* style: format with nixfmt/rfc101-style
* build(nix): Package gguf-py
* build(nix): Refactor to new scope for gguf-py
* build(nix): Exclude gguf-py from devShells
* build(nix): Refactor gguf-py derivation to take in exact deps
* build(nix): Enable pytestCheckHook and pythonImportsCheck for gguf-py
* build(python): Package python scripts with pyproject.toml
* chore: Cleanup
* dev(nix): Break up python/C devShells
* build(python): Relax pytorch version constraint
Nix has an older version
* chore: Move cmake to nativeBuildInputs for devShell
* fmt: Reconcile formatting with rebase
* style: nix fmt
* cleanup: Remove unncessary __init__.py
* chore: Suggestions from review
- Filter out non-source files from llama-scripts flake derivation
- Clean up unused closure
- Remove scripts devShell
* revert: Bad changes
* dev: Simplify devShells, restore the -extra devShell
* build(nix): Add pyyaml for gguf-py
* chore: Remove some unused bindings
* dev: Add tiktoken to -extra devShells
* ggml-quants : use roundf instead of nearest_int for TQ1_0 and TQ2_0
This does not change anything for ternary models,
since their values should never end up being in halfway cases anyway.
* gguf-py : add T5ENCODER model architecture
* common : call llama_decode() during warmup only if the model has decoder
* convert-hf : add T5EncoderModel
* llama : add llama_model_has_decoder() API function
* llama : split build_t5() into build_t5_encoder() and build_t5_decoder()
* llama : add support for LLM_ARCH_T5ENCODER
* llama-embedding : add support for LLAMA_POOLING_TYPE_NONE
* llama-embedding : add support for encoder-only models
---------
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
* gguf-py : use classes for quants
* convert_hf : simplify internal quantization type selection
* gguf-py : fix flake8 lint
* gguf-py : fix BF16 numpy view type
* gguf-py : remove LlamaFileTypeMap
Too specific to 'llama.cpp', and would be a maintenance burden
to keep up to date.
* gguf-py : add generic quantize and dequantize functions
The quant classes no longer need to be known,
only the target or the source type,
for 'quantize' and 'dequantize', respectively.
* gguf-py, llama : add constants and methods related to Llama-3.1 <|eom_id|> token
* llama : find Llama-3.1 <|eom_id|> token id during vocab loading
* llama-vocab : add Llama-3.1 <|eom_id|> token to the set of tokens stopping the generation
---------
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
* add truncate_bf16
* truncate intermediate fp32 if converting bf16 to bf16
* fix masking in __compute_fp32_to_bf16
* np.int16 no longer used
* missing cast and additional numpy 2.x fix
* ggml-impl : do not flush bf16 subnormals to zero
* ggml : add reference fp32 to bf16 conversion
The fast version is no longer equivalent for all platforms
because of the handling of subnormal values.
* gguf-py : remove flush to zero for bf16 subnormals
* gguf-py : remove float32 truncation to bf16
Rounding achieves the same thing in the cases where this was used.
* missed prototype update in merge
* merge cleanup
---------
Co-authored-by: Francis Couture-Harpin <git@compilade.net>
* gguf_writer.py: add_array() should not add to kv store if empty
* Apply suggestions from code review
I was wondering if there was a specific reason for `if val` but good to hear we can safely use `len(val == 0`
Co-authored-by: compilade <git@compilade.net>
---------
Co-authored-by: compilade <git@compilade.net>
* gguf-py : fix some metadata name extraction edge cases
* convert_lora : use the lora dir for the model card path
* gguf-py : more metadata edge cases fixes
Multiple finetune versions are now joined together,
and the removal of the basename annotation on trailing versions
is more robust.
* gguf-py : add more name metadata extraction tests
* convert_lora : fix default filename
The default filename was previously hardcoded.
* convert_hf : Model.fname_out can no longer be None
* gguf-py : do not use title case for naming convention
Some models use acronyms in lowercase,
which can't be title-cased like other words,
so it's best to simply use the same case
as in the original model name.
Note that the size label still has an uppercased suffix
to make it distinguishable from the context size of a finetune.
