Commit Graph

1060 Commits

Author SHA1 Message Date
Francis Couture-Harpin
9e6b0e9419 perplexity : revert changes 2024-09-09 22:00:37 -04:00
Francis Couture-Harpin
d19101c9a0 imatrix : use FMA and sort tensor names 2024-09-08 11:03:59 -04:00
Francis Couture-Harpin
3ad0603c65 Merge branch 'master' into compilade/imatrix-batched-chunks 2024-09-08 10:05:08 -04:00
Francis Couture-Harpin
c8ab6a3ba3 imatrix : fix conversion problems 2024-09-08 10:04:01 -04:00
Xuan Son Nguyen
00b02bb249
imatrix : fix arg parser for imatrix (#9366)
* imatrix : fix arg parser

* beautify printing first arg
2024-09-08 12:12:17 +02:00
Georgi Gerganov
a5b5d9a101
llama.android : fix build (#9350) 2024-09-08 00:33:50 +03:00
Georgi Gerganov
faf69d4237
llama : sanitize invalid tokens (#9357)
* common : do not add null tokens during warmup

ggml-ci

* llama : check that the input tokens are valid

ggml-ci

* tests : fix batch size of bert model

ggml-ci
2024-09-08 00:33:13 +03:00
Xuan Son Nguyen
1b9ae5189c
common : refactor arg parser (#9308)
* (wip) argparser v3

* migrated

* add test

* handle env

* fix linux build

* add export-docs example

* fix build (2)

* skip build test-arg-parser on windows

* update server docs

* bring back missing --alias

* bring back --n-predict

* clarify test-arg-parser

* small correction

* add comments

* fix args with 2 values

* refine example-specific args

* no more lamba capture

Co-authored-by: slaren@users.noreply.github.com

* params.sparams

* optimize more

* export-docs --> gen-docs
2024-09-07 20:43:51 +02:00
Georgi Gerganov
df270ef745
llama : refactor sampling v2 (#9294)
- Add `struct llama_sampler` and `struct llama_sampler_i`
- Add `llama_sampler_` API
- Add `llama_sampler_chain_` API for chaining multiple samplers
- Remove `LLAMA_API_INTERNAL`
- Add `llama_perf_` API and remove old `llama_print_timings` and `llama_reset_timings`
2024-09-07 15:16:19 +03:00
Xuan Son Nguyen
9b2c24c099
server : simplify state machine for slot (#9283)
* server : simplify state machine for slot

* add SLOT_STATE_DONE_PROMPT

* pop_deferred_task

* add missing notify_one

* fix passkey test

* metrics : add n_busy_slots_per_decode

* fix test step

* add test

* maybe fix AddressSanitizer?

* fix deque ?

* missing lock

* pop_deferred_task: also notify

* Update examples/server/server.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-09-06 23:21:29 +02:00
Francis Couture-Harpin
3de9300c37 imatrix : use GGUF to store imatrix data 2024-09-06 17:17:25 -04:00
Aarni Koskela
134bc38ecf
llama-bench : log benchmark progress (#9287)
* llama-bench : add optional progress messages
2024-09-06 23:03:01 +02:00
Aarni Koskela
815b1fb20a
batched-bench : add --output-format jsonl option (#9293)
`--output-format` is modeled after `llama-bench`'s options
2024-09-06 17:59:58 +02:00
Xuan Son Nguyen
4a1411b4f1
server : fix missing lock (#9334) 2024-09-06 14:06:04 +02:00
compilade
9bc6db28d0
ggml-quants : ternary packing for TriLMs and BitNet b1.58 (#8151)
* ggml-quants : 1.625 bpw ternary packing for BitNet 1.58b

* ggml-quants : faster 1.625 bpw AVX2 vec_dot

Not using a lookup table anymore makes it match q4_0 speed.

* gguf-py : fix formatting

* llama : remove spaces on empty line

* ggml-quants : subtract 1 when back in epi8

This makes the 1.625 bpw type go faster than q4_0. Still not the fastest.

