Commit Graph

430 Commits

Author SHA1 Message Date
Francis Couture-Harpin
6840ac0bca Merge branch 'master' into compilade/refactor-kv-cache 2024-06-08 17:30:49 -04:00
Georgi Gerganov
2b3389677a
ggml : refactor rope norm/neox (#7634)
* ggml : unify rope norm/neox (CPU)

* ggml : fix compile warning

* ggml : remove GLM rope mode

ggml-ci

* metal : better rope implementation

ggml-ci

* cuda : better rope implementation

ggml-ci

* naming : n_orig_ctx -> n_ctx_orig

ggml-ci

* dev : add reminders to update backends

ggml-ci

* vulkan : fix ggml_rope_ext() usage

* cuda : fix array size + indents

ggml-ci
2024-06-05 11:29:20 +03:00
Georgi Gerganov
554c247caf
ggml : remove OpenCL (#7735)
ggml-ci
2024-06-04 21:23:20 +03:00
Georgi Gerganov
6d1616944d
ggml : prevent builds with -ffinite-math-only (#7726)
This enforces a check that -fno-finite-math-only was set and that the operating
compiling mode is not in finite maths mode. This is because during rewriting of
silu and softmax for cpu #7154 there emerged an issue where the result that was
observed when >1 slot was nondeterministic as found by @JohannesGaessler.

@LostRuins narrowed the problem down to -ffinite-math-only which was theorised
to be due to SiLU, instead of flushing small values to 0, returns NaN or some 
other garbage. @jart proposed a fix that @ggerganov then implemented in this fix

ref https://github.com/ggerganov/llama.cpp/pull/7154#issuecomment-2145661825
2024-06-04 17:01:09 +10:00
Francis Couture-Harpin
fee3c1d740 llama : allow doing the equivalent of SSM_CONV with SUM_ROWS and MUL
* ggml : allow GGML_OP_CONCAT to work on non-contiguous tensors

The implementation already supported it,
and this makes Mamba's conv step slightly faster.
2024-06-03 13:54:39 -04:00
Masaya, Kato
a5735e4426
ggml : use OpenMP as a thread pool (#7606)
* ggml: Added OpenMP for multi-threads processing

* ggml : Limit the number of threads used to avoid deadlock

* update shared state n_threads in parallel region

* clear numa affinity for main thread even with openmp

* enable openmp by default

* fix msvc build

* disable openmp on macos

* ci : disable openmp with thread sanitizer

* Update ggml.c

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-06-03 17:14:15 +02:00
Francis Couture-Harpin
8fb57ac0fb llama : use im2col and mul_mat to perform convolution for Mamba
This removes the need for ggml_ssm_conv!!!
But performance seems slighly worse on my system,
especially for prompt processing.
Maybe ggml_mul_mat isn't optimized for small row sizes?
More performance testing is necessary until GGML_OP_SSM_CONV is removed.

* ggml : make ggml_ssm_scan not modify its source tensors

* llama : fix shared recurrent tail cell count for small ubatch sizes

Otherwise it was impossible to run the 'parallel' example with '-ub 1'
with a Mamba or Jamba model.
2024-06-03 00:01:41 -04:00
Francis Couture-Harpin
5d3c7b9585 Merge branch 'master' into compilade/refactor-kv-cache 2024-06-01 11:51:41 -04:00
Francis Couture-Harpin
3587a94987 llama : use equal-sequence-length sub-batches for recurrent models
* ggml : simplify SSM-related operators

* llama : make recurrent state slot allocation contiguous

* llama : adapt internal uses of batches to llama_ubatch
2024-06-01 11:49:17 -04:00
Georgi Gerganov
0c27e6f62e
ggml : fix loongson compile warnings (#7537)
* ggml : fix loongson compile warnings

ggml-ci

* Fix loongarch quantize test fail.

Fix unexpected error introduced during rebase code.

* tests : disable json test due to lack of python on the CI node

ggml-ci

---------

Co-authored-by: junchao-loongson <zhaojunchao@loongson.cn>
2024-05-31 14:17:10 +03:00
Chris Elrod
59b0d07766
faster avx512 exp implementation (#7551)
* faster avx512 exp implementation

