* iq3_xxs: quantize/dequantize
RMSE seems a bit high-ish at about half-way between q2_K and
q3_K, so need to check more.
* iq3_xxs: CUDA dequantize works
* iq2_xxs: tuning quantization
* iq3_xxs: starting to look better
PPL on wiki.test.raw
LLaMA-v1-7B: 6.4218
LLaMA-v2-7B: 6.3560
Mistral-7B : 6.0717
This is better than Q3_K_XS, with a 5% reduction in quantized model
size.
* iq3_xxs: CUDA dot product
We have
PP-512: 5891 t/s
TG-128: 143.9 t/s
* iq3_xxs: scalar and AVX2 dot products
* iq3_xxs: ARM_NEON and Metal
Metal performance is decent, ARM_NEON is pathetic
* iq3_xxs: slightly better grid points
* Faster iq3_xxs and iq2_xs dot products on CUDA
* iq3_xxs: add some quant mix
* iq3_xxs: fix failing quantization test
Dot product still fails. Is this real?
* iq3_xxs: hopefully fix ROCm
* iq3_xxs: failing tests
This time the dot product accuracy did find an actual bug
in the AVX2 implementation.
* Add IQ3_XXS to test-backend-ops
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* iq2_xs: basics
* iq2_xs: this should have been in the basics
* iq2_xs: CUDA and scalar CPU works
* iq2_xs: WIP Metal
* iq2_xs: Metal now works
* iq2_xs: working, but dog slow, ARM_NEON dot product
* iq2_xs: better ARM_NEON dot product
We are now at 19.5 t/s for TG-128 and 61 t/s for PP-512 when
running on the CPU.
* iq2_xs: AVX2 dot product - 19.5 t/s
* iq2_xs: faster AVX2 dit product
21.4 t/s for TG-128, 59.2 t/s for PP-512.
The latter is 2x compared to the previous version.
* iq2_xs: had forgotten to delete iq2-data.h
* Add llama enum for IQ2_XS
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* iq2_xxs: basics
* iq2_xxs: scalar and AVX2 dot products
Needed to change Q8_K to have quants in the -127...127 range,
else the IQ2_XXS AVX implementation becomes very awkward.
The alternative would have been to use Q8_0 instead. Perhaps
I'll change later, for now this is what we have.
* iq2_xxs: ARM_NEON dot product
Somehow strangely slow (112 ms/token).
* iq2_xxs: WIP Metal
Dequantize works, something is still wrong with the
dot product.
* iq2_xxs: Metal dot product now works
We have
PP-512 = 475 t/s
TG-128 = 47.3 t/s
Not the greatest performance, but not complete garbage either.
* iq2_xxs: slighty faster dot product
TG-128 is now 48.4 t/s
* iq2_xxs: slighty faster dot product
TG-128 is now 50.9 t/s
* iq2_xxs: even faster Metal dot product
TG-128 is now 54.1 t/s.
Strangely enough, putting the signs lookup table
into shared memory has a bigger impact than the
grid values being in shared memory.
* iq2_xxs: dequantize CUDA kernel - fix conflict with master
* iq2_xxs: quantized CUDA dot product (MMVQ)
We get TG-128 = 153.1 t/s
* iq2_xxs: slightly faster CUDA dot product
TG-128 is now at 155.1 t/s.
* iq2_xxs: add to llama ftype enum
* iq2_xxs: fix MoE on Metal
* Fix missing MMQ ops when on hipBLAS
I had put the ggml_supports_mmq call at the wrong place.
* Fix bug in qequantize_row_iq2_xxs
The 0.25f factor was missing.
Great detective work by @ggerganov!
* Fixing tests
* PR suggestion
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* ggml : disable fast-math for Metal (cmake build only)
ggml-ci
* metal : fix Metal API debug warnings
* cmake : add -fno-inline for Metal build (#4545)
* metal : fix API debug warnings
* metal : fix compile warnings
* metal : use uint64_t for strides
* cmake : rename option to LLAMA_METAL_SHADER_DEBUG
* metal : fix mat-vec Q8_0 kernel for BS > 1
* metal : normalize mat-vec kernel signatures
* cmake : respect LLAMA_QKK_64 option
* metal : fix mat-vec Q4_K kernel for QK_K == 64
* metal : optimizing ggml_mul_mat_id (wip)
* metal : minor fix
* metal : opt mul_mm_id
* ggml : disable fast-math for Metal (cmake build only)
ggml-ci
* metal : fix Metal API debug warnings
* cmake : add -fno-inline for Metal build (#4545)
* metal : fix API debug warnings
* metal : fix compile warnings
* metal : use uint64_t for strides
* cmake : rename option to LLAMA_METAL_SHADER_DEBUG
* metal : fix mat-vec Q8_0 kernel for BS > 1
* metal : normalize mat-vec kernel signatures
* cmake : respect LLAMA_QKK_64 option
* metal : fix mat-vec Q4_K kernel for QK_K == 64
ggml-ci
* sync : ggml (SD ops, tests, kernels)
ggml-ci
* cuda : restore im2col
ggml-ci
* metal : fix accuracy of dequantization kernels
ggml-ci
* cuda : restore correct im2col
ggml-ci
* metal : try to fix moe test by reducing expert size
ggml-ci
* cuda : fix bin bcast when src1 and dst have different types
ggml-ci
---------
Co-authored-by: slaren <slarengh@gmail.com>
* convert : support Mixtral as LLAMA arch
* convert : fix n_ff typo
* llama : model loading
* ggml : sync latest ggml_mul_mat_id
* llama : update graph to support MoE
* llama : fix cur -> cur_expert
* llama : first working version
* llama : fix expert weighting in the FFN
* ggml : ggml_get_rows support 2D indexing [n_tokens, n_experts] (cpu only)
* ggml : add n_as argument to ggml_mul_mat_id
* ggml : fix ggml_get_rows to take into account ne02 / ne11
* metal : add more general support for ggml_get_rows + tests
* llama : add basic support for offloading moe with CUDA
* metal : add/mul/div use general kernel when src1 not cont
* metal : reduce the kernel launches for ggml_mul_mat_id
* ggml : get_rows : support non-contiguos tensors with gaps, generalize up to 3D
* ggml : update get_rows f16 and q
* cuda : support non-contiguous src1 in get_rows