* ggml-quants : Q2_2 now faster than Q4_K on with AVX2

* ggml-quants : cleanup Q1_3 code formatting

* ggml-quants : ARM NEON vec_dot for q2_2 and q1_3

* ggml-quants : use ceiling division when quantizing q1_3

* convert-hf : simplify BitNet pre-quantization

This still results in the exact same tensor weights and scales,
but it reveals some weirdness in the current algorithm.

* convert-hf : allow converting the weird BitNet 1.3B

Its FFN size is 5460 which is not convenient.
The offending tensors are kept in F16,
which makes the final model 5.01 bpw.

* bitnet : replace 1.58b with b1.58, as in the paper

* ggml-quants : fix build failure on Windows

* ggml-quants : attempt to fix Arm 32-bit support

* ggml : add some informative comments in q1_3 vec_dot

* ggml : add TQ1_0 and TQ2_0 ternary quantization types

* ggml : even faster TQ2_0

* ggml : also faster TQ1_0

Same optimization as for TQ2_0 by offsetting the sum instead of the weights.
This makes TQ1_0 almost as fast as Q8_0 on AVX2.

* ggml : fix build issues in certain environments

* ggml : add NEON vec_dot implementation for TQ1_0 and TQ2_0

* ggml : avoid directly using vmlal_high_s8, for 32-bit ARM compat

The compiler seems smart enough to use the same instruction
even when using vget_high_s8 instead.

* ggml : remove q1_3 and q2_2

No more 1.625 bpw and 2.000 bpw,
now instead using 1.6875 bpw and 2.0625 bpw
with TQ1_0 and TQ2_0, respectively.

* llama : remove the separate scale tensors of BitNet b1.58

They won't be needed, since the remaining ternary quant types have
built-in scales.

* ggml-quants : rename fields of TQ1_0 and TQ2_0 structs for consistency

* ggml-quants : allow using vdotq_s32 in TQ2_0 vec_dot

Not yet tested on hardware which supports it,
might not work or might not even compile. But also it might.
It should make the performance better on recent ARM CPUs.

* ggml-quants : remove comment about possible format change of TQ2_0

Making it slightly more convenient for AVX512
but less convenient for everything else is not worth the trouble.

* gguf-py : Numpy (de)quantization for TQ1_0 and TQ2_0

* ggml-quants : use roundf instead of nearest_int for TQ1_0 and TQ2_0

This does not change anything for ternary models,
since their values should never end up being in halfway cases anyway.

* convert : allow direct conversion to TQ1_0 and TQ2_0

The token embeddings and output tensors are kept in F16
to allow quantizing them to Q4_K and Q6_K with llama-quantize.

* llama : handle fallback for TQ1_0 and TQ2_0 with Q4_0

Q4_0 is not completely symmetric (so not lossless for ternary models),
but it should be good enough.

* ggml-quants : allow using ARM dot product instructions for TQ1_0

* ggml-quants : deduplicate TQ1_0 and TQ2_0 __ARM_FEATURE_DOTPROD support

* ggml : remove unused ggml_mul special case

It would otherwise conflict with the more general
optimization coming with Mamba-2.

* ggml : handle TQ1_0 and TQ2_0 in dequantization-based operators

* test-backend-ops : add TQ1_0 and TQ2_0 comments for later

Not yet adding uncommented, because some backends like SYCL and Metal
do not properly handle unknown types in supports_op for GGML_OP_MUL_MAT.
(and Metal also doesn't handle it with GGML_OP_GET_ROWS)
Support for TQ1_0 and TQ2_0 for other backends than CPU
will be added in follow-up pull requests.
2024-09-05 21:48:47 -04:00
slaren
bdf314f38a
llama-bench : fix NUL terminators in CPU name (#9313) 2024-09-05 02:19:39 +02:00
Radoslav Gerganov
82e3b03c11
rpc : make RPC servers come first in the device list (#9296)
* rpc : make RPC servers come first in the device list

* rpc : disable options for non-RPC builds

* rpc : rpc_count always zero for non-RPC builds
2024-09-04 11:08:32 +03:00
Aarni Koskela
8962422b1c
llama-bench : add JSONL (NDJSON) output mode (#9288)
* llama-bench : add JSONL (NDJSON) output mode

