Commit Graph

133 Commits

Author SHA1 Message Date
liyuhang
6fc90cb727 support for glm edge model 2024-11-26 09:17:30 +00:00
Georgi Gerganov
11ac9800af
llama : improve infill support and special token detection (#9798)
Some checks failed
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-musa.Dockerfile platforms:linux/amd64 tag:full-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-musa.Dockerfile platforms:linux/amd64 tag:light-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-musa.Dockerfile platforms:linux/amd64 tag:server-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Has been cancelled
* llama : improve infill support

ggml-ci

* llama : add more FIM token strings

ggml-ci

* server : update prompt on slot restore (#9800)

* gguf : deprecate old FIM token KVs
2024-10-12 08:21:51 +03:00
compilade
e3c355ba65
convert : handle tokenizer merges format from transformers 4.45 (#9696) 2024-10-03 17:22:15 +03:00
compilade
1927378bcc
convert : refactor rope_freqs generation (#9396)
* convert : refactor rope_freqs generation

This should also fix vocab-only conversion for Phi-3.

* convert : adapt MiniCPM3 to separate rope_freqs insertion

MiniCPM3's tokenizer is treated as a SentencePiece tokenizer to avoid
having to run its custom Python code which mixes tokenization
in the same file as tool calls.

gguf-py : add long and short RoPE factors to tensor mappings

Empty, but the key names are used to populate the mappings.
2024-10-01 09:31:36 +03:00
Georgi Gerganov
f4d2b8846a
llama : add reranking support (#9510)
* py : add XLMRobertaForSequenceClassification [no ci]

* py : fix scalar-tensor conversion [no ci]

* py : fix position embeddings chop [no ci]

* llama : read new cls tensors [no ci]

* llama : add classigication head (wip) [no ci]

* llama : add "rank" pooling type

ggml-ci

* server : add rerank endpoint

ggml-ci

* llama : aboud ggml_repeat during classification

* rerank : cleanup + comments

* server : accept /rerank endpoint in addition to /v1/rerank [no ci]

* embedding : parse special tokens

* jina : support v1 reranker

* vocab : minor style

ggml-ci

* server : initiate tests for later

ggml-ci

* server : add docs

* llama : add comment [no ci]

* llama : fix uninitialized tensors

* ci : add rerank tests

ggml-ci

* add reranking test

* change test data

* Update examples/server/server.cpp

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>

* add `--reranking` argument

* update server docs

* llama : fix comment [no ci]

ggml-ci

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
2024-09-28 17:42:03 +03:00
nopperl
9a913110cf
llama : add support for Chameleon (#8543)
* convert chameleon hf to gguf

* add chameleon tokenizer tests

* fix lint

* implement chameleon graph

* add swin norm param

* return qk norm weights and biases to original format

* implement swin norm

* suppress image token output

* rem tabs

* add comment to conversion

* fix ci

* check for k norm separately

* adapt to new lora implementation

* fix layer input for swin norm

* move swin_norm in gguf writer

* add comment regarding special token regex in chameleon pre-tokenizer

* Update src/llama.cpp

Co-authored-by: compilade <git@compilade.net>

* fix punctuation regex in chameleon pre-tokenizer (@compilade)

Co-authored-by: compilade <git@compilade.net>

* fix lint

* trigger ci

---------

Co-authored-by: compilade <git@compilade.net>
2024-09-28 15:08:43 +03:00
Gabe Goodhart
3d6bf6919f
llama : add IBM Granite MoE architecture (#9438)
* feat(gguf-py): Add granitemoe architecture

This includes the addition of new tensor names for the new moe layers.
These may not be correct at this point due to the need for the hack in
gguf_writer.py to double-check the length of the shape for these layers.

Branch: GraniteMoE

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat(convert_hf_to_gguf): Add GraniteMoeModel

GraniteMoe has the same configuration deltas as Granite

Branch: GraniteMoE

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(granitemoe convert): Split the double-sized input layer into gate and up

After a lot of staring and squinting, it's clear that the standard mixtral
expert implementation is equivalent to the vectorized parallel experts in
granite. The difference is that in granite, the w1 and w3 are concatenated
into a single tensor "input_linear." Rather than reimplementing all of the
math on the llama.cpp side, the much simpler route is to just split this
tensor during conversion and follow the standard mixtral route.

Branch: GraniteMoE

Co-Authored-By: alex.brooks@ibm.com

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat(granitemoe): Implement granitemoe

GraniteMoE follows the mixtral architecture (once the input_linear layers
are split into gate_exps/up_exps). The main delta is the addition of the
same four multipliers used in Granite.

Branch: GraniteMoE

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* Typo fix in docstring

Co-Authored-By: ggerganov@gmail.com

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(conversion): Simplify tensor name mapping in conversion

Branch: GraniteMoE

Co-Authored-By: git@compilade.net
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(convert): Remove unused tensor name mappings

Branch: GraniteMoE

Co-Authored-By: git@compilade.net
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(convert): Sanity check on merged FFN tensor sizes

Branch: GraniteMoE

Co-Authored-By: git@compilade.net
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Allow "output" layer in granite moe architecture (convert and cpp)

Branch: GraniteMoE

Co-Authored-By: git@compilade.net
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(granite): Add missing 'output' tensor for Granite

This is a fix for the previous `granite` architecture PR. Recent snapshots
have included this (`lm_head.weights`) as part of the architecture

Branch: GraniteMoE

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-09-25 10:06:52 +03:00
Gabe Goodhart
0d2ec43833
llama : support IBM Granite architecture (#9412)
* feat(gguf-py): Add Granite model and params to gguf-py

Branch: GraniteLM

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat(convert_hf_to_gguf): Add registration and param setup for Granite

Branch: GraniteLM

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat(llama.cpp): Add config parsing for Granite multiplier params

Branch: GraniteLM

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat(llama.cpp): First pass at full port of granite deviations from llama

Something is still not working right since the results are mostly terrible,
but on occasion it's producing relevant results at this point, so
_something_ is working.