Main thing is that the default output filename will take this form
{name}{parameters}{finetune}{version}{encoding}{kind}
In addition this add and remove some entries in the KV store and adds a metadata class with automatic heuristics capability to derive some values based on model card content
* No Change:
- Internal GGUF Spec
- `general.architecture`
- `general.quantization_version`
- `general.alignment`
- `general.file_type`
- General Model Details
- `general.name`
- `general.author`
- `general.version`
- `general.description`
- Licensing details
- `general.license`
- Typically represents the converted GGUF repo (Unless made from scratch)
- `general.url`
- Model Source during conversion
- `general.source.url`
* Removed:
- Model Source during conversion
- `general.source.huggingface.repository`
* Added:
- General Model Details
- `general.organization`
- `general.finetune`
- `general.basename`
- `general.quantized_by`
- `general.size_label`
- Licensing details
- `general.license.name`
- `general.license.link`
- Typically represents the converted GGUF repo (Unless made from scratch)
- `general.doi`
- `general.uuid`
- `general.repo_url`
- Model Source during conversion
- `general.source.doi`
- `general.source.uuid`
- `general.source.repo_url`
- Base Model Source
- `general.base_model.count`
- `general.base_model.{id}.name`
- `general.base_model.{id}.author`
- `general.base_model.{id}.version`
- `general.base_model.{id}.organization`
- `general.base_model.{id}.url` (Model Website/Paper)
- `general.base_model.{id}.doi`
- `general.base_model.{id}.uuid`
- `general.base_model.{id}.repo_url` (Model Source Repository (git/svn/etc...))
- Array based KV stores
- `general.tags`
- `general.languages`
- `general.datasets`
---------
Co-authored-by: compilade <git@compilade.net>
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
* convert_hf : faster lazy safetensors
This makes '--dry-run' much, much faster.
* convert_hf : fix memory leak in lazy MoE conversion
The '_lazy' queue was sometimes self-referential,
which caused reference cycles of objects old enough
to avoid garbage collection until potential memory exhaustion.
* lora: load to devide buft
* add patch tensor function
* correct tensor patch
* llama_lora_adapter_apply
* correct ggml_backend_tensor_copy
* add llm_build_mm
* fix auto merge
* update based on review comments
* add convert script
* no more transpose A
* add f16 convert
* add metadata check
* add sanity check
* fix ftype
* add requirements
* fix requirements
* fix outfile
* conversion: only allow selected models
* fix types
* cuda : do not use dmmv if the tensor does not have enough cols
* llama : lora fixes
* do not disable mmap with lora
Co-authored-by: slaren <slarengh@gmail.com>
* llm_build_lora_mm_id
* convert_lora : MoE LoRA conversion support
* convert_lora : prefer safetensors, similarly to convert_hf
* convert_hf : simplify modify_tensors for InternLM2
* convert_lora : lazy conversion
* llama : load and use alpha from LoRA adapters
* llama : use llm_build_lora_mm in most model graphs
* auto scale
* Revert "auto scale"
This reverts commit 42415a4874.
* remove redundant params
* Apply suggestions from code review
Co-authored-by: slaren <slarengh@gmail.com>
* change kv metadata
* move add_type to __init__
* convert_hf : move add_type to main()
* convert_lora : use the GGUFWriter from Model instead of overwriting it
---------
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Francis Couture-Harpin <git@compilade.net>
* py : type-check all Python scripts with Pyright
* server-tests : use trailing slash in openai base_url
* server-tests : add more type annotations
* server-tests : strip "chat" from base_url in oai_chat_completions
* server-tests : model metadata is a dict
* ci : disable pip cache in type-check workflow
The cache is not shared between branches, and it's 250MB in size,
so it would become quite a big part of the 10GB cache limit of the repo.
* py : fix new type errors from master branch
* tests : fix test-tokenizer-random.py
Apparently, gcc applies optimisations even when pre-processing,
which confuses pycparser.
* ci : only show warnings and errors in python type-check
The "information" level otherwise has entries
from 'examples/pydantic_models_to_grammar.py',
which could be confusing for someone trying to figure out what failed,
considering that these messages can safely be ignored
even though they look like errors.
CLI to hash GGUF files to detect difference on a per model and per tensor level
The hash type we support is:
- `--xxh64`: use xhash 64bit hash mode (default)
- `--sha1`: use sha1
- `--uuid`: use uuid
- `--sha256`: use sha256
While most POSIX systems already have hash checking programs like sha256sum, it
is designed to check entire files. This is not ideal for our purpose if we want
to check for consistency of the tensor data even if the metadata content of the
gguf KV store has been updated.