* llama : offload missing ffn_moe_silu
* metal : fix ggml_get_rows to work with non-cont src1
* metal : add indirect mat-vec kernels for all quantization types
* llama : do not quantize expert gating tensors
* llama : add n_expert and n_expert_used to hparams + change quants
* test-backend-ops : add moe test
* cuda : fix get_rows when ncols is odd
* convert : determine n_ctx correctly
* metal : fix ggml_mul_mat_id for F32
* test-backend-ops : make experts more evenly probable (test_moe)
* test-backend-ops : cleanup, add moe test for batches
* test-backend-ops : add cpy from f32 -> all types test
* test-backend-ops : fix dequantize block offset
* llama : fix hard-coded number of experts
* test-backend-ops : simplify and disable slow tests to avoid CI timeout
* test-backend-ops : disable MOE test with thread sanitizer
* cuda : fix mul_mat_id with multi gpu
* convert : use 1e6 rope_freq_base for mixtral
* convert : fix style
* convert : support safetensors format
* gguf-py : bump version
* metal : add cpy f16 -> f32 kernel
* metal : fix binary ops for ne10 % 4 != 0
* test-backend-ops : add one more sum_rows test
* ggml : do not use BLAS with ggml_mul_mat_id
* convert-hf : support for mixtral-instruct (#4428)
* convert : typo fix, add additional hyperparameters, use LLaMA arch for Mixtral-instruct
* convert : use sentencepiece tokenizer for Mixtral-instruct
* convert : make flake8 happy
* metal : fix soft_max kernels
ref: 1914017863
* metal : limit kernels to not use more than the allowed threads
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Radek Pilar <github@mrkva.eu>
* metal : implement soft_max_ext
* cuda : implement soft_max_ext
* ggml : implement soft_max_ext (CPU)
* batched-bench : print threads
ggml-ci
* metal : simplify soft_max encoding
ggml-ci
* cuda : use 512 threads for soft_max instead of 32
* ggml : update soft max cpu
* cuda : do warp-based block reduce
* cuda : increase max block size to 1024
* cuda : fix warp reduction initialization of shared mem
* metal : warp-based reduction for soft max kernel
* metal : warp-based reduce for rms_norm
* metal : simplify soft max kernel
ggml-ci
* alloc : fix build with debug
* metal : implement dequantize_q5_0
* metal : block_q_n_dot_y for block_q5_0 (broken)
* metal : revert unnecessary change
* metal : implement dequantize_q5_1
* metal : block_q_n_dot_y for q5_1 (broken)
* metal : fix block_q_n_dot_y
* minor : spaces / formatting
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* metal : improve decoding speed for batches of 2-16
* metal : rename kernels mul_mat_ to mul_mv_
* metal : indentations
* minor
* metal : print more GPU info + disable mul_mm for MTLGPUFamiliy < Apple7
* metal : relax conditions on fast matrix multiplication kernel
* metal : revert the concurrnecy change because it was wrong
* llama : remove experimental stuff
* Minor speed gains for all quantization types
* metal: faster kernel_scale via float4
* Various other speedups for "small" kernels
* metal: faster soft_max vial float4
* metal: faster diagonal infinity
Although, to me it looks like one should simply
fuse scale + diagnonal infinity + soft_max on the
KQtensor.
* Another faster f16 x f32 matrix multiply kernel
* Reverting the diag infinity change
It does work for PP, but somehow it fails for TG.
Need to look more into it.
* metal: add back faster diagonal infinity
This time more carefully
* metal : minor (readibility)
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Slightly faster Q3_K and Q5_K on metal
* Another Q3_K speedup on metal
Combined with previous commit, we are now +9.6% for TG.
PP is not affected as this happens via the matrix multiplication
templates.
* Slowly progressing on Q3_K on metal
We are now 13% faster than master
* nother small improvement for Q3_K on metal
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* metal : fix kernel_norm
ggml-ci
* metal : put warning in kernel_norm to not combine the loops
* metal : restore original F16 mat-vec multiplication
It works after the norm fixes
* common : don't do warm-up with more than n_batch tokens (close#3058)
ggml-ci
* metal : minor
* Very minor speedup via simd-group synchronization in f16 x f32
* Another very minor speedup on metal
* Quite significant PP speedup on metal
* Another attempt
* Minor
* Massive improvement for TG for fp16
* ~4-5% improvement for Q8_0 TG on metal
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Somewhat faster f16 x f32 matrix multiply kernel
* Better use 32 thread groups for f16 x f32
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* metal: matrix-matrix multiplication kernel
This commit removes MPS and uses custom matrix-matrix multiplication
kernels for all quantization types. This commit also adds grouped-query
attention to support llama2 70B.
* metal: fix performance degradation from gqa
Integers are slow on the GPU, and 64-bit divides are extremely slow.
In the context of GQA, we introduce a 64-bit divide that cannot be
optimized out by the compiler, which results in a decrease of ~8% in
inference performance. This commit fixes that issue by calculating a
part of the offset with a 32-bit divide. Naturally, this limits the
size of a single matrix to ~4GB. However, this limitation should
suffice for the near future.
* metal: fix bugs for GQA and perplexity test.
I mixed up ne02 and nb02 in previous commit.