Branch: GraniteLM

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama.cpp): Determine granite language 3b instruct by vocab size

Branch: GraniteLM

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(convert_hf_to_gguf): Use LlamaModel as base for GraniteModel

The defaults in LlamaModel are needed for Granite as well

Branch: GraniteLM

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama.cpp): Switch Granite param names to use _scale for consistency

Other scalar multipliers are called *_scale, so this provides a more
consistent naming convention.

Branch: GraniteLM

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(convert_hf_to_gguf/gguf-py): _multiplier -> _scale

The transformers names with _multiplier will now be converted to the _scale
equivalent during conversion.

Branch: GraniteLM

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama.cpp): Use separate switch clause for granite in llm_load_hparams

Branch: GraniteLM

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2024-09-17 09:44:58 +03:00
Shane A
0aadac10c7
llama : support OLMoE (#9462) 2024-09-16 09:47:37 +03:00
CarryFun
95ca85168b
llama : support MiniCPM3 (#9322)
Co-authored-by: 范睿凯 <fanruikai@modelbest.cn>
2024-09-16 09:45:20 +03:00
compilade
9bc6db28d0
ggml-quants : ternary packing for TriLMs and BitNet b1.58 (#8151)
* ggml-quants : 1.625 bpw ternary packing for BitNet 1.58b

* ggml-quants : faster 1.625 bpw AVX2 vec_dot

Not using a lookup table anymore makes it match q4_0 speed.

* gguf-py : fix formatting

* llama : remove spaces on empty line

* ggml-quants : subtract 1 when back in epi8

This makes the 1.625 bpw type go faster than q4_0. Still not the fastest.

* ggml-quants : Q2_2 now faster than Q4_K on with AVX2

* ggml-quants : cleanup Q1_3 code formatting

* ggml-quants : ARM NEON vec_dot for q2_2 and q1_3

* ggml-quants : use ceiling division when quantizing q1_3

* convert-hf : simplify BitNet pre-quantization

This still results in the exact same tensor weights and scales,
but it reveals some weirdness in the current algorithm.

* convert-hf : allow converting the weird BitNet 1.3B

Its FFN size is 5460 which is not convenient.
The offending tensors are kept in F16,
which makes the final model 5.01 bpw.

* bitnet : replace 1.58b with b1.58, as in the paper

* ggml-quants : fix build failure on Windows

* ggml-quants : attempt to fix Arm 32-bit support

* ggml : add some informative comments in q1_3 vec_dot

* ggml : add TQ1_0 and TQ2_0 ternary quantization types

* ggml : even faster TQ2_0

* ggml : also faster TQ1_0

Same optimization as for TQ2_0 by offsetting the sum instead of the weights.
This makes TQ1_0 almost as fast as Q8_0 on AVX2.

* ggml : fix build issues in certain environments

* ggml : add NEON vec_dot implementation for TQ1_0 and TQ2_0

* ggml : avoid directly using vmlal_high_s8, for 32-bit ARM compat

The compiler seems smart enough to use the same instruction
even when using vget_high_s8 instead.

* ggml : remove q1_3 and q2_2

No more 1.625 bpw and 2.000 bpw,
now instead using 1.6875 bpw and 2.0625 bpw
with TQ1_0 and TQ2_0, respectively.

* llama : remove the separate scale tensors of BitNet b1.58

They won't be needed, since the remaining ternary quant types have
built-in scales.

* ggml-quants : rename fields of TQ1_0 and TQ2_0 structs for consistency

* ggml-quants : allow using vdotq_s32 in TQ2_0 vec_dot

Not yet tested on hardware which supports it,
might not work or might not even compile. But also it might.
It should make the performance better on recent ARM CPUs.

* ggml-quants : remove comment about possible format change of TQ2_0

Making it slightly more convenient for AVX512
but less convenient for everything else is not worth the trouble.

* gguf-py : Numpy (de)quantization for TQ1_0 and TQ2_0

* ggml-quants : use roundf instead of nearest_int for TQ1_0 and TQ2_0

This does not change anything for ternary models,
since their values should never end up being in halfway cases anyway.

* convert : allow direct conversion to TQ1_0 and TQ2_0

The token embeddings and output tensors are kept in F16
to allow quantizing them to Q4_K and Q6_K with llama-quantize.

* llama : handle fallback for TQ1_0 and TQ2_0 with Q4_0

Q4_0 is not completely symmetric (so not lossless for ternary models),
but it should be good enough.

* ggml-quants : allow using ARM dot product instructions for TQ1_0

* ggml-quants : deduplicate TQ1_0 and TQ2_0 __ARM_FEATURE_DOTPROD support

* ggml : remove unused ggml_mul special case

It would otherwise conflict with the more general
optimization coming with Mamba-2.

