get vocabulary for exporting training checkpoint to llama compatible model file

* implement backward pass of flash attention

* bugfixes for backward pass of flash attention

* test flash attention backward pass

need to set loose error bounds to pass.
the finitie differences are close to numeric limits and often return quite different values than the backward pass.
reducing eps further lets the gradients vanish completely.
likewise setting eps to big results in wronger values.
the softmax in the middle of the function is probably the most responsible for the numeric issues using finite differences.

* add option to train with flash attention and move options to the top of the main function

training from scratch also works with flash attention
training convergence and generation results after fix number of iterations are worse than when not using flash attention.
maybe there still lingers a bug in the flash attention backward pass?
but training works, just with slower convergence.

flash attention is still worth to use, because it requires way less memory and is faster with high n_ctx

* add train_params and command line option parser

* remove unnecessary comments

* add train params to specify memory size

* remove python bindings

* rename baby-llama-text to train-text-from-scratch

* replace auto parameters in lambda function

* add #include <climits>

* add explicit cast to fix compile error

"error: non-constant-expression cannot be narrowed from type 'int64_t' (aka 'long long') to 'uint32_t' (aka 'unsigned int') in initializer list [-Wc++11-narrowing]"

* remove trailing whitespace

* add ggml_opt_resume_g which accepts forward and backward cgraphs

* fix formulas in comments

* bug fix for ggml_compute_forward_get_rows_back_f32

the result should be set to zero, not to whatever data is in opt0

* improve training memory usage with scratch buffers

instead of relying on the automatic backward pass, we manually create the graph for the backward pass.
it turns out that all backward pass operations need only temporary memory which can be reused after each layer.

will compute backward pass for ALL model parameters

* add option to use scratch buffers in training or not

make it configurable because currently training with scratch buffers implies flash attention and optimization over all parameters.

* ci : disable temporary

* store view offset and permute axes in opt[0] instead of storing it in padding

use memcpy to store offset, because offset is of type size_t.
when storing it as int32_t offset would have to be smaller than 2^31 which is not necessarily true.

* minor : fix compile warnings + minor style changes

* fix bug in threaded indices calculation of ggml_compute_forward_flash_attn_back_f32

* store view offset like in master branch

* bug fix in forward_batch_wo_cache_flash_attn_train

* scratch buffer bug fixes in forward_batch_wo_cache_flash_attn_train

data of permute and reshape is the same as their input.
if we want to preserve the output of permute/reshape, we also need to preserve their inputs.

replace reshape(src0, src1) with reshape_nd calls so that we don't need src1.

replace (temporary) t03 with ggml_repeat(ctx0, layer.attention_norm, t02).
in the future we could also use the new broadcasting ggml_mul to avoid these repeat calls.
for this we need backward pass of broadcasting ggml_mul.

* remove unnecessary scratch buffer 0

buf 0 is persistent memory, so we can just disable scratch for this by using buf -1

* avoid creating unnecessary grad tensors

previously we need to create grads for model parameters, so that expand(..) correctly populates cgraph->leafs & cgraph->grads
this wasted memory, because unnecessary grad for each op were automatically created:
the automatically generated grad was unnecessary because we later manually set the grad (e.g. t35->grad = expand(gb, ...) ).
this discarded the automatically generated grad resulting in wasted memory.

improved this by changing expand(..) to not use ggml_build_forward_expand.
expand set cgraph->nodes but not the leafs.
cgraph->leafs & cgraph->grads are set in another pass after the last expand call.

* print used training seed

* zero initialize gfbuf and gbbuf

* ci : re-enable workflows + add README for training

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-13 22:04:40 +03:00
Kerfuffle
4f0154b0ba
llama : support requantizing models instead of only allowing quantization from 16/32bit (#1691)
* Add support for quantizing already quantized models

* Threaded dequantizing and f16 to f32 conversion

* Clean up thread blocks with spares calculation a bit

* Use std::runtime_error exceptions.
2023-06-10 10:59:17 +03:00
Johannes Gäßler
17366df842
Multi GPU support, CUDA refactor, CUDA scratch buffer (#1703)
* CUDA multi GPU + scratch

ggml_cuda_compute_forward

Tensor parallelism

ggml_cuda_add

ggml_cuda_rms_norm

ggml_cuda_silu

CUDA scratch buffer

--main-gpu CLI option
2023-06-06 21:33:23 +02:00
Kawrakow
99009e72f8
ggml : add SOTA 2,3,4,5,6 bit k-quantizations (#1684)
* Starting to add k-quantization to ggml

I think it is better to have quantization separate from
ggml. For now just adding the k-quants there, but it would be
better to also factor out the existing ggml quantizations.