* x->r

* improve accuracy, handle special cases

* remove `e`
2024-05-30 21:32:55 +10:00
junchao-loongson
d5c05821f3
ggml : fix loongarch build (O2 issue) (#7636) 2024-05-30 12:30:10 +03:00
Georgi Gerganov
fb76ec31a9
ggml : fix YARN + add tests + add asserts (#7617)
* tests : add rope tests

ggml-ci

* ggml : fixes (hopefully)

ggml-ci

* tests : add non-cont tests

ggml-ci

* cuda : add asserts for rope/norm + fix DS2

ggml-ci

* ggml : assert contiguousness

* tests : reduce RoPE tests

ggml-ci
2024-05-29 20:17:31 +03:00
Radoslav Gerganov
210d99173d
llama-bench : add support for the RPC backend (#7435) 2024-05-29 14:45:44 +03:00
slaren
87bdf2a199
ggml : use atomic_flag for critical section (#7598)
* ggml : use atomic_flag for critical section

* add windows shims
2024-05-29 13:36:39 +02:00
Georgi Gerganov
72de268bec
ggml : restore ggml_rope_xpos_inplace (ggml/0)
ggml-ci
2024-05-29 14:29:33 +03:00
zhouwg
504f0c340f
ggml : fix typo in ggml.c (#7603) 2024-05-29 04:09:31 +02:00
Francis Couture-Harpin
4e4c41e553 Merge branch 'master' into compilade/refactor-kv-cache 2024-05-28 15:15:18 -04:00
Georgi Gerganov
0548a4187f
ggml : generalize GGML_OP_CONCAT (#7563)
* ggml : generalize GGML_OP_CONCAT (WIP)

ggml-ci

* tests : add dim != 2 tests

* metal : generalize concat kernel

* tests : naming

* cuda : generalize concat kernel

ggml-ci

* sycl : add warning and assert

* ggml : fix op params handling

* metal : bugfix kernel

ggml-ci

* ggml : reimplement CPU and Metal

* cuda : add asserts

ggml-ci

* ggml : fix ptrs

ggml-ci
2024-05-28 11:04:19 +03:00
Masaya, Kato
faa0e6979a
ggml: aarch64: SVE kernels for q8_0_q8_0, q4_0_q8_0 vector dot (#7433)
* Add SVE support for q4_0_q8_0 q8_0_q8_0

* remove ifdef
2024-05-25 11:42:31 +03:00
Francis Couture-Harpin
0fd13e9473 Merge branch 'master' into compilade/refactor-kv-cache 2024-05-24 19:35:16 -04:00
Georgi Gerganov
d48c88cbd5
ggml : remove ggml_flash_attn and ggml_flash_ff (#7463)
ggml-ci
2024-05-23 10:00:44 +03:00
Georgi Gerganov
e84b71c2c6
ggml : drop support for QK_K=64 (#7473)
* ggml : drop support for QK_K=64

ggml-ci

* opencl : restore QK_K=256 define
2024-05-23 10:00:21 +03:00
Francis Couture-Harpin
3b57b55c6f Merge branch 'master' into compilade/refactor-kv-cache 2024-05-22 15:34:24 -04:00
Georgi Gerganov
3e5faa8503
cuda : fix rope + add tests (#7452)
* cuda : fix rope pos data

ggml-ci

* ggml : drop mode & 1 == 1 support for ggml_rope

ggml-ci

* ggml : support freq_factors for f16 rope (CPU)

ggml-ci

* tests : add rope tests using frequency factors

ggml-ci
2024-05-22 11:01:35 +03:00
liuwei-git
201cc11afa
llama : add phi3 128K model support (#7225)
* add phi3 128k support in convert-hf-to-gguf

* add phi3 128k support in cuda

* address build warnings on llama.cpp

* adjust index value in cuda long rope freq factors

* add long rope support in ggml cpu backend

* make freq factors only depend on ctx size

* remove unused rope scaling type 'su' frin gguf converter

* fix flint warnings on convert-hf-to-gguf.py

* set to the short freq factor when context size is small than trained context size

* add one line of comments

* metal : support rope freq_factors

* ggml : update ggml_rope_ext API to support freq. factors

* backends : add dev messages to support rope freq. factors

* minor : style

* tests : update to use new rope API

* backends : fix pragma semicolons

* minor : cleanup

* llama : move rope factors from KV header to tensors

* llama : remove tmp assert

* cuda : fix compile warning

* convert : read/write n_head_kv

* llama : fix uninitialized tensors

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-05-21 23:28:32 +03:00
junchao-loongson
65c58207ec
ggml : add loongarch lsx and lasx support (#6454)
* add loongarch lsx and lasx optimize code

