* Add llama 3.1 rope scaling factors to llama conversion and inference
This commit generates the rope factors on conversion and adds them to the resulting model as a tensor. At inference time, these factors are passed to the `ggml_rope_ext` rope oepration, improving results for context windows above 8192
* Update convert_hf_to_gguf.py
Co-authored-by: compilade <git@compilade.net>
* address comments
* address comments
* Update src/llama.cpp
Co-authored-by: compilade <git@compilade.net>
* Update convert_hf_to_gguf.py
Co-authored-by: compilade <git@compilade.net>
---------
Co-authored-by: compilade <git@compilade.net>
* Superflous parens in conditionals were removed.
* Unused args in function were removed.
* Replaced unused `idx` var with `_`
* Initializing file_format and format_version attributes
* Renaming constant to capitals
* Preventing redefinition of the `f` var
Signed-off-by: Jiri Podivin <jpodivin@redhat.com>
* gguf-py : fix some metadata name extraction edge cases
* convert_lora : use the lora dir for the model card path
* gguf-py : more metadata edge cases fixes
Multiple finetune versions are now joined together,
and the removal of the basename annotation on trailing versions
is more robust.
* gguf-py : add more name metadata extraction tests
* convert_lora : fix default filename
The default filename was previously hardcoded.
* convert_hf : Model.fname_out can no longer be None
* gguf-py : do not use title case for naming convention
Some models use acronyms in lowercase,
which can't be title-cased like other words,
so it's best to simply use the same case
as in the original model name.
Note that the size label still has an uppercased suffix
to make it distinguishable from the context size of a finetune.
* convert_hf : fix Gemma v1 conversion
* convert_hf : allow renaming tokens, but with a warning
* convert_hf : fix Gemma v1 not setting BOS and EOS tokens
Main thing is that the default output filename will take this form
{name}{parameters}{finetune}{version}{encoding}{kind}
In addition this add and remove some entries in the KV store and adds a metadata class with automatic heuristics capability to derive some values based on model card content
* No Change:
- Internal GGUF Spec
- `general.architecture`
- `general.quantization_version`
- `general.alignment`
- `general.file_type`
- General Model Details
- `general.name`
- `general.author`
- `general.version`
- `general.description`
- Licensing details
- `general.license`
- Typically represents the converted GGUF repo (Unless made from scratch)
- `general.url`
- Model Source during conversion
- `general.source.url`
* Removed:
- Model Source during conversion
- `general.source.huggingface.repository`
* Added:
- General Model Details
- `general.organization`
- `general.finetune`
- `general.basename`
- `general.quantized_by`
- `general.size_label`
- Licensing details
- `general.license.name`
- `general.license.link`
- Typically represents the converted GGUF repo (Unless made from scratch)
- `general.doi`
- `general.uuid`
- `general.repo_url`
- Model Source during conversion
- `general.source.doi`
- `general.source.uuid`
- `general.source.repo_url`
- Base Model Source
- `general.base_model.count`
- `general.base_model.{id}.name`
- `general.base_model.{id}.author`
- `general.base_model.{id}.version`
- `general.base_model.{id}.organization`
- `general.base_model.{id}.url` (Model Website/Paper)
- `general.base_model.{id}.doi`
- `general.base_model.{id}.uuid`
- `general.base_model.{id}.repo_url` (Model Source Repository (git/svn/etc...))
- Array based KV stores
- `general.tags`
- `general.languages`
- `general.datasets`
---------
Co-authored-by: compilade <git@compilade.net>
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
* convert_hf : faster lazy safetensors
This makes '--dry-run' much, much faster.
* convert_hf : fix memory leak in lazy MoE conversion
The '_lazy' queue was sometimes self-referential,
which caused reference cycles of objects old enough
to avoid garbage collection until potential memory exhaustion.
* lora: load to devide buft
* add patch tensor function
* correct tensor patch
* llama_lora_adapter_apply
* correct ggml_backend_tensor_copy
* add llm_build_mm
* fix auto merge
* update based on review comments
* add convert script
* no more transpose A
* add f16 convert
* add metadata check
* add sanity check
* fix ftype
* add requirements
* fix requirements
* fix outfile
* conversion: only allow selected models
* fix types
* cuda : do not use dmmv if the tensor does not have enough cols
* llama : lora fixes
* do not disable mmap with lora
Co-authored-by: slaren <slarengh@gmail.com>
* llm_build_lora_mm_id
* convert_lora : MoE LoRA conversion support
* convert_lora : prefer safetensors, similarly to convert_hf
* convert_hf : simplify modify_tensors for InternLM2
* convert_lora : lazy conversion
* llama : load and use alpha from LoRA adapters
* llama : use llm_build_lora_mm in most model graphs
* auto scale
* Revert "auto scale"
This reverts commit 42415a4874.