* ggml : handle TQ1_0 and TQ2_0 in dequantization-based operators

* test-backend-ops : add TQ1_0 and TQ2_0 comments for later

Not yet adding uncommented, because some backends like SYCL and Metal
do not properly handle unknown types in supports_op for GGML_OP_MUL_MAT.
(and Metal also doesn't handle it with GGML_OP_GET_ROWS)
Support for TQ1_0 and TQ2_0 for other backends than CPU
will be added in follow-up pull requests.
2024-09-05 21:48:47 -04:00
Molly Sophia
8f1d81a0b6
llama : support RWKV v6 models (#8980)
* convert_hf_to_gguf: Add support for RWKV v6

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add RWKV tokenization

* Fix build

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Do not use special tokens when matching in RWKV tokenizer

* Fix model loading

* Add (broken) placeholder graph builder for RWKV

* Add workaround for kv cache

* Add logits conversion to rwkv5

* Add rwkv5 layer norms

* Add time mix KVRG & correct merge mistake

* Add remaining time mix parameters

* Add time mix output loading

* Add placeholder llm_build_time_mix

* Fix build

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Load more tensors for rwkv v6

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix rwkv tokenizer

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* ggml: Add unary operator Exp

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* RWKV v6 graph building

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add ``rescale_every_n_layers`` parameter

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add ``wkv.head_size`` key for RWKV

so it doesn't reuse Mamba ssm parameters

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix offloading layers to CUDA

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix parallel inferencing for RWKV

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Remove trailing whitespaces

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* build_rwkv: Avoid using inplace operations

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* convert_hf_to_gguf: rwkv: Avoid using ``eval``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* convert_hf_to_gguf: rwkv tokenizer: Don't escape sequences manually

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* ggml: Add backward computation for unary op ``exp``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* Use MODEL_ARCH.RWKV6 instead of MODEL_ARCH.RWKV

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* build_rwkv6: Simplify graph

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Detect model.type

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Fix tensor loading for 7B/14B models

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Fix group_norm assertion failure with Metal

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Clean up

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Add quantization tensor exclusion

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Use the new advanced batch splits

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update src/llama.cpp

Co-authored-by: compilade <git@compilade.net>

* llama: rwkv6: Use ``ggml_norm`` instead of ``ggml_group_norm``

Co-authored-by: compilade <git@compilade.net>

* llama: rwkv6: Apply code style and misc changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* converter: Use class name ``Rwkv6Model``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Make use of key ``feed_forward_length``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Add kv ``time_mix_extra_dim`` and ``time_decay_extra_dim``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* converter: Match ``new_name`` instead of ``name`` for float32 explicit tensors

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Keep ``time_mix_w1/w2`` as F32

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Remove unused nodes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Apply code format changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Add lora for some supported tensors

Currently att.key/receptance/value/gate/output, ffn.receptance/key/value, as well as head.weight

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* rwkv : speed-up tokenization using trie

* minor : style + indentation

* llama: rwkv6: Avoid division by zero

Co-authored-by: compilade <git@compilade.net>

* ggml: rwkv_wkv: Avoid copying the state

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
Co-authored-by: Layl Bongers <3094382+LaylBongers@users.noreply.github.com>
Co-authored-by: compilade <git@compilade.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-09-01 17:38:17 +03:00
Younes Belkada
b40eb84895
llama : support for falcon-mamba architecture (#9074)
* feat: initial support for llama.cpp

* fix: lint

* refactor: better refactor

* Update src/llama.cpp

Co-authored-by: compilade <git@compilade.net>

* Update src/llama.cpp

Co-authored-by: compilade <git@compilade.net>

* fix: address comments

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* fix: add more cleanup and harmonization

* fix: lint

* Update gguf-py/gguf/gguf_writer.py

Co-authored-by: compilade <git@compilade.net>

* fix: change name

* Apply suggestions from code review

Co-authored-by: compilade <git@compilade.net>

* add in operator

* fix: add `dt_b_c_rms` in `llm_load_print_meta`

* fix: correct printf format for bool

* fix: correct print format

* Update src/llama.cpp

Co-authored-by: compilade <git@compilade.net>

* llama : quantize more Mamba tensors

* llama : use f16 as the fallback of fallback quant types

---------

Co-authored-by: compilade <git@compilade.net>
2024-08-21 11:06:36 +03:00
Minsoo Cheong
c679e0cb5c
llama : add EXAONE model support (#9025)
* add exaone model support

* add chat template

* fix whitespace

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* add ftype

* add exaone pre-tokenizer in `llama-vocab.cpp`

Co-Authored-By: compilade <113953597+compilade@users.noreply.github.com>

* fix lint

Co-Authored-By: compilade <113953597+compilade@users.noreply.github.com>

* add `EXAONE` to supported models in `README.md`

* fix space

Co-authored-by: compilade <git@compilade.net>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: compilade <113953597+compilade@users.noreply.github.com>
Co-authored-by: compilade <git@compilade.net>
2024-08-16 09:35:18 +03:00
Yoshi Suhara
2a24c8caa6
Add Nemotron/Minitron GGUF Conversion & Inference Support (#8922)
* Add nemotron GGUF conversion & inference support

* Fix formatting issues

* Remove unnecessary write_tensors()