* Add loongarch compilation support to makefile

* revert stb_image.h

* opt bytes_from_nibbles_32 and sum_i16_pairs_float

* fix undeclared

* format code

* update

* update 2

---------

Co-authored-by: Jinyang He <hejinyang@loongson.cn>
2024-05-20 10:19:21 +03:00
Srihari-mcw
33c8d50acc
Add provisions for windows support for BF16 code including CMake provision for enabling AVX512_BF16 (#7258) 2024-05-20 12:18:39 +10:00
Johannes Gäßler
5ca49cbecd
ggml: implement quantized KV cache for FA (#7372) 2024-05-19 16:46:13 +02:00
Georgi Gerganov
511182eabb
android : use "ci-android" branch for CI (#7341)
* android : use "ci-android" branch for CI

* ggml : disable SIMD exp and silu for 32-bit ARM

ggml-ci

* android : do not fetch, use add_subdirectory instead

* cmake : provide binary dir
2024-05-18 20:40:39 +10:00
Justine Tunney
934266c0e0
ggml : rewrite silu and softmax for cpu (#7154)
This change upstreams llamafile's vectorized expf() functions. This lets
us compute softmax and silu more accurately than the short[65536] lookup
table that GGML previously used to make this operation go faster. We can
support aarch64 and sse2+ with the worst case rounding error of 2ulp. It
makes make -j8 tests && ./tests/test-backend-ops -o SOFT_MAX -b CPU perf
go 1.5x faster for SSE2+FMA, 1.9x faster for AVX2+FMA and 2.1x on AVX512
2024-05-17 09:58:52 +03:00
kunnis
e1b40ac3b9
ggml : use dynamic thread scheduling for matrix multiplication (#6915)
* Just reordering some structs.

* Adding in the calls to mm_pause

* Passing around the state

* Renaming and moving a bunch of variables around.

* Extracting the logic to it's own function.

* Moving some variable definitions into the chunk function.

* Moving some variables around

* moving src1_cont inside

* Moving row_size

* adding the current_chunk

* Reorg the code.

* Formatting to match the orig patch

* starting to setup the chunking variables

* Starting the buildup of the loop

* The yield shouldn't be necessary.

* adding the looping structure based on the chunk configuration.

* Add in the re-chunking code.

* Making it much more likely to rechunk.

* disable resizing if numa is enabled.

* Updating comments with what we've learned.

* Fix formatting

* Couple more formatting fixes.

* More style fixes.

* Fix Warnings

* Going with unused because there's conditional logic that needs it.

* Update ggml.c

* Update ggml.c

---------
2024-05-15 19:59:12 +02:00
slaren
344f9126cc
ggml : tag ggml_tensor::backend as deprecated (#7290) 2024-05-15 15:08:48 +02:00
John Balis
48aa8fd1f2
ggml : add ggml_upscale_ext (ggml/814)
* initial commit with CPU implementation of upscale to shape and test, cuda implementation next

* experimental commit to see if dst shape is correct

* test version

* test

* removed unnecessary params

* refactor

* fixed tests

* ggml : metal impl + cleanup + sycl dev warnings

* patched ggml_upscale cuda op to handle non-contiguous tensors, added test for non-contiguous behavior

* metal : fix upsacle op to support nb00 + style

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-05-15 13:23:33 +03:00
Georgi Gerganov
e8a7fd4fb0
metal : support FA without mask + add asserts (#7278)
* ggml : fa without mask + add asserts

ggml-ci

* metal : support non-contiguous KV

ggml-ci
2024-05-14 19:09:30 +03:00
Georgi Gerganov
c3c88f296a ggml : try fix ppc64 (whisper/0) 2024-05-14 19:08:09 +03:00
Francis Couture-Harpin
b7ec12ebf7 Merge branch 'master' into compilade/refactor-kv-cache 2024-05-12 17:13:31 -04:00
Georgi Gerganov
325756d28d
ggml : resolve merge (ggml/0)
ggml-ci
2024-05-11 21:33:08 +03:00
Justina Cho
f5ef34e428 feat: implemented sigmoid function (ggml/806)
* added sigmoid function

* implemented metal kernel for sigmoid

* implemented cuda kernel for sigmoid

* added sigmoid unary op and incremented count
2024-05-11 15:38:34 +03:00
Georgi Gerganov
9cb317f77e
ggml : full ALiBi support (#7192)
* ggml : full ALiBi support

* ggml : update ggml_soft_max_ext() CUDA, SYCL

* ggml : ggml_flash_attn_ext() support ALiBi (CPU)

* ggml : ggml_flash_attn_ext() support ALiBi (Metal)

* ggml : fix warning

* ggml : ggml_flash_attn_ext() support ALiBi (CUDA)

ggml-ci

* ggml : fix assert message

* vulkan : add dev notes

* ggml : require mask when using ALiBi

ggml-ci

* convert : fix convert for refact models
2024-05-11 10:32:41 +03:00
Justine Tunney
3855416027
ggml : introduce bfloat16 support (#6412)
* Introduce bfloat16 support

Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as
their canonical floating point format.