* Adding Q3_K and Q8_K (de)-quantization

* Q3_K now working on CUDA and AVX2/scalar

CUDA is not ideal - ~50% slower than Q4_0 for
single token prediction, about the same in batch
mode (perplexity). CPU single token is ~55 ms
(on Ryzen 7950X).

* Some improvement for Q3_K on CUDA

It is now ~22.5 ms/token on my GPU, so ~30% slower than Q4_0.

* Some more CUDA optimizations for Q3_K

Single token is now 20.5 ms/token (~20% slower than Q4_0).
Perplexity is on par with Q4_0.

* Adding Q4_K - scalar, AVX2, CUDA

Performance is the same or perhaps very slightly better than Q4_0 on the CPU.
On the GPU, single token prediction is ~10% better than Q4_0,
batch mode (perplexity is about the same).

* Adding Q6_K - scalar, AVX2, CUDA

Performance is ~40% lower compared to Q4_K on the CPU.
This is to be expected, considering that we are memory bound
on the CPU and the 6-bit model is ~44% larger than the 4-bit.
On the GPU, single token prediction is ~6% lower than Q4_0,
batch mode (perplexity) is even closer (but still slower).

* Adding Q5_K - scalar, AVX2, CUDA

Performance is ~20% lower compared to Q4_K on the CPU.
This is to be expected, considering that we are memory bound
on the CPU and the 5-bit model is ~22% larger than the 4-bit.
On the GPU, single token prediction is about the same as Q4_0
for both, single token and batch prediction.

* Per convention, all QX_K quantizations use Q5_K for output.weight

* Adding quantization mixes

* Quantization mixes: didn't quite get what I wanted in the last commit

* Q4_K dot product for ARM_NEON

* Q6_K dot product for ARM_NEON

* Q5_K dot product for ARM_NEON

* Adding Q3_K dot for ARM_NEON

It is 22% slower than Q4_K, despite the smaller model size.
On x86_64, where we are memory bound, the Q3_K model is
quite a bit faster than Q4_K.

* A very slightly faster ARM_NEON Q3_K dot

* Adding Q2_K - just CUDA for now

Token prediction is pretty good - about 15.5 ms on a RTX 4080.
Perplexity is about the same as Q4_K.

* Adding scalar and AVX2 Q2_K dot

* Adding ARM_NEON Q2_K dot

About the same performance as Q4_K.

* A slightly faster ARM_NEON Q2_K dot

Single token prediction is now ~36 ms on M2 Max.
The code is much simpler too.

* Fixed bug in Q2_K CUDA dot product kernel

Stranegly enough, for the few prompts I tried with the 7B model
the responses looked perfectly reasonable. Only realized something
is not quite right when I tried the larger models and started getting
nonse back.

In any case, Q2_K single token evaluation time on an RTX 4080 in a Ryzen7950X
box iusing CUDA and model fully loaded on the GPU are
  ~15.5 ms for 7B, ~25.4 ms for 13B, and ~55.8 ms for 30B.
The max number of layers that fit in VRAM for The 65B is 32.
With that, we get ~330 ms per token, which is not that much faster
than just running on the CPU (~470 ms per token).

* Don't print zeros/NaNs when no count histogram has been collected

* A 10% faster CUDA vector dot kernel for Q3_K

Q3_K is now running at ~18.5 ms / token on CUDA,
so the gap to Q4_0 is only 10%.
It seems memory acccess pattern is more important for
performance than the amount of computation the kernel
does.

* A slightly daster Q4_K AVX2 dot product

For perplexity, where we are less memory bound, time per
pass drops by ~5%. Barely measurable difference for single
token prediction.

* A slightly faster ARM_NEON A4_K dot product

* Minor

* Fix quantization error test

We cannot possibly be expecting rmse < 0.002 for 2- and 3-bit
quantization variants.

* Fix docker build

I have been sloppy with vector reinterpret casts on ARM_NEON.
It seems clang is very forgiving in that regard.