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* Update src/llama.cpp

Co-authored-by: compilade <git@compilade.net>

* Address comments by @compilade

* Replace ggml_mul_mat()->llm_build_lora_mm()

* Remove mutable variable

* Use  for bias tensors

* Cover corner case for role_scaling not in config.json

---------

Co-authored-by: compilade <git@compilade.net>
2024-08-16 04:23:33 +02:00
compilade
4134999e01
gguf-py : Numpy dequantization for most types (#8939)
* gguf-py : Numpy dequantization for most types

* gguf-py : Numpy dequantization for grid-based i-quants
2024-08-11 14:45:41 -04:00
fairydreaming
7c3f55c100
Add support for encoder-only T5 models (#8900)
* gguf-py : add T5ENCODER model architecture

* common : call llama_decode() during warmup only if the model has decoder

* convert-hf : add T5EncoderModel

* llama : add llama_model_has_decoder() API function

* llama : split build_t5() into build_t5_encoder() and build_t5_decoder()

* llama : add support for LLM_ARCH_T5ENCODER

* llama-embedding : add support for LLAMA_POOLING_TYPE_NONE

* llama-embedding : add support for encoder-only models

---------

Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
2024-08-10 11:43:26 +02:00
compilade
3a14e00366
gguf-py : simplify support for quant types (#8838)
* gguf-py : use classes for quants

* convert_hf : simplify internal quantization type selection

* gguf-py : fix flake8 lint

* gguf-py : fix BF16 numpy view type

* gguf-py : remove LlamaFileTypeMap

Too specific to 'llama.cpp', and would be a maintenance burden
to keep up to date.

* gguf-py : add generic quantize and dequantize functions

The quant classes no longer need to be known,
only the target or the source type,
for 'quantize' and 'dequantize', respectively.
2024-08-08 13:33:09 -04:00
Xuan Son Nguyen
1e6f6554aa
server : add lora hotswap endpoint (WIP) (#8857)
* server : add lora hotswap endpoint

* handle lora_no_apply

* fix build

* updae docs

* clean up struct def

* fix build

* add LoRA test

* fix style
2024-08-06 17:33:39 +02:00
Brian
1ef14b3007
py: Add more authorship metadata from model card (#8810)
* py: add more authorship metadata from model card

* fixup! py: add more authorship metadata from model card
2024-08-05 21:15:28 +10:00
fairydreaming
d3f0c7166a
Stop the generation when <|eom_id|> token is encountered - needed for Llama 3.1 tool call support (#8858)
* gguf-py, llama : add constants and methods related to Llama-3.1 <|eom_id|> token

* llama : find Llama-3.1 <|eom_id|> token id during vocab loading

* llama-vocab : add Llama-3.1 <|eom_id|> token to the set of tokens stopping the generation

---------

Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
2024-08-05 09:38:01 +02:00
Sigbjørn Skjæret
b72c20b85c
Fix conversion of unnormalized BF16->BF16 weights (#7843)
* add truncate_bf16

* truncate intermediate fp32 if converting bf16 to bf16

* fix masking in __compute_fp32_to_bf16

* np.int16 no longer used

* missing cast and additional numpy 2.x fix

* ggml-impl : do not flush bf16 subnormals to zero

* ggml : add reference fp32 to bf16 conversion

The fast version is no longer equivalent for all platforms
because of the handling of subnormal values.

* gguf-py : remove flush to zero for bf16 subnormals

* gguf-py : remove float32 truncation to bf16

Rounding achieves the same thing in the cases where this was used.

* missed prototype update in merge

* merge cleanup

---------

Co-authored-by: Francis Couture-Harpin <git@compilade.net>
2024-08-02 15:11:39 -04:00
Brian
7e72aa74fd
py: add_array() will not add to kv store if value is an empty array (#8774)
* gguf_writer.py: add_array() should not add to kv store if empty

* Apply suggestions from code review

I was wondering if there was a specific reason for `if val` but good to hear we can safely use `len(val == 0`

Co-authored-by: compilade <git@compilade.net>

---------

Co-authored-by: compilade <git@compilade.net>
2024-07-31 00:57:03 +10:00
compilade
328884f421
gguf-py : fix some metadata name extraction edge cases (#8591)
* gguf-py : fix some metadata name extraction edge cases

* convert_lora : use the lora dir for the model card path

* gguf-py : more metadata edge cases fixes

Multiple finetune versions are now joined together,
and the removal of the basename annotation on trailing versions
is more robust.

* gguf-py : add more name metadata extraction tests

* convert_lora : fix default filename

The default filename was previously hardcoded.

* convert_hf : Model.fname_out can no longer be None

* gguf-py : do not use title case for naming convention

Some models use acronyms in lowercase,
which can't be title-cased like other words,
so it's best to simply use the same case
as in the original model name.