      ┌sign
      │
      │   ┌exponent
      │   │
      │   │      ┌mantissa
      │   │      │
      │┌──┴───┐┌─┴───┐
    0b0000000000000000 brain16

This encoding has the same number of exponent bits as float32. That
makes conversion relatively straightforward, even in the absence of
hardware support. For example, converting brain16 to binary32 means
simply shifting 16 bits to the left.

      ┌sign
      │
      │   ┌exponent
      │   │
      │   │      ┌mantissa
      │   │      │
      │┌──┴───┐┌─┴───────────────────┐
    0b00000000000000000000000000000000 IEEE binary32

The issue is that converting bf16 to fp16 can result in information
loss. Only 13% of bf16 numbers can be precisely represented in fp16
which in practice ends up being 99.71% of Mistral 7b v0.2's weights
however there is currently no way other than fp32 to get the others

      ┌sign
      │
      │  ┌exponent
      │  │
      │  │    ┌mantissa
      │  │    │
      │┌─┴─┐┌─┴──────┐
    0b0000000000000000 IEEE binary16

This change fixes that, by adding a bf16 data type to GGML. Support
for CPU inference has been implemented along with optimizations for
the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2
improves somewhere around -0.0024 to -0.0046 compared to using fp16

* Remove GGML code that's not needed

* Minimize the GGML API surface area for BF16

* Remove bf16 luts

* Make the GGML header look nicer

* Fix documentation

* Apply ggerganov's fixes for test-backend-ops

* Add BF16 code for new ggml_validate_row_data() function
2024-05-08 09:30:09 +03:00
Xuan Son Nguyen
842500144e
gguf-split: add --no-tensor-first-split (#7072) 2024-05-04 18:56:22 +02:00
Georgi Gerganov
9c67c2773d
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API

* ggml : fix GQA support in ggml_flash_attn_ext

* ggml : online attention (CPU)

* metal : initial implementation

* metal : f16 precision

* metal : reduce branches

* metal : specialize for head size

* wip : 8 rows per simd group

* wip : 4 rows per simd group

* wip : template for rows per warp

* metal : parallelize across KV size

* metal : parallel reduce across heads

* metal : efficient flash_attn_f16 implementation

* metal : avoid redundant loads of the attention

* metal : scale and mask in matrix form

* metal : fix comment

* llama : avoid ggml_cast, use F32 query

* metal : add parallel reduce version (disabled)

* metal : move output into local memory + optimize

- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments

* metal : add tests, fix scaling, support C > 32

* metal : improve precision

* ggml : fix f16 mad

* metal : minor

* metal : support Q > 8

* tests : add ATTN tests

* metal : disable buffer allocation logs

* tests : more

* metal : faster inner loop for C == 32

* metal : fix array initialization

* tests : ifdef

* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext

* ggml : fix ggml_soft_max mask requirement

* cuda : fix soft_max to use correct mask size

* cuda : add flash_attn kernel (wip)

* metal : optimize softmax for C > 32

* metal : optimize softmax

* tests : minor fix

* cuda : avoid zeroing fragments

* tests : update dims

* cuda : fix __hisinf() result check

* cuda : avoid warp_reduce for smax

* cuda : use int instead of int64_t

Noticeably improves performance (thanks to Johannes)

* cuda : make loops use the same loop values

Thanks Johannes again for the tip

* cuda : unroll some of the loops

* cuda : avoid __hisinf branches

* cuda : use half2 in softmax

* cuda : switch to 1 warp for bs > 16

* cuda : speed-up reduce part of the kernel

* cuda : unroll Q*K^T loop

* cuda : fix -INF block check

* cuda : simplify softmax

* cuda : fix matrix names

* cuda : minor

* llama : adapt to F16 KQ_pos

* llama : adapt new models to F16 KQ_mask

* ggml : fix F16 store (ARM NEON)

* llama : fix type of KQ_mask and KQ_pos

* ggml : fix CPU soft_max

* tests : add hs=256

* cuda : fix build

* metal : improve perf via smaller int registers

* cuda : adapt soft_max to F16 mask and pos

* CUDA: faster FlashAttention, kernel for bs == 1

* 16 cols for Phi-2

* no vec for hs, no hs==256 ncols==32 for Volta

* adjust kernel selection logic

* 4 warps, 256 stride for all D

* no ncols == 64

* Multiple parallel blocks for batch size 1

* fix compile warnings

* fix excessive KQ_b loads

* fix cmake build

* fix KV cache padding, NaN from INFINITY (#6438)