* llama-bench : update usage docs
2024-09-03 19:58:54 +02:00
Xuan Son Nguyen
48baa61ecc
server : test script : add timeout for all requests (#9282) 2024-09-02 22:08:38 +02:00
Xuan Son Nguyen
6e7d133a5f
server : refactor multitask handling (#9274)
* server : remove multitask from server_task

* refactor completions handler

* fix embeddings

* use res_ok everywhere

* small change for handle_slots_action

* use unordered_set everywhere

* (try) fix test

* no more "mutable" lambda

* Apply suggestions from code review

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* use deque

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-09-02 17:11:51 +02:00
Guoliang Hua
b60074f1c2
llama-cli : remove duplicated log message (#9275) 2024-09-02 15:36:43 +03:00
tc-mb
7ea8d80d53
llava : the function "clip" should be int (#9237) 2024-08-30 07:21:57 +02:00
Faisal Zaghloul
42c76d1358
Threadpool: take 2 (#8672)
* Introduce ggml_compute_threadpool

- OpenMP functional: check
- Vanilla ggml functional: Check
- ggml w/threadpool functional: Check
- OpenMP no regression: No glaring problems
- Vanilla ggml no regression: No glaring problems
- ggml w/threadpool no regression: No glaring problems

* Minor fixes

* fixed use after release bug

* fixed a harmless race condition

* Fix Android bulid issue

* fix more race conditions

* fix deadlock for cases where cgraph.n_nodes == 1

and fix --poll case

* threadpool: use cpu_get_num_math to set the default number of threadpool threads

This way we avoid using E-Cores and Hyperthreaded siblings.

* bench: create fresh threadpool for each test

For benchmarking it's better to start a fresh pool for each test with the exact number of threads
needed for that test. Having larger pools is suboptimal (causes more load, etc).

* atomics: always use stdatomics with clang and use relaxed memory order when polling in ggml_barrier

This also removes sched_yield() calls from ggml_barrier() to match OpenMP behavior.

* threadpool: make polling the default to match openmp behavior

All command line args now allow for setting poll to 0 (false).

* threadpool: do not wakeup threads in already paused threadpool

* fix potential race condition in check_for_work

* threadpool: do not create two threadpools if their params are identical

* threadpool: reduce pause/resume/wakeup overhead in common cases

We now start threadpool in paused state only if we have two.
The resume is now implicit (ie new work) which allows for reduced locking and context-switch overhead.

* threadpool: add support for hybrid polling

poll params (--poll, ...) now specify "polling level", i.e. how aggresively we poll before waiting on cond.var.
poll=0 means no polling, 1 means poll for 128K rounds then wait, 2 for 256K rounds, ...

The default value of 50 (ie 50x128K rounds) seems like a decent default across modern platforms.
We can tune this further as things evolve.

* threadpool: reduce the number of barrier required

New work is now indicated with an atomic counter that is incremented for
each new graph that needs to be computed.
This removes the need for extra barrier for clearing the "new_work" and
removes the special case for trivial graphs.

* threadpool: remove special-casing for disposable threadpools

With the efficient hybrid polling there is no need to make disposable pools any different.
This simplifies the overall logic and reduces branching.

Include n_threads in debug print for disposable threadpool.

Declare pause and stop flags as atomic_bool
This doesn't actually generate any memory barriers and simply informs
the thread sanitizer that these flags can be written & read by different
threads without locking.

* threadpool: do not clear barrier counters between graphs computes (fixes race with small graphs)

This fixes the race condition with very small graphs where the main thread happens to
start a new graph while the workers are just about to exit from barriers.

* threadpool: use relaxed order for chunk sync

Full memory barrier is an overkill for this since each thread works on different chunk

* threadpool: remove abort_callback from threadpool state

* threadpool: better naming for thread/cpumask releated functions

* threadpool: consistent use of int type for n_threads params

* threadpool: add support for ggml_threadpool_params_default/init

Also removes the need for explicit mask_specified param.
all-zero cpumask means use default (usually inherited) cpu affinity mask.