* Added forgotten ggml.o dependence on k_quants.h to the Makefile

* Had unintentionally committed the Makefile with -Ofast enabled

* ggml : rename k_quants -> ggml-quants-k, use lowercase in code

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-05 22:56:18 +03:00
Georgi Gerganov
ecb217db4f
llama : Metal inference (#1642)
* mtl : export the LLaMA computation graph

* ci : disable temporary

* mtl : adapt the MNIST example as starter

* mtl : no need for mtl-export tool, add cli arg for main instead

* mtl : export just a small part of the graph for now to make it easier

* mtl : move MSL code into separate file for easy editing

* mtl : initial get_rows_q4_0 kernel

* mtl : confirmed get_rows_q4_0 is working correctly

* mtl : add rms_norm kernel + confirm working

* mtl : add mul kernel + confirm working

* mtl : initial mul_mat Q4 kernel (wrong results)

* mtl : mul_mat fixes (still wrong)

* mtl : another mul_mat Q4 (still does not work)

* mtl : working mul_mat q4

* ggml : fix handling of "view" ops in ggml_graph_import()

* mtl : add rope kernel

* mtl : add reshape and transpose handling

* ggml : store offset as opt arg for ggml_view_xd() operators

* mtl : add cpy kernel + handle view ops

* mtl : confirm f16 x f32 attention mul mat

* mtl : add scale kernel

* mtl : add diag_mask_inf kernel

* mtl : fix soft_max kernel

* ggml : update ggml_nbytes() to handle non-contiguous tensors

* mtl : verify V tensor contents

* mtl : add f32 -> f32 cpy kernel

* mtl : add silu kernel

* mtl : add non-broadcast mul kernel

* mtl : full GPU inference of the computation graph

* mtl : optimize rms_norm and soft_max kernels

* mtl : add f16 mat x f32 vec multiplication kernel

* mtl : fix bug in f16 x f32 mul mat + speed-up computation

* mtl : faster mul_mat_q4_0_f32 kernel

* mtl : fix kernel signature + roll inner loop

* mtl : more threads for rms_norm + better timing

* mtl : remove printfs from inner loop

* mtl : simplify implementation

* mtl : add save/load vocab to ggml file

* mtl : plug Metal inference into llama.cpp (very quick-n-dirty)

* mtl : make it work with main example

Lots of hacks but at least now it generates text

* mtl : preparing for merge

* mtl : clean-up ggml mtl interface + suport scratch / inplace

* mtl : remove temp / debug code

* metal : final refactoring and simplification

* Revert "ci : disable temporary"

This reverts commit 98c267fc77.

* metal : add comments

* metal : clean-up stuff, fix typos

* readme : add Metal instructions

* readme : add example for main
2023-06-04 23:34:30 +03:00
Kerfuffle
1b78ed2081
Only show -ngl option when relevant + other doc/arg handling updates (#1625)
1. Add a `LLAMA_SUPPORTS_GPU_OFFLOAD` define to `llama.h` (defined when compiled with CLBlast or cuBLAS)
2. Update the argument handling in the common example code to only show the `-ngl`, `--n-gpu-layers` option when GPU offload is possible.
3. Add an entry for the `-ngl`, `--n-gpu-layers` option to the `main` and `server` examples documentation
4. Update `main` and `server` examples documentation to use the new style dash separator argument format
5. Update the `server` example to use dash separators for its arguments and adds `-ngl` to `--help` (only shown when compiled with appropriate support). It will still support `--memory_f32` and `--ctx_size` for compatibility.
6. Add a warning discouraging use of `--memory-f32` for the `main` and `server` examples `--help` text as well as documentation. Rationale: https://github.com/ggerganov/llama.cpp/discussions/1593#discussioncomment-6004356
2023-05-28 11:48:57 -06:00
Juuso Alasuutari
29cf5596fe
llama : define magic numbers as integer constants (#1518) (#1520)
The underlying representation of multibyte character literals is
implementation-defined. This could, at least in principle, cause
cross-build data export/import issues independent of endianness.

Define magic numbers as integer literals to be on the safe side.

Signed-off-by: Juuso Alasuutari <juuso.alasuutari@gmail.com>
2023-05-20 15:58:15 +03:00
Georgi Gerganov
ec2e10c444
llama : add llama_init_backend() API (close #1527) 2023-05-20 11:06:37 +03:00
Georgi Gerganov
8a203f9fa1 llama : fix compile warnings in llama_set_state_data() 2023-05-20 10:14:43 +03:00
Georgi Gerganov
2d5db48371
ggml : use F16 instead of F32 in Q4_0, Q4_1, Q8_0 (#1508)
* ggml : use F16 instead of F32 in Q4_0, Q4_1 and Q8_0

* llama : bump LLAMA_FILE_VERSION to 3

* cuda : update Q4 and Q8 dequantize kernels

* ggml : fix AVX dot products

* readme : update performance table + hot topics
2023-05-19 22:17:18 +03:00
Stephan Walter
dc271c52ed
Remove unused n_parts parameter (#1509) 2023-05-17 22:12:01 +00:00
Johannes Gäßler
905d87b70a
ggml : GPU-accelerated token generation (#1412)
* CUDA kernel for q4_0 dequant. + mat. vec. mult.