Note that the size label still has an uppercased suffix
to make it distinguishable from the context size of a finetune.
2024-07-20 21:58:49 -04:00
Brian
3d0e4367d9
convert-*.py: add general.name kv override (#8571) 2024-07-19 17:51:51 +10:00
Brian
672a6f1018
convert-*.py: GGUF Naming Convention Refactor and Metadata Override Refactor (#7499)
Main thing is that the default output filename will take this form

{name}{parameters}{finetune}{version}{encoding}{kind}

In addition this add and remove some entries in the KV store and adds a metadata class with automatic heuristics capability to derive some values based on model card content

* No Change:
  - Internal GGUF Spec
    - `general.architecture`
    - `general.quantization_version`
    - `general.alignment`
    - `general.file_type`
  - General Model Details
    - `general.name`
    - `general.author`
    - `general.version`
    - `general.description`
  - Licensing details
    - `general.license`
  - Typically represents the converted GGUF repo (Unless made from scratch)
    - `general.url`
  - Model Source during conversion
    - `general.source.url`

* Removed:
  - Model Source during conversion
    - `general.source.huggingface.repository`

* Added:
  - General Model Details
    - `general.organization`
    - `general.finetune`
    - `general.basename`
    - `general.quantized_by`
    - `general.size_label`
  - Licensing details
    - `general.license.name`
    - `general.license.link`
  - Typically represents the converted GGUF repo (Unless made from scratch)
    - `general.doi`
    - `general.uuid`
    - `general.repo_url`
  - Model Source during conversion
    - `general.source.doi`
    - `general.source.uuid`
    - `general.source.repo_url`
  - Base Model Source
    - `general.base_model.count`
    - `general.base_model.{id}.name`
    - `general.base_model.{id}.author`
    - `general.base_model.{id}.version`
    - `general.base_model.{id}.organization`
    - `general.base_model.{id}.url` (Model Website/Paper)
    - `general.base_model.{id}.doi`
    - `general.base_model.{id}.uuid`
    - `general.base_model.{id}.repo_url` (Model Source Repository (git/svn/etc...))
  - Array based KV stores
    - `general.tags`
    - `general.languages`
    - `general.datasets`

---------

Co-authored-by: compilade <git@compilade.net>
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
2024-07-18 20:40:15 +10:00
compilade
7acfd4e8d5
convert_hf : faster lazy safetensors (#8482)
* convert_hf : faster lazy safetensors

This makes '--dry-run' much, much faster.

* convert_hf : fix memory leak in lazy MoE conversion

The '_lazy' queue was sometimes self-referential,
which caused reference cycles of objects old enough
to avoid garbage collection until potential memory exhaustion.
2024-07-15 23:13:10 -04:00
Xuan Son Nguyen
97bdd26eee
Refactor lora adapter support (#8332)
* lora: load to devide buft

* add patch tensor function

* correct tensor patch

* llama_lora_adapter_apply

* correct ggml_backend_tensor_copy

* add llm_build_mm

* fix auto merge

* update based on review comments

* add convert script

* no more transpose A

* add f16 convert

* add metadata check

* add sanity check

* fix ftype

* add requirements

* fix requirements

* fix outfile

* conversion: only allow selected models

* fix types

* cuda : do not use dmmv if the tensor does not have enough cols

* llama : lora fixes

* do not disable mmap with lora

Co-authored-by: slaren <slarengh@gmail.com>

* llm_build_lora_mm_id

* convert_lora : MoE LoRA conversion support

* convert_lora : prefer safetensors, similarly to convert_hf

* convert_hf : simplify modify_tensors for InternLM2

* convert_lora : lazy conversion

* llama : load and use alpha from LoRA adapters

* llama : use llm_build_lora_mm in most model graphs

* auto scale

* Revert "auto scale"

This reverts commit 42415a4874.

* remove redundant params

* Apply suggestions from code review

Co-authored-by: slaren <slarengh@gmail.com>

* change kv metadata

* move add_type to __init__

* convert_hf : move add_type to main()

* convert_lora : use the GGUFWriter from Model instead of overwriting it

---------

Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Francis Couture-Harpin <git@compilade.net>
2024-07-15 20:50:47 +02:00
compilade
7d0e23d72e
gguf-py : do not use internal numpy types (#7472) 2024-07-09 01:04:49 -04:00
compilade
3fd62a6b1c
py : type-check all Python scripts with Pyright (#8341)
* py : type-check all Python scripts with Pyright

* server-tests : use trailing slash in openai base_url

* server-tests : add more type annotations

* server-tests : strip "chat" from base_url in oai_chat_completions

* server-tests : model metadata is a dict

* ci : disable pip cache in type-check workflow

The cache is not shared between branches, and it's 250MB in size,
so it would become quite a big part of the 10GB cache limit of the repo.

* py : fix new type errors from master branch

* tests : fix test-tokenizer-random.py

Apparently, gcc applies optimisations even when pre-processing,
which confuses pycparser.

* ci : only show warnings and errors in python type-check

The "information" level otherwise has entries
from 'examples/pydantic_models_to_grammar.py',
which could be confusing for someone trying to figure out what failed,
considering that these messages can safely be ignored
even though they look like errors.
2024-07-07 15:04:39 -04:00
toyer
905942abdb
llama : support glm3 and glm4 (#8031)
* add chatglm3-6b model support huggingface model:
 https://hf-mirror.com/THUDM/chatglm3-6b

Signed-off-by: XingXing Qiao <qiaoxx@dingdao.com>

* remove .rotary_pos_emb.inv_freq and unuse code for chatglm3 model

Signed-off-by: XingXing Qiao <qiaoxx@dingdao.com>

* fix lint error

Signed-off-by: XingXing Qiao <qiaoxx@dingdao.com>

* optimize convert-hf-to-gguf.py for chatglm model

Signed-off-by: XingXing Qiao <qiaoxx@dingdao.com>

* support glm-4-9b-chat

Signed-off-by: XingXing Qiao <qiaoxx@dingdao.com>

* fix eos tokens to glm4

* remove unused log

* add preprocess to chatglm3 and chatglm4

* add eos_id_list to llama.cpp

* fix code style

* fix code style

* fix conflicts

* fix conflicts

* Revert "add eos_id_list to llama.cpp"

This reverts commit 3a4d5790bf.