* remove redundant params
* Apply suggestions from code review
Co-authored-by: slaren <slarengh@gmail.com>
* change kv metadata
* move add_type to __init__
* convert_hf : move add_type to main()
* convert_lora : use the GGUFWriter from Model instead of overwriting it
---------
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Francis Couture-Harpin <git@compilade.net>
* 9B - query_pre_attn_scalar = 256 not 224
See 03e657582d
Gemma 9b should use 256 and not 224 (self.config.hidden_size // self.config.num_attention_heads)
* llama : fix Gemma-2 Query scaling factor
ggml-ci
---------
Co-authored-by: Daniel Han <danielhanchen@gmail.com>
* llama : fix mpt and olmo pre-tokenizer
* llama : pre-tokenize non-special user-defined tokens first
* llama : fix detection of control-like user-defined tokens
* convert_hf : identify which user-defined tokens are control tokens
Only used in _set_vocab_gpt2() for now.
* convert_hf : identify more added control tokens for SPM tokenziers
This makes Gemma and Gemma-2 tokenize pretty much EVERYTHING correctly,
including HTML tags and consecutive spaces,
but it unfortunately requires model re-conversion.
There seems to be a weird behavior of the HF tokenizer for Gemma,
which prefers to use the 16-space token over more lengthy space tokens,
while using the SentencePiece tokenizer does not do this.
(the implementation in llama.cpp has the same behavior as SentencePiece)
* llama : fix wrong pre-tokenization of byte tokens
* llama : fix Viking pre-tokenizer regex
The order was previously wrong, which caused errors in some tests.
* llama : fix command-r detokenization
* convert_hf : reduce usages of the UNKNOWN token type
* llama : add UNKNOWN tokens in the special tokens cache
* convert_hf : reduce usages of UNKNOWN for InternLM2
This makes the changes from #8321 more consistent
with the other changes made here.
* test-tokenizer-random : reduce potential confilcts with #8379
* test-tokenizer-random : add a failing edge case for falcon
The <filename> token used by Refact doesn't serve
the same purpose as the <file_separator> from CodeGemma.
Signed-off-by: Jiri Podivin <jpodivin@redhat.com>
* py : type-check all Python scripts with Pyright
* server-tests : use trailing slash in openai base_url
* server-tests : add more type annotations
* server-tests : strip "chat" from base_url in oai_chat_completions
* server-tests : model metadata is a dict
* ci : disable pip cache in type-check workflow
The cache is not shared between branches, and it's 250MB in size,
so it would become quite a big part of the 10GB cache limit of the repo.
* py : fix new type errors from master branch
* tests : fix test-tokenizer-random.py
Apparently, gcc applies optimisations even when pre-processing,
which confuses pycparser.
* ci : only show warnings and errors in python type-check
The "information" level otherwise has entries
from 'examples/pydantic_models_to_grammar.py',
which could be confusing for someone trying to figure out what failed,
considering that these messages can safely be ignored
even though they look like errors.
* add chatglm3-6b model support huggingface model:
https://hf-mirror.com/THUDM/chatglm3-6b
Signed-off-by: XingXing Qiao <qiaoxx@dingdao.com>
* remove .rotary_pos_emb.inv_freq and unuse code for chatglm3 model
Signed-off-by: XingXing Qiao <qiaoxx@dingdao.com>
* fix lint error
Signed-off-by: XingXing Qiao <qiaoxx@dingdao.com>
* optimize convert-hf-to-gguf.py for chatglm model
Signed-off-by: XingXing Qiao <qiaoxx@dingdao.com>
* support glm-4-9b-chat
Signed-off-by: XingXing Qiao <qiaoxx@dingdao.com>
* fix eos tokens to glm4
* remove unused log
* add preprocess to chatglm3 and chatglm4
* add eos_id_list to llama.cpp
* fix code style
* fix code style
* fix conflicts
* fix conflicts
* Revert "add eos_id_list to llama.cpp"
This reverts commit 3a4d5790bf.
* set <|endoftext|> as eos and <|user|> as eot
* fix chat template bug
* add comment to glm prefix and suffix
* fix conflicts and add rope_ratio & ChatGLMForConditionalGeneration
* fix chat template bug
* fix codestyle
* fix conflicts
* modified the general name of glm model
* fix conflicts
* remove prefix and suffix
* use normal glm4 chattempalte & use LLM_FFN_SWIGLU in phi3
* fix: resolve Flake8 errors in `convert-hf-to-gguf.py`
- Fix E302 by adding two blank lines before top-level function definitions
- Replace print statements to fix NP100
- Fix E303 by ensuring only one blank line between lines of code
* fix rope ratio to solve incorrect answers
* fix by comments
---------
Signed-off-by: XingXing Qiao <qiaoxx@dingdao.com>
Co-authored-by: XingXing Qiao <qiaoxx@dingdao.com>
Co-authored-by: Umpire2018 <138990495+Umpire2018@users.noreply.github.com>
* Initial OpenELM support (270M only so far)
* Fill out missing entries in llama_model_type_name
* fixup! Initial OpenELM support (270M only so far)
Fix formatting
* llama : support all OpenELM models
* llama : add variable GQA and variable FFN sizes
Some metadata keys can now also be arrays to support setting
their value per-layer for models like OpenELM.
* llama : minor spacing changes
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : use std::array for per-layer hparams
* llama : fix save/load state
* llama : do not print hparams for vocab-only models
* llama : handle n_head == 0
* llama : use const ref for print_f and fix division by zero
* llama : fix t5 uses of n_head and n_ff
* llama : minor comment
---------
Co-authored-by: Francis Couture-Harpin <git@compilade.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>