* Added q4_1 via template

* Added missing __syncthreads();

* --gpu_layers -> --gpu-layers

* Shorter dequantize_mul_mat_vec line

* q5_0 dequantize_mul_mat kernel

* More readable dequantize_mul_mat_vec logic

* dequantize_mul_mat_vec kernels for q5_1, q8_0, f16

* llama : offload "output" tensor to GPU too + coding style fixes

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-05-13 16:38:36 +03:00
Georgi Gerganov
738ace394a
llama : free ggml context in set / copy state data (close #1425) 2023-05-13 09:08:52 +03:00
Georgi Gerganov
b9fd7eee57
ggml : remove bit shuffling (#1405)
* ggml : remove Q4_0 bit shufling (ARM NEON)

* ggml : remove Q4_1 bit shuffling (ARM NEON + reference)

* ggml : nibbles_from_floats() + bytes_from_nibbles() (ARM NEON)

* ggml : remove Q4_2 bit shuffling (WIP, BROKEN)

* ggml : remove Q5_0 bit shuffling (ARM NEON)

* ggml : 2x faster scalar implementations

* ggml : remove Q5_1 bit shuffling (ARM NEON + scalar)

* ggml : simplify scalar dot

* ggml : remove WASM SIMD bit shuffling + remove vzip for ARM 32-bit

* ggml : fix Q4_1 quantization

* ggml : update cuBLAS + normalize variable names

* ggml : remove Q4_2 mode

* ggml : minor formatting

* ggml : fix Q5_0 quantization

* scripts : add script for measuring the time per token

* AVX implementations (#1370)

* ggml : uniform 5th bit extraction

* llama : produce error upon loading old model files

* llama : fix model magic/version write

* ggml : speed-up Q5_0 + Q5_1 at 4 threads

* ggml : preserve old Q4 and Q5 formats

* ggml : simplify Q8_1 - no need for low / high sums anymore

* ggml : fix Q8_0 and Q8_1 rounding

* Revert "AVX implementations (#1370)"

This reverts commit 948d124837.

* ggml : fix AVX2 implementation

* sha : update hashes for 7B and 13B

* readme : update timings + remove warning banner

* llama : update v2 PR number to 1405

* ggml : fix WASM comments

* ggml : back to original bit order

* readme : add note that Q4 and Q5 have been changed

* llama : fix return for unknown version

---------

Co-authored-by: Stephan Walter <stephan@walter.name>
2023-05-12 00:23:08 +03:00
Jed Fox
3924088512
Remove default arguments from sampling functions (#1343) 2023-05-06 17:01:47 -04:00
Evan Jones
e216aa0463
llama : only copy used KV cache in get / set state (#1272)
* llama : only copy used KV cache in get / set state

* switch to ggml for copying k, v

* avoid designated initializers
2023-05-02 22:26:13 -04:00
Georgi Gerganov
0e6cbff1b7
llama : fix compile warnings 2023-05-02 23:09:08 +03:00
Robert Brisita
2bb992f034
llama : allow 0 as a seed number. (#1275) 2023-05-02 19:23:44 +03:00
Georgi Gerganov
70269cae37
llama : fix session load / save (#1263) 2023-05-01 14:54:59 +03:00
Alex Klinkhamer
90b19bd6ee
llama : let context be const when accessing const data (#1261) 2023-05-01 10:24:20 +03:00
Ivan Stepanov
dd7eff57d8
llama : new sampling algorithms (#1126)
* Sample interface, new samplers.

New samplers:
- locally typical sampling
- tail free sampling
- frequency and presence penalty
- mirostat

Ignore EOS fix: -inf should be used.