* llama : flash_attn cparam + fix defrag

* server: support flash_attn param

* server: bench: enable flash_attn param

* CUDA: refactor host code, dyn. par. blocks

* fix flash_attn_vec_f16 race condition

* flush softmax exp below threshold to 0

* store temp KQ in registers

* Calculate KQ as FP32 if KQV has GGML_PREC_F32

* Add __hgt2_mask implementation for CUDA 11

* fix KQ FP32 precision fpr parallel_blocks > 1

* llama-bench : add -fa,--flash-attn arg

* metal : add BS=1 kernel for flash attention (#6508)

* metal : add BS=1 kernel for flash attention (wip)

* metal : support more than 1 warps

* metal : opts

* metal : opt

* metal : switch to parallel reduce

* metal : reduce registers

* metal : simplify

* metal : initial FA vec kernel

* metal : use F32 attention accumulators

* batched-bench : add fattn arg

* llama : simplify llama_build_kv_store

ggml-ci

* llama : adapt build_olmo to changes

* ggml : fix arm fp16 store on windows

* metal : clean-up

* metal : clean-up kernel code

* metal : minor

* tests : remove benchmarks

ggml-ci

* ggml : fix avx512 const correctness

ggml-ci

* ggml : fix soft_max with bias on CPU

ggml-ci

* common : print --flash-attn in help

* ggml : fix num dimensions in ggml_flash_attn_ext

* llama : force disable flash attention for incompatible models

* ggml : ggml_soft_max support F16/F32 mask/pos

ggml-ci

* cuda : uint -> uint32_t

* cuda : "constexpr dim3" -> "const dim3"

ggml-ci

* cuda : try to fix __hgt2_mask

ggml-ci

* ggml : add TODO's for F16/F32 mask/pos support in other backends

* llama : replace bool need_kq_pos with use_alibi

* llama : prep ALiBi support for BERT models

ggml-ci

* llama : fix n_batch requirements

ggml-ci

* cont

* server : add help for --flash-attn arg

* llama : disable FA for AMD

* tests : remove TMP_ATTN_BENCH

ggml-ci

* llama : support save/load state with FA enabled

ggml-ci

* ci : add CUDA save-load-state tests

ggml-ci

* llama : llama_kv_cache_clear zeroes data + fix save-load seq

ggml-ci

* llama : fix copy-paste errors, add TODO

* llama : disallow incompatible states

* llama : update llama_state_get_size after v_trans field

* metal : remove tmp log

* llama : add static reminder for llama_state_get_size

* metal : fix max nsg

ggml-ci

* ci : fix arg order

ggml-ci

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 12:16:08 +03:00
Francis Couture-Harpin
c460ff1a1c Merge branch 'master' into compilade/refactor-kv-cache 2024-04-29 10:31:39 -04:00
Xuan Son Nguyen
7bb36ccf91
gguf : enforce that tensor names are unique (#6905)
* not allow adding duplicated tensor name

* no duplicated tensor while reading gguf

* typo

* throw exception inside llama_model_loader

Co-authored-by: slaren <slarengh@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-04-28 17:36:18 +02:00
slaren
e2764cd7ca
gguf : fix mismatch between alloc and free functions (#6929) 2024-04-26 18:07:42 +03:00
Georgi Gerganov
83b72cb086
Merge pull request from GHSA-p5mv-gjc5-mwqv
* always use calloc

clamp n_kv on failure to read a kv

* ggml : alternative ctx->header.n_kv update

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-04-26 10:41:53 +03:00
Georgi Gerganov
51543729ff
ggml : fix redefinition of vaddvq_f32 for 32-bit ARM (#6906) 2024-04-25 15:48:25 +03:00
Justine Tunney
192090bae4
llamafile : improve sgemm.cpp (#6796)
* llamafile : improve sgemm.cpp

- Re-enable by default
- Fix issue described in #6716
- Make code more abstract, elegant, and maintainable
- Faster handling of weirdly shaped `m` an `n` edge cases

* Address review comments

* Help clang produce fma instructions

* Address review comments
2024-04-22 22:00:36 +03:00
slaren
0d56246f4b
ggml : group all experts in a single ggml_mul_mat_id (#6505)
* ggml : group all experts in a single ggml_mul_mat_id
cuda : improve mmid row copy

* cuda : fix bin bcast with non-cont src0

* test-backend-ops : only run all mul mat tests for base types

* llama : disable moe offloading with SYCL

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-18 15:18:48 +02:00