* threadpool: move typedef into ggml.h

* threadpool: fix apply_priority() function name

* threadpool: fix swift wrapper errors due to n_threads int type cleanup

* threadpool: enable --cpu-mask and other threadpool related options only if threadpool is enabled

* threadpool: replace checks for compute_thread ret code with proper status check

* threadpool: simplify threadpool init logic and fix main thread affinity application

Most of the init code is now exactly the same between threadpool and openmp.

* threadpool: update threadpool resume/pause function names

* threadpool: enable openmp by default for now

* threadpool: don't forget to free workers state when omp is enabled

* threadpool: avoid updating process priority on the platforms that do not require it

On Windows we need to change overall process priority class in order to set thread priorities,
but on Linux, Mac, etc we do not need to touch the overall process settings.

* threadpool: update calling thread prio and affinity only at start/resume

This avoids extra syscalls for each graph_compute()

* llama-bench: turn threadpool params into vectors, add output headers, etc

* llama-bench: add support for cool off between tests --delay

This helps for long running tests on platforms that are thermally limited (phones, laptops, etc).
--delay (disabled by default) introduces the sleep for N seconds before starting each test.

* threadpool: move process priority setting into the apps (bench and cli)

This avoids changing the overall process priority on Windows for the apps
that use ggml/llama.cpp directy.

* threadpool: move all pause/resume logic into ggml

* threadpool: futher api cleanup and prep for future refactoring

All threadpool related functions and structs use ggml_threadpool prefix.

* threadpool: minor indent fixes

* threadpool: improve setprioty error message

* Update examples/llama-bench/llama-bench.cpp

Co-authored-by: slaren <slarengh@gmail.com>

* threadpool: fix indent in set_threadpool call

* use int32_t for n_thread type in public llama.cpp API

* threadpool: use _new and _free instead of _create and _release

* fix two more public APIs to use int32_t for n_threads

* build: set _GNU_SOURCE for Adroid

---------

Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com>
Co-authored-by: fmz <quic_fzaghlou@quic.com>
Co-authored-by: Max Krasnyansky <max.krasnyansky@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2024-08-30 01:20:53 +02:00
Jan Boon
9f7d4bcf5c server : fix crash when error handler dumps invalid utf-8 json (#9195) 2024-08-30 07:15:26 +08:00
Xie Yanbo
3246fe84d7
Fix minicpm example directory (#9111) 2024-08-27 14:33:08 +02:00
Xuan Son Nguyen
a77feb5d71
server : add some missing env variables (#9116)
* server : add some missing env variables

* add LLAMA_ARG_HOST to server dockerfile

* also add LLAMA_ARG_CONT_BATCHING
2024-08-27 11:07:01 +02:00
Georgi Gerganov
e5edb210cd
server : update deps (#9183) 2024-08-26 12:16:57 +03:00
Justine Tunney
436787f170
llama : fix time complexity of string replacement (#9163)
This change fixes a bug where replacing text in a very long string could
cause llama.cpp to hang indefinitely. This is because the algorithm used
was quadratic, due to memmove() when s.replace() is called in a loop. It
seems most search results and LLM responses actually provide the O(n**2)
algorithm, which is a great tragedy. Using a builder string fixes things
2024-08-26 09:09:53 +03:00
João Dinis Ferreira
8f824ffe8e
quantize : fix typo in usage help of quantize.cpp (#9145) 2024-08-24 09:22:45 +03:00
Xuan Son Nguyen
fc54ef0d1c
server : support reading arguments from environment variables (#9105)
* server : support reading arguments from environment variables

* add -fa and -dt

* readme : specify non-arg env var
2024-08-21 11:04:34 +02:00
fairydreaming
f63f603c87
llava : zero-initialize clip_ctx structure fields with aggregate initialization 908)
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
2024-08-21 09:45:49 +02:00
Francis Couture-Harpin
347247a24e imatrix : fix segfault when using a single chunk per batch 2024-08-20 15:35:56 -04:00
Francis Couture-Harpin
bce54642c8 imatrix : allow processing multiple chunks per batch
* perplexity : simplify filling the batch
2024-08-20 15:17:24 -04:00
Changyeon Kim
2f3c1466ff
llava: Add ACC OP for GPU acceleration to the Vulkan backend in the LLAVA CLIP model. (#8984)
* llava: Add ACC OP for GPU acceleration to the Vulkan backend in the LLAVA CLIP model.