This program is designed to hash a gguf tensor payload on a 'per tensor layer'
in addition to a 'entire tensor model' hash. The intent is that the entire
tensor layer can be checked first but if there is any detected inconsistencies,
then the per tensor hash can be used to narrow down the specific tensor layer
that has inconsistencies.
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* add chatglm3-6b model support huggingface model:
https://hf-mirror.com/THUDM/chatglm3-6b
Signed-off-by: XingXing Qiao <qiaoxx@dingdao.com>
* remove .rotary_pos_emb.inv_freq and unuse code for chatglm3 model
Signed-off-by: XingXing Qiao <qiaoxx@dingdao.com>
* fix lint error
Signed-off-by: XingXing Qiao <qiaoxx@dingdao.com>
* optimize convert-hf-to-gguf.py for chatglm model
Signed-off-by: XingXing Qiao <qiaoxx@dingdao.com>
* support glm-4-9b-chat
Signed-off-by: XingXing Qiao <qiaoxx@dingdao.com>
* fix eos tokens to glm4
* remove unused log
* add preprocess to chatglm3 and chatglm4
* add eos_id_list to llama.cpp
* fix code style
* fix code style
* fix conflicts
* fix conflicts
* Revert "add eos_id_list to llama.cpp"
This reverts commit 3a4d5790bf.
* set <|endoftext|> as eos and <|user|> as eot
* fix chat template bug
* add comment to glm prefix and suffix
* fix conflicts and add rope_ratio & ChatGLMForConditionalGeneration
* fix chat template bug
* fix codestyle
* fix conflicts
* modified the general name of glm model
* fix conflicts
* remove prefix and suffix
* use normal glm4 chattempalte & use LLM_FFN_SWIGLU in phi3
* fix: resolve Flake8 errors in `convert-hf-to-gguf.py`
- Fix E302 by adding two blank lines before top-level function definitions
- Replace print statements to fix NP100
- Fix E303 by ensuring only one blank line between lines of code
* fix rope ratio to solve incorrect answers
* fix by comments
---------
Signed-off-by: XingXing Qiao <qiaoxx@dingdao.com>
Co-authored-by: XingXing Qiao <qiaoxx@dingdao.com>
Co-authored-by: Umpire2018 <138990495+Umpire2018@users.noreply.github.com>
* Initial OpenELM support (270M only so far)
* Fill out missing entries in llama_model_type_name
* fixup! Initial OpenELM support (270M only so far)
Fix formatting
* llama : support all OpenELM models
* llama : add variable GQA and variable FFN sizes
Some metadata keys can now also be arrays to support setting
their value per-layer for models like OpenELM.
* llama : minor spacing changes
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : use std::array for per-layer hparams
* llama : fix save/load state
* llama : do not print hparams for vocab-only models
* llama : handle n_head == 0
* llama : use const ref for print_f and fix division by zero
* llama : fix t5 uses of n_head and n_ff
* llama : minor comment
---------
Co-authored-by: Francis Couture-Harpin <git@compilade.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Add attention and final logit softcapping.
* fix
* Add custom add_ functions
* Disable flash attention for Gemma2
* Update src/llama.cpp
Co-authored-by: slaren <slarengh@gmail.com>
* Add default value for attention and final logit softcap value
* Add custom kq scaling from Gemma2Attention
* Remove custom pre attention scaling and use computed value instead.
---------
Co-authored-by: slaren <slarengh@gmail.com>
* Inference support for Gemma 2 model family
* Update convert-hf-to-gguf.py, constants, and tensor mappings
* cleanup
* format fix
* Fix special token vocab bug
* Don't add space prefix
* fix deleted lines
* Update src/llama.cpp
Co-authored-by: slaren <slarengh@gmail.com>
* Add model type names
* Add control vector
* Fix model type identification
---------
Co-authored-by: Andrei Betlen <abetlen@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
* support splits in convert.py
* Support split by size and dry run to write estimated shards/filesizes
* Move split functionality to new GGUFManager class
* fix improper function signature
* tentative push of convert-hf-to-gguf support
* resolve merge + SplitArguments for easier parsing
* Fix eager tensor memory leak and remove convert.py changes
Removed a memory leak caused by unexpected reference retention to eager tensors.
Also removed GGUFManager functionality in convert.py in favor of specializing for convert-hf-to-gguf.py.
