* ggml : reading the runtime sve config of the cpu
* change to one time init to prevent performance drop
* prefix variable to avoid possible conflicts
* revert xxhash fix and add brackets
---------
Co-authored-by: domke <673751-domke@users.noreply.gitlab.com>
* add truncate_bf16
* truncate intermediate fp32 if converting bf16 to bf16
* fix masking in __compute_fp32_to_bf16
* np.int16 no longer used
* missing cast and additional numpy 2.x fix
* ggml-impl : do not flush bf16 subnormals to zero
* ggml : add reference fp32 to bf16 conversion
The fast version is no longer equivalent for all platforms
because of the handling of subnormal values.
* gguf-py : remove flush to zero for bf16 subnormals
* gguf-py : remove float32 truncation to bf16
Rounding achieves the same thing in the cases where this was used.
* missed prototype update in merge
* merge cleanup
---------
Co-authored-by: Francis Couture-Harpin <git@compilade.net>
* Add support for float16 tensors in 1d pooling operations
* Add support for float16 input tensors in 2d pooling operations
* code cleanup
remove unnecessary casting during srow ptr initialization
---------
Co-authored-by: vanaka11 <vanaka1189@gmail.com>
This commit removes an UNUSED macro call that is not needed as the
variable n0 is used in the code and will not produce a warning.
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
`ggml_init` can fail if no unused context is found. In that case, a NULL-pointer deref will happen later in the code during a call to `ggml_set_on_alloc`.
This fixes it by bailing out if no context is found.
* [CANN] Add Ascend NPU backend
Ascend is a full-stack AI computing infrastructure for industry
applications and services based on Huawei Ascend processors and
software.
CANN (Compute Architecture of Neural Networks), developped by
Huawei, is a heterogeneous computing architecture for AI.
Co-authored-by: wangshuai09 <391746016@qq.com>
* delete trailing whitespaces
* Modify the code based on review comment
* Rename LLAMA_CANN to GGML_CANN
* Make ggml-common.h private
* add ggml_cann prefix for acl funcs
* Add logging for CANN backend
* Delete Trailing whitespace
---------
Co-authored-by: wangshuai09 <391746016@qq.com>
* lora: load to devide buft
* add patch tensor function
* correct tensor patch
* llama_lora_adapter_apply
* correct ggml_backend_tensor_copy
* add llm_build_mm
* fix auto merge
* update based on review comments
* add convert script
* no more transpose A
* add f16 convert
* add metadata check
* add sanity check
* fix ftype
* add requirements
* fix requirements
* fix outfile
* conversion: only allow selected models
* fix types
* cuda : do not use dmmv if the tensor does not have enough cols
* llama : lora fixes
* do not disable mmap with lora
Co-authored-by: slaren <slarengh@gmail.com>
* llm_build_lora_mm_id
* convert_lora : MoE LoRA conversion support
* convert_lora : prefer safetensors, similarly to convert_hf
* convert_hf : simplify modify_tensors for InternLM2
* convert_lora : lazy conversion
* llama : load and use alpha from LoRA adapters
* llama : use llm_build_lora_mm in most model graphs
* auto scale
* Revert "auto scale"
This reverts commit 42415a4874.
* remove redundant params
* Apply suggestions from code review
Co-authored-by: slaren <slarengh@gmail.com>
* change kv metadata
* move add_type to __init__
* convert_hf : move add_type to main()
* convert_lora : use the GGUFWriter from Model instead of overwriting it
---------
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Francis Couture-Harpin <git@compilade.net>
* Arm AArch64: optimized GEMV and GEMM kernels for q4_0_q8_0, and q8_0_q8_0 quantization
* Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions
* Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions
* Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions
* Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions
* Arm AArch64: add copyright claim only to ggml-aarch64.cpp and ggml-aarch64.h files
* Arm AArch64: minor code refactoring for rebase
* Arm AArch64: minor code refactoring for resolving a build issue with cmake
* Arm AArch64: minor code refactoring to split the Q4_0_AARC64 type into three separate types: Q4_0_4_4, Q4_0_4_8, and Q4_0_8_8
* Arm AArch64: minor code change for resolving a build issue with server-windows
* retrigger checks
* Arm AArch64: minor code changes for rebase
* Arm AArch64: minor changes to skip the pr#7433 vec_dot code for arm cpus with SVE VL not equal to 256 bits
* Arm AArch64: remove stale LLAMA_QKK_64 from CMakeLists.txt and delete build.zig
* Arm AArch64: add reference scalar gemm and gemv, and avoid dynamic memory allocations during quantization for Q4_0_4_4, Q4_0_4_8, and Q4_0_8_8
* Arm AArch64: add multithreaded quantization support for the new types: Q4_0_4_4, Q4_0_4_8, and Q4_0_8_8
* Arm AArch64: minor code refactoring
* Arm AArch64: simplify logic for calling gemm and gemv functions in ggml_compute_forward_mul_mat
* Arm AArch64: minimize changes in ggml_compute_forward_mul_mat
* Arm AArch64: minor code refactoring, and add reference scalar code to quantize routines for new quant types
* Arm AArch64: minor code refactoring
* Arm AArch64: minor code refactoring
* Arm AArch64: minor code refactoring
* rebase on the latest master commit 3fd62a6 and adapt to the new directory structure
* Arm AArch64: remove a redundant comment
* Arm AArch64: add pragma in ggml-aarch64.c to turn -Woverlength-strings warning off
* Arm AArch64: use __aarch64__ check to guard 64-bit neon kernels
* Arm AArch64: update docs/build.md README to include compile time flags for buiilding the Q4_0_4_4 quant type