* set <|endoftext|> as eos and <|user|> as eot

* fix chat template bug

* add comment to glm prefix and suffix

* fix conflicts and add rope_ratio & ChatGLMForConditionalGeneration

* fix chat template bug

* fix codestyle

* fix conflicts

* modified the general name of glm model

* fix conflicts

* remove prefix and suffix

* use normal glm4 chattempalte & use LLM_FFN_SWIGLU in phi3

* fix: resolve Flake8 errors in `convert-hf-to-gguf.py`

- Fix E302 by adding two blank lines before top-level function definitions
- Replace print statements to fix NP100
- Fix E303 by ensuring only one blank line between lines of code

* fix rope ratio to solve incorrect answers

* fix by comments

---------

Signed-off-by: XingXing Qiao <qiaoxx@dingdao.com>
Co-authored-by: XingXing Qiao <qiaoxx@dingdao.com>
Co-authored-by: Umpire2018 <138990495+Umpire2018@users.noreply.github.com>
2024-07-07 15:52:10 +03:00
Icecream95
d7fd29fff1
llama : add OpenELM support (#7359)
* Initial OpenELM support (270M only so far)

* Fill out missing entries in llama_model_type_name

* fixup! Initial OpenELM support (270M only so far)

Fix formatting

* llama : support all OpenELM models

* llama : add variable GQA and variable FFN sizes

Some metadata keys can now also be arrays to support setting
their value per-layer for models like OpenELM.

* llama : minor spacing changes

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* llama : use std::array for per-layer hparams

* llama : fix save/load state

* llama : do not print hparams for vocab-only models

* llama : handle n_head == 0

* llama : use const ref for print_f and fix division by zero

* llama : fix t5 uses of n_head and n_ff

* llama : minor comment

---------

Co-authored-by: Francis Couture-Harpin <git@compilade.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-07-04 20:14:21 +03:00
Faisal Zaghloul
968967376d
Add JAIS model(s) (#8118)
* Add `JAIS` model(s)

* cleanup

* address review comments

* remove hack

* un-hardcode max-alibi-bias

* minor tweaks

---------

Co-authored-by: fmz <quic_fzaghlou@quic.com>
2024-07-02 16:36:00 +02:00
Xuan Son Nguyen
49122a873f
gemma2: add sliding window mask (#8227)
* gemma2: add sliding window mask

* fix data_swa uninitialized

* better naming

* add co-author

Co-authored-by: Arlo Phoenix <arlo-phoenix@users.noreply.github.com>

* replace list with single tensor

* update

* llama : minor styling

* convert : add sanity check for query_pre_attn_scalar

* fix small typo in README

---------

Co-authored-by: Arlo Phoenix <arlo-phoenix@users.noreply.github.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-07-01 18:48:34 +02:00
Andrei
1c5eba6f8e
llama: Add attention and final logit soft-capping, update scaling factor to Gemma2 (#8197)
* Add attention and final logit softcapping.

* fix

* Add custom add_ functions

* Disable flash attention for Gemma2

* Update src/llama.cpp

Co-authored-by: slaren <slarengh@gmail.com>

* Add default value for attention and final logit softcap value

* Add custom kq scaling from Gemma2Attention

* Remove custom pre attention scaling and use computed value instead.

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-06-29 23:44:08 -04:00
pculliton
e57dc62057
llama: Add support for Gemma2ForCausalLM (#8156)
* Inference support for Gemma 2 model family

* Update convert-hf-to-gguf.py, constants, and tensor mappings

* cleanup

* format fix

* Fix special token vocab bug

* Don't add space prefix

* fix deleted lines

* Update src/llama.cpp

Co-authored-by: slaren <slarengh@gmail.com>

* Add model type names

* Add control vector

* Fix model type identification

---------

Co-authored-by: Andrei Betlen <abetlen@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2024-06-27 21:00:43 -07:00
Brian
c8ad35955a
Gguf dump start data offset via --data-offset and some extra refactor (#8054)
* gguf-dump: add --data-offset

* gguf-dump: add tensor data offset table

* gguf-dump: refactor GGUFReader for clarity

* gguf-dump: add --data-alignment

* gguf-dump.py: Rename variables and adjust comments

start_data_offset --> data_offset

_build_tensors_info_fields --> _build_tensor_info
2024-06-25 22:03:25 +10:00
Christian Zhou-Zheng
52fc8705a0
Option to split during conversion (#6942)
* support splits in convert.py

* Support split by size and dry run to write estimated shards/filesizes

* Move split functionality to new GGUFManager class

* fix improper function signature

* tentative push of convert-hf-to-gguf support

* resolve merge + SplitArguments for easier parsing

* Fix eager tensor memory leak and remove convert.py changes

Removed a memory leak caused by unexpected reference retention to eager tensors.

Also removed GGUFManager functionality in convert.py in favor of specializing for convert-hf-to-gguf.py.