- The CLIP model now prioritizes the Vulkan backend over the CPU when vulkan available.
- A GGML_OP_ACC shader has been added.
- The encoding performance of the CLIP model improved from 4.2s on the CPU to 0.9s on the GPU.

Signed-off-by: Changyeon Kim <cyzero.kim@samsung.com>

* fix-up coding style.

Signed-off-by: Changyeon Kim <cyzero.kim@samsung.com>

* Fix-up the missing initial parameter to resolve the compilation warning.

Signed-off-by: Changyeon Kim <cyzero.kim@samsung.com>

* [fix] Add missing parameters.

Signed-off-by: Changyeon Kim <cyzero.kim@samsung.com>

* [fix] Use nb1 and nb2 for dst.

Signed-off-by: Changyeon Kim <cyzero.kim@samsung.com>

* Fix check results ggml_acc call

---------

Signed-off-by: Changyeon Kim <cyzero.kim@samsung.com>
Co-authored-by: 0cc4m <picard12@live.de>
2024-08-20 21:00:00 +02:00
Xuan Son Nguyen
8b3befc0e2
server : refactor middleware and /health endpoint (#9056)
* server : refactor middleware and /health endpoint

* move "fail_on_no_slot" to /slots

* Update examples/server/server.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* fix server tests

* fix CI

* update server docs

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-08-16 17:19:05 +02:00
tc-mb
d565bb2fd5
llava : support MiniCPM-V-2.6 (#8967)
* init

* rename

* add run android for termux in readme

* add android readme

* add instructions in readme

* change name in readme

* Update README.md

* fixed line

* add result in readme

* random pos_embed

* add positions index

* change for ollama

* change for ollama

* better pos_embed in clip

* support ollama

* updata cmakelist

* updata cmakelist

* rename wrapper

* clear code

* replace and organize code

* add link

* sync master

* fix warnings

* fix warnings

* fix bug in bicubic resize when need resize iamge smaller

* receive review comments and modify

* receive review comments and modify

* put all code into llava dir

* fix quality problem in pr code

* change n_layer

* add space in "-1"

* imitate reshape bug of python code

* fix bug in clip

* fix issues for merging

* fix llama-minicpmv-cli in cmake file

* change pr readme

* fix code review

* remove in line 33 directory in the /cmakelists.txt (not in example, in the main dir

* fix cmakefile

* add warn

* fix KEY_HAS_MINICPMV_PROJ

* remove load_image_size into clip_ctx

* remove the extern "C", MINICPMV_API

* fix uhd code for review comment

* delete minicpmv-wrapper in pr

* remove uhd_image_embed

* Modify 2 notes

* support minicpmv2.6

* modify convert script of minicpmv

* modify convert

* modify convert

* add readme

* add resampler of v2.6

* modify clip

* modify readme

* fix type-check

* fix type-check

* fix type-check

* fix type-check

* modify convert script and readme

* fix convert script and readme

* fix convert

* fix num in convert

* fix type-check

---------

Co-authored-by: Hongji Zhu <fireyoucan@gmail.com>
Co-authored-by: harvestingmoon <leewenyeong@gmail.com>
2024-08-16 16:34:41 +03:00
Aisuko
c8ddce8560
Fix inference example lacks required parameters (#9035)
Signed-off-by: Aisuko <urakiny@gmail.com>
2024-08-16 11:08:59 +02:00
gtygo
4b9afbbe90
retrieval : fix memory leak in retrieval query handling (#8955)
* retrieval

* Reuse querybatch to reduce frequent memory allocation

* delete unused white space
2024-08-15 10:40:12 +03:00
Riceball LEE
37501d9c79
server : fix duplicated n_predict key in the generation_settings (#8994) 2024-08-15 10:28:05 +03:00
Zhenwei Jin
4af8420afb
common : remove duplicate function llama_should_add_bos_token (#8778) 2024-08-15 10:23:23 +03:00
Jiří Podivín
234b30676a
server : init stop and error fields of the result struct (#9026)
Signed-off-by: Jiri Podivin <jpodivin@redhat.com>
2024-08-15 09:21:57 +03:00
compilade
98a532d474
server : fix segfault on long system prompt (#8987)
* server : fix segfault on long system prompt