* mirostat

* Added --logit-bias and --no-penalize-nl, removed std::span

* Use C++11, clarify llama API documentation, rename Mirostat parameters to --mirostat_lr and --mirostat_ent, add temperature sampling for Mirostat, simplify Mirostat sampling API parameters (removed N and *k)

Use C++11, clarify llama API documentation, rename Mirostat parameters to --mirostat_lr and --mirostat_ent, add temperature sampling for Mirostat, simplify Mirostat sampling API parameters (removed N and *k)

* Save and load example adjust

* Tests

* Windows build fix

* Windows test fix
2023-04-29 08:34:41 +03:00
Stephan Walter
36d19a603b
Remove Q4_3 which is no better than Q5 (#1218) 2023-04-28 23:10:43 +00:00
Evan Jones
1481a9cf25
llama : add session file format and saved sessions in main (#1169) 2023-04-28 18:59:37 +03:00
Georgi Gerganov
574406dc7e
ggml : add Q5_0 and Q5_1 quantization (#1187)
* ggml : add Q5_0 quantization (cuBLAS only)

* ggml : fix Q5_0 qh -> uint32_t

* ggml : fix q5_0 histogram stats

* ggml : q5_0 scalar dot product

* ggml : q5_0 ARM NEON dot

* ggml : q5_0 more efficient ARM NEON using uint64_t masks

* ggml : rename Q5_0 -> Q5_1

* ggml : adding Q5_0 mode

* quantize : add Q5_0 and Q5_1 to map

* ggml : AVX2 optimizations for Q5_0, Q5_1 (#1195)

---------

Co-authored-by: Stephan Walter <stephan@walter.name>
2023-04-26 23:14:13 +03:00
Ásgeir Bjarni Ingvarsson
87a6f846d3
Allow setting the rng seed after initialization. (#1184)
The llama_set_state_data function restores the rng state to what it
was at the time llama_copy_state_data was called. But users may want
to restore the state and proceed with a different seed.
2023-04-26 22:08:43 +02:00
Georgi Gerganov
7a32fcb3b2
ggml : add Q8_0 quantization format (rename the old one to Q8_1) (ARM NEON) (#1179)
* ggml : add Q8_0 quantization format (rename the old one to Q8_1)

* tests : fix test-quantize-fns

* ggml : finalize Q8_0 implementation

* ggml : use q4_0_q8_0 and q4_2_q8_0

* ggml : fix Q8_0 dot product bug (ARM)

* ggml : Q8_0 unroll x2

* ggml : fix bug - using wrong block type

* ggml : extend quantize_fns_t with "vec_dot_type"

* ggml : fix Q8_0 to use 255 values out of 256

* ggml : fix assert using wrong QK4_2 instead of QK4_3
2023-04-25 23:40:51 +03:00
Georgi Gerganov
c4fe84fb0d
llama : refactor get / set state + remove redundant kv cache API (#1143) 2023-04-24 07:40:02 +03:00
xaedes
b6e7f9b09e
llama : add api for getting/setting the complete state: rng, logits, embedding and kv_cache (#1105)
* reserve correct size for logits

* add functions to get and set the whole llama state:

including rng, logits, embedding and kv_cache

* remove unused variables

* remove trailing whitespace

* fix comment
2023-04-22 09:21:32 +03:00
Kawrakow
38de86a711
llama : multi-threaded quantization (#1075)
* Multi-threading quantization.

Not much gain for simple quantizations, bit it will be important
for quantizations that require more CPU cycles.

* Multi-threading for quantize-stats

It now does the job in ~14 seconds on my Mac for
Q4_0, Q4_1 and Q4_2. Single-threaded it was taking
more than 2 minutes after adding the more elaborate
version of Q4_2.

* Reviewer comments

* Avoiding compiler confusion

After changing chunk_size to const int as suggested by
@ggerganov, clang and GCC starting to warn me that I don't
need to capture it in the lambda. So, I removed it from the
capture list. But that makes the MSVC build fail. So,
making it a constexpr to make every compiler happy.

* Still fighting with lambda captures in MSVC

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-04-20 20:42:27 +03:00
Georgi Gerganov
e0305ead3a
ggml : add Q4_3 quantization (#1082) 2023-04-20 20:35:53 +03:00
Georgi Gerganov
77a73403ca
ggml : add new Q4_2 quantization (ARM only) (#1046)
* ggml : Q4_2 ARM

* ggml : add ggml_is_quantized()

* llama : update llama_type_name() with Q4_2 entry

* ggml : speed-up q4_2

- 4 threads: ~100ms -> ~90ms
- 8 threads:  ~55ms -> ~50ms

* ggml : optimize q4_2 using vmlaq_n_f32 + vmulq_n_f32
2023-04-18 23:54:57 +03:00
slaren
315a95a4d3
Add LoRA support (#820) 2023-04-17 17:28:55 +02:00
Georgi Gerganov
9190e8eac8
llama : merge llama_internal.h into llama.h
Hide it behind an #ifdef
2023-04-13 18:04:45 +03:00
Stephan Walter
e7f6997f89
Don't crash on ftype (formerly f16) == 4 (#917) 2023-04-12 15:06:16 +00:00