* refactor SplitStrategy to be a deque

Instead of having SplitStrategy have a `data` field that is a deque, just have SplitStrategy be a subclass of deque itself.

* fix Q8 quantization

* remove unnecessary imports in gguf_manager

* fix final? merge issue

* fix gguf_writer placement and remove comments

* oops, actually fix gguf_writer placement

* reduce duplicated code from gguf_writer

* further simplify GGUFManager

* simplify even further and standardize with GGUFWriter

* reduce diffs with master

* form shards while adding tensors, SHA256 sums agree with master

* re-add type hint

Co-authored-by: compilade <git@compilade.net>

* GGUFWriter compatibility fix

Co-authored-by: compilade <git@compilade.net>

* Shard dataclass and un-negative dont_add_architecture

* type consistency in format_n_bytes_to_str

* move kv keys to constants.py

* make pathlib explicit

* base-1024 bytes to base-1000

* rename GGUFManager to GGUFWriterSplit

* Update gguf-py/gguf/constants.py

Co-authored-by: compilade <git@compilade.net>

* fix convert-hf-to-gguf.py permissions

* fix line endings

* Update gguf-py/gguf/gguf_writer_split.py

Co-authored-by: compilade <git@compilade.net>

* convert-hf : restore executable file permission

* examples/convert-legacy-llama.py: restore executable file permission

* reinstate original gguf package import and fix type annotation

* attempt to appease the linter

* attempt 2 to appease the linter

* attempt 3 to appease the linter

* comma consistency

* Update convert-hf-to-gguf.py

Co-authored-by: compilade <git@compilade.net>

* edit cmd line args

* use simplification from #7827

* kv/ti data are still wrong

* try to refactor kv data (still fails)

* fix ti data messiness

* tidy up

* fix linting

* actually make the linter happy

* cleanup round 1

* remove SplitStrategy, SplitArguments

* appease linter

* fix typing and clean up

* fix linting

* Update gguf-py/gguf/gguf_writer.py

Co-authored-by: compilade <git@compilade.net>

* progress bar, fix split logic

* Update gguf-py/gguf/gguf_writer.py

Co-authored-by: compilade <git@compilade.net>

* catch oversights

* Update gguf-py/gguf/gguf_writer.py

Co-authored-by: compilade <git@compilade.net>

* Update gguf-py/gguf/gguf_writer.py

Co-authored-by: compilade <git@compilade.net>

* Update gguf-py/gguf/gguf_writer.py

Co-authored-by: compilade <git@compilade.net>

* Update gguf-py/gguf/gguf_writer.py

Co-authored-by: compilade <git@compilade.net>

* Update gguf-py/gguf/gguf_writer.py

Co-authored-by: compilade <git@compilade.net>

* swap bar orders

* Update gguf-py/gguf/gguf_writer.py

Co-authored-by: compilade <git@compilade.net>

* Update gguf-py/gguf/gguf_writer.py

Co-authored-by: compilade <git@compilade.net>

* compatibility fix

* Update gguf-py/gguf/gguf_writer.py

Co-authored-by: compilade <git@compilade.net>

* Update convert-hf-to-gguf.py

Co-authored-by: compilade <git@compilade.net>

---------

Co-authored-by: Brian <mofosyne@gmail.com>
Co-authored-by: compilade <git@compilade.net>
2024-06-24 19:42:03 +10:00
fairydreaming
de0d6a68ac
gguf-py, convert-hf : model conversion support for T5 and FLAN-T5 model variants (#5763)
* gguf-py : add T5 model architecture

* gguf-py : add separate tensors for encoder and decoder

* gguf-py : add new model header parameters: decoder_start_token_id, attention.relative_buckets_count, tokenizer.ggml.remove_extra_whitespaces, tokenizer.ggml.precompiled_charsmap

* convert-hf : add model conversion support for T5ForConditionalGeneration and T5WithLMHeadModel

---------

Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
2024-06-24 07:06:05 +02:00
Eddie-Wang
e112b610a1
llama : add support for BitnetForCausalLM (#7931)
* hf bitnet v1

* hf bitnet e2e v2

* finish bitnet e2e

* finish f16 hf bitnet e2e

* remove unsed

* finish bitnet i2 e2e

* move i2s to quantize v1

* move i2 to quantize

* clean code

* clean code 2

* fix codestyle

* fix code

* fix

* fix code

* fix merge

* remove unused

* change table name

* fix whitespace

* delete redundant

* i2_s to absmax

* finish i2_s/i8_s vec_dot x86 simd

* i2s->q22

* fix code

* remove block scale

* add dequantize

* fix seq

* update avx2

* remove q2_2

* remove q22_grid

* fix whitespace

* reuse llm_build_kv

* fix bo

---------

Co-authored-by: root <root@wangjinheng>
2024-06-23 21:27:57 +03:00
Ștefan-Gabriel Muscalu
a94e6ff877
update: support Qwen2-57B-A14B (#7835)
* update: convert-hf-to-gguf.py to support Qwen2-57B-A14B

* fix: QWEN2MOE support for expert_feed_forward_length

previously, expert ff was taken from n_ff (intermediate size) but it is now properly taken from LLM_KV_EXPERT_FEED_FORWARD_LENGTH

n_ff_exp and n_ff_shared_exp are now properly calculated

* update: convert-hf-to-gguf.py cleanup for Qwen2MoeForCausalLM

* fix: QWEN2MOE support for expert_feed_forward_length

previously, expert ff was taken from n_ff (intermediate size) but it is now properly taken from LLM_KV_EXPERT_FEED_FORWARD_LENGTH

n_ff_exp and n_ff_shexp are now properly calculated
2024-06-17 21:08:46 +02:00
compilade
ed9f252118
gguf-py : decouple adding metadata from writing in GGUFWriter (#7827)
Main changes of this PR is to consolidate GGUFWriter.add_key and GGUFWriter.add_val into GGUFWriter.add_key_value. 