* server : fix parallel generation with very small batch sizes

* server : fix typo in comment
2024-08-14 09:51:02 +03:00
Xuan Son Nguyen
828d6ff7d7
export-lora : throw error if lora is quantized (#9002) 2024-08-13 11:41:14 +02:00
Georgi Gerganov
d3ae0ee8d7
py : fix requirements check '==' -> '~=' (#8982)
* py : fix requirements check '==' -> '~='

* cont : fix the fix

* ci : run on all requirements.txt
2024-08-12 11:02:01 +03:00
Georgi Gerganov
5ef07e25ac
server : handle models with missing EOS token (#8997)
ggml-ci
2024-08-12 10:21:50 +03:00
fairydreaming
7c3f55c100
Add support for encoder-only T5 models (#8900)
* gguf-py : add T5ENCODER model architecture

* common : call llama_decode() during warmup only if the model has decoder

* convert-hf : add T5EncoderModel

* llama : add llama_model_has_decoder() API function

* llama : split build_t5() into build_t5_encoder() and build_t5_decoder()

* llama : add support for LLM_ARCH_T5ENCODER

* llama-embedding : add support for LLAMA_POOLING_TYPE_NONE

* llama-embedding : add support for encoder-only models

---------

Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
2024-08-10 11:43:26 +02:00
Georgi Gerganov
b72942fac9
Merge commit from fork 2024-08-09 23:03:21 +03:00
Georgi Gerganov
45a55b91aa
llama : better replace_all (cont) (#8926)
* llama : better replace_all (cont)

ggml-ci

* code : deduplicate replace_all

ggml-ci
2024-08-09 18:23:52 +03:00
tc-mb
3071c0a5f2
llava : support MiniCPM-V-2.5 (#7599)
* init

* rename

* add run android for termux in readme

* add android readme

* add instructions in readme

* change name in readme

* Update README.md

* fixed line

* add result in readme

* random pos_embed

* add positions index

* change for ollama

* change for ollama

* better pos_embed in clip

* support ollama

* updata cmakelist

* updata cmakelist

* rename wrapper

* clear code

* replace and organize code

* add link

* sync master

* fix warnings

* fix warnings

* fix bug in bicubic resize when need resize iamge smaller

* receive review comments and modify

* receive review comments and modify

* put all code into llava dir

* fix quality problem in pr code

* change n_layer

* add space in "-1"

* imitate reshape bug of python code

* fix bug in clip

* fix issues for merging

* fix llama-minicpmv-cli in cmake file

* change pr readme

* fix code review

* remove in line 33 directory in the /cmakelists.txt (not in example, in the main dir

* fix cmakefile

* add warn

* fix KEY_HAS_MINICPMV_PROJ

* remove load_image_size into clip_ctx

* remove the extern "C", MINICPMV_API

* fix uhd code for review comment

* delete minicpmv-wrapper in pr

* remove uhd_image_embed

* Modify 2 notes

* clip : style changes

* del common.h in clip

* fix Type-Check error

* fix Type-Check error

* fix Type-Check error

* fix Type-Check error

* fix makefile error

* fix ubuntu-make error

* try fix clip

* try fix 1

---------

Co-authored-by: Hongji Zhu <fireyoucan@gmail.com>
Co-authored-by: harvestingmoon <leewenyeong@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-08-09 13:33:53 +03:00
Daniel Bevenius
5b2c04f492
embedding : add --pooling option to README.md [no ci] (#8934)
This commit adds the `--pooling` option to the README.md file in the
`examples/embedding` directory.

The motivation for adding this options is that currently if the model
used does not specify a pooling type the embedding example will fail
with the following error message:
```console
main: error: pooling type NONE not supported
```

This commit also updates the name of the executable in the examples
section.
2024-08-09 09:33:30 +03:00