* refactor SplitStrategy to be a deque
Instead of having SplitStrategy have a `data` field that is a deque, just have SplitStrategy be a subclass of deque itself.
* fix Q8 quantization
* remove unnecessary imports in gguf_manager
* fix final? merge issue
* fix gguf_writer placement and remove comments
* oops, actually fix gguf_writer placement
* reduce duplicated code from gguf_writer
* further simplify GGUFManager
* simplify even further and standardize with GGUFWriter
* reduce diffs with master
* form shards while adding tensors, SHA256 sums agree with master
* re-add type hint
Co-authored-by: compilade <git@compilade.net>
* GGUFWriter compatibility fix
Co-authored-by: compilade <git@compilade.net>
* Shard dataclass and un-negative dont_add_architecture
* type consistency in format_n_bytes_to_str
* move kv keys to constants.py
* make pathlib explicit
* base-1024 bytes to base-1000
* rename GGUFManager to GGUFWriterSplit
* Update gguf-py/gguf/constants.py
Co-authored-by: compilade <git@compilade.net>
* fix convert-hf-to-gguf.py permissions
* fix line endings
* Update gguf-py/gguf/gguf_writer_split.py
Co-authored-by: compilade <git@compilade.net>
* convert-hf : restore executable file permission
* examples/convert-legacy-llama.py: restore executable file permission
* reinstate original gguf package import and fix type annotation
* attempt to appease the linter
* attempt 2 to appease the linter
* attempt 3 to appease the linter
* comma consistency
* Update convert-hf-to-gguf.py
Co-authored-by: compilade <git@compilade.net>
* edit cmd line args
* use simplification from #7827
* kv/ti data are still wrong
* try to refactor kv data (still fails)
* fix ti data messiness
* tidy up
* fix linting
* actually make the linter happy
* cleanup round 1
* remove SplitStrategy, SplitArguments
* appease linter
* fix typing and clean up
* fix linting
* Update gguf-py/gguf/gguf_writer.py
Co-authored-by: compilade <git@compilade.net>
* progress bar, fix split logic
* Update gguf-py/gguf/gguf_writer.py
Co-authored-by: compilade <git@compilade.net>
* catch oversights
* Update gguf-py/gguf/gguf_writer.py
Co-authored-by: compilade <git@compilade.net>
* Update gguf-py/gguf/gguf_writer.py
Co-authored-by: compilade <git@compilade.net>
* Update gguf-py/gguf/gguf_writer.py
Co-authored-by: compilade <git@compilade.net>
* Update gguf-py/gguf/gguf_writer.py
Co-authored-by: compilade <git@compilade.net>
* Update gguf-py/gguf/gguf_writer.py
Co-authored-by: compilade <git@compilade.net>
* swap bar orders
* Update gguf-py/gguf/gguf_writer.py
Co-authored-by: compilade <git@compilade.net>
* Update gguf-py/gguf/gguf_writer.py
Co-authored-by: compilade <git@compilade.net>
* compatibility fix
* Update gguf-py/gguf/gguf_writer.py
Co-authored-by: compilade <git@compilade.net>
* Update convert-hf-to-gguf.py
Co-authored-by: compilade <git@compilade.net>
---------
Co-authored-by: Brian <mofosyne@gmail.com>
Co-authored-by: compilade <git@compilade.net>
* gguf-py : add T5 model architecture
* gguf-py : add separate tensors for encoder and decoder
* gguf-py : add new model header parameters: decoder_start_token_id, attention.relative_buckets_count, tokenizer.ggml.remove_extra_whitespaces, tokenizer.ggml.precompiled_charsmap
* convert-hf : add model conversion support for T5ForConditionalGeneration and T5WithLMHeadModel
---------
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
* update: convert-hf-to-gguf.py to support Qwen2-57B-A14B
* fix: QWEN2MOE support for expert_feed_forward_length
previously, expert ff was taken from n_ff (intermediate size) but it is now properly taken from LLM_KV_EXPERT_FEED_FORWARD_LENGTH
n_ff_exp and n_ff_shared_exp are now properly calculated
* update: convert-hf-to-gguf.py cleanup for Qwen2MoeForCausalLM
* fix: QWEN2MOE support for expert_feed_forward_length
previously, expert ff was taken from n_ff (intermediate size) but it is now properly taken from LLM_KV_EXPERT_FEED_FORWARD_LENGTH
n_ff_exp and n_ff_shexp are now properly calculated