In addition use_temp_file is now opt-in instead of opt-out defaulting to False.

Also GGUFWriter now does not require output file name until when actually writing to it.

And GGUFWriter doesn't really need to eagerly prepare the data layout of the metadata
2024-06-09 12:34:29 +10:00
Joan Fontanals
f5d7b268ec
llama : add jina v2 base code (#7596)
* feat: add changes to handle jina v2 base code

* fix: do not complicate things

* fix: fix the usage of the code model

* fix: fix comments

* fix: fix linting issues

* fix: remove ollama patches

* style : minor

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-06-06 10:22:41 +03:00
zhangkaihuo
6f28a333c1
llama : MiniCPM support tied embeddings (#7664)
* support lm_head

* remove the code block

---------

Co-authored-by: zhangkaihuo <zhangkaihuo@modelbest.cn>
2024-06-03 10:49:30 +03:00
Galunid
9c4c9cc83f
Move convert.py to examples/convert-legacy-llama.py (#7430)
* Move convert.py to examples/convert-no-torch.py

* Fix CI, scripts, readme files

* convert-no-torch -> convert-legacy-llama

* Move vocab thing to vocab.py

* Fix convert-no-torch -> convert-legacy-llama

* Fix lost convert.py in ci/run.sh

* Fix imports

* Fix gguf not imported correctly

* Fix flake8 complaints

* Fix check-requirements.sh

* Get rid of ADDED_TOKENS_FILE, FAST_TOKENIZER_FILE

* Review fixes
2024-05-30 21:40:00 +10:00
fairydreaming
ee3dff6b8e
Add support for DeepseekV2ForCausalLM (#7519)
* common : increase max number of experts to 160

* common : add tensors ATTN_Q_A, ATTN_Q_A_NORM, ATTN_Q_B, ATTN_KV_A_MQA, ATTN_KV_A_NORM, ATTN_KV_B needed by DeepSeek-V2 MLA (multi-head latent attention) architecture

* common : add model header parameters: leading_dense_block_count, expert_feed_forward_length, expert_shared_count, expert_weights_scale, attention.q_lora_rank, attention.kv_lora_rank, rope.scaling.yarn_log_multiplier

* convert-hf : add model conversion support for DeepseekV2ForCausalLM

* llama : add model types for DeepSeek-V2 and DeepSeek-V2-Lite models

* llama : add two new llm_build_moe_ffn() arguments: scale_w (whether to scale weights of selected MoE experts) and w_scale (numerical value of the scaling factor)

* llama : add inference support for LLM_ARCH_DEEPSEEK2

---------

Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
2024-05-28 17:07:05 +02:00
compilade
b83bab15a5
gguf-py : fix and simplify quantized shape round-trip (#7483)
* gguf-py : fix and simplify quantized shape round-trip

* gguf-py : remove unused import
2024-05-25 11:11:48 +10:00
fairydreaming
fbca2f27fc
Add support for ArcticForCausalLM (#7020)
* common : increase max number of experts to 128

* common : add tensor LLM_TENSOR_FFN_NORM_EXPS for normalization before MoE that runs in parallel to attention + ffn

* gguf-py : add architecture-specific block mappings that override selected general block mappings

* convert-hf : add model conversion support for ArcticForCausalLM

* convert-hf : use added_tokens_decoder from tokenizer_config.json to redefine tokens from SentencePiece model (only for ArcticForCausalLM)

* llama : add inference support for LLM_ARCH_ARCTIC

---------

Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
2024-05-24 14:31:13 +02:00
Georgi Gerganov
e84b71c2c6
ggml : drop support for QK_K=64 (#7473)
* ggml : drop support for QK_K=64

ggml-ci

* opencl : restore QK_K=256 define
2024-05-23 10:00:21 +03:00
liuwei-git
201cc11afa
llama : add phi3 128K model support (#7225)
* add phi3 128k support in convert-hf-to-gguf

* add phi3 128k support in cuda

* address build warnings on llama.cpp

* adjust index value in cuda long rope freq factors

* add long rope support in ggml cpu backend

* make freq factors only depend on ctx size

* remove unused rope scaling type 'su' frin gguf converter

* fix flint warnings on convert-hf-to-gguf.py

* set to the short freq factor when context size is small than trained context size

* add one line of comments

* metal : support rope freq_factors

* ggml : update ggml_rope_ext API to support freq. factors

* backends : add dev messages to support rope freq. factors

* minor : style

* tests : update to use new rope API

* backends : fix pragma semicolons

* minor : cleanup

* llama : move rope factors from KV header to tensors

* llama : remove tmp assert

* cuda : fix compile warning

* convert : read/write n_head_kv

* llama : fix uninitialized tensors

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-05-21 23:28:32 +03:00