* Add deepseek v1 arch & gigachat template
* improve template code
* add readme
* delete comments
* remove comment
* fix format
* lint llama.cpp
* fix order of deepseek and deepseek2, move gigachat temlate to the end of func
* fix order of deepseek and deepseek2 in constants; mark shared exp as deepseek arch need
* remove comments
* move deepseek above deepseek2
* change placement of gigachat chat template
* Add OLMo November 2024 constants
* Add OLMo November 2024 converter
* Add loading of OLMo November 2024 tensors and hyper parameters
* Add building of OLMo November 2024 model
* convert : refactor rope_freqs generation
This should also fix vocab-only conversion for Phi-3.
* convert : adapt MiniCPM3 to separate rope_freqs insertion
MiniCPM3's tokenizer is treated as a SentencePiece tokenizer to avoid
having to run its custom Python code which mixes tokenization
in the same file as tool calls.
gguf-py : add long and short RoPE factors to tensor mappings
Empty, but the key names are used to populate the mappings.
* feat(gguf-py): Add granitemoe architecture
This includes the addition of new tensor names for the new moe layers.
These may not be correct at this point due to the need for the hack in
gguf_writer.py to double-check the length of the shape for these layers.
Branch: GraniteMoE
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(convert_hf_to_gguf): Add GraniteMoeModel
GraniteMoe has the same configuration deltas as Granite
Branch: GraniteMoE
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(granitemoe convert): Split the double-sized input layer into gate and up
After a lot of staring and squinting, it's clear that the standard mixtral
expert implementation is equivalent to the vectorized parallel experts in
granite. The difference is that in granite, the w1 and w3 are concatenated
into a single tensor "input_linear." Rather than reimplementing all of the
math on the llama.cpp side, the much simpler route is to just split this
tensor during conversion and follow the standard mixtral route.
Branch: GraniteMoE
Co-Authored-By: alex.brooks@ibm.com
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(granitemoe): Implement granitemoe
GraniteMoE follows the mixtral architecture (once the input_linear layers
are split into gate_exps/up_exps). The main delta is the addition of the
same four multipliers used in Granite.
Branch: GraniteMoE
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* Typo fix in docstring
Co-Authored-By: ggerganov@gmail.com
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(conversion): Simplify tensor name mapping in conversion
Branch: GraniteMoE
Co-Authored-By: git@compilade.net
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(convert): Remove unused tensor name mappings
Branch: GraniteMoE
Co-Authored-By: git@compilade.net
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(convert): Sanity check on merged FFN tensor sizes
Branch: GraniteMoE
Co-Authored-By: git@compilade.net
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Allow "output" layer in granite moe architecture (convert and cpp)
Branch: GraniteMoE
Co-Authored-By: git@compilade.net
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(granite): Add missing 'output' tensor for Granite
This is a fix for the previous `granite` architecture PR. Recent snapshots
have included this (`lm_head.weights`) as part of the architecture
Branch: GraniteMoE
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* convert_hf : faster lazy safetensors
This makes '--dry-run' much, much faster.
* convert_hf : fix memory leak in lazy MoE conversion
The '_lazy' queue was sometimes self-referential,
which caused reference cycles of objects old enough
to avoid garbage collection until potential memory exhaustion.
* add chatglm3-6b model support huggingface model:
https://hf-mirror.com/THUDM/chatglm3-6b
Signed-off-by: XingXing Qiao <qiaoxx@dingdao.com>
* remove .rotary_pos_emb.inv_freq and unuse code for chatglm3 model
Signed-off-by: XingXing Qiao <qiaoxx@dingdao.com>
* fix lint error
Signed-off-by: XingXing Qiao <qiaoxx@dingdao.com>
* optimize convert-hf-to-gguf.py for chatglm model
Signed-off-by: XingXing Qiao <qiaoxx@dingdao.com>
* support glm-4-9b-chat
Signed-off-by: XingXing Qiao <qiaoxx@dingdao.com>
* fix eos tokens to glm4
* remove unused log
* add preprocess to chatglm3 and chatglm4
* add eos_id_list to llama.cpp
* fix code style
* fix code style
* fix conflicts
* fix conflicts
* Revert "add eos_id_list to llama.cpp"
This reverts commit 3a4d5790bf.
* set <|endoftext|> as eos and <|user|> as eot
* fix chat template bug
* add comment to glm prefix and suffix
* fix conflicts and add rope_ratio & ChatGLMForConditionalGeneration
* fix chat template bug
* fix codestyle
* fix conflicts
* modified the general name of glm model
* fix conflicts
* remove prefix and suffix
* use normal glm4 chattempalte & use LLM_FFN_SWIGLU in phi3
* fix: resolve Flake8 errors in `convert-hf-to-gguf.py`
- Fix E302 by adding two blank lines before top-level function definitions
- Replace print statements to fix NP100
- Fix E303 by ensuring only one blank line between lines of code
* fix rope ratio to solve incorrect answers
* fix by comments
---------
Signed-off-by: XingXing Qiao <qiaoxx@dingdao.com>
Co-authored-by: XingXing Qiao <qiaoxx@dingdao.com>
Co-authored-by: Umpire2018 <138990495+Umpire2018@users.noreply.github.com>
* Initial OpenELM support (270M only so far)
* Fill out missing entries in llama_model_type_name
* fixup! Initial OpenELM support (270M only so far)
Fix formatting
* llama : support all OpenELM models
* llama : add variable GQA and variable FFN sizes
Some metadata keys can now also be arrays to support setting
their value per-layer for models like OpenELM.
* llama : minor spacing changes
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : use std::array for per-layer hparams
* llama : fix save/load state
* llama : do not print hparams for vocab-only models
* llama : handle n_head == 0
* llama : use const ref for print_f and fix division by zero
* llama : fix t5 uses of n_head and n_ff
* llama : minor comment
---------
Co-authored-by: Francis Couture-Harpin <git@compilade.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Inference support for Gemma 2 model family
* Update convert-hf-to-gguf.py, constants, and tensor mappings
* cleanup
* format fix
* Fix special token vocab bug
* Don't add space prefix
* fix deleted lines
* Update src/llama.cpp
Co-authored-by: slaren <slarengh@gmail.com>
* Add model type names
* Add control vector
* Fix model type identification
---------
Co-authored-by: Andrei Betlen <abetlen@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
* gguf-py : add T5 model architecture
* gguf-py : add separate tensors for encoder and decoder
* gguf-py : add new model header parameters: decoder_start_token_id, attention.relative_buckets_count, tokenizer.ggml.remove_extra_whitespaces, tokenizer.ggml.precompiled_charsmap
* convert-hf : add model conversion support for T5ForConditionalGeneration and T5WithLMHeadModel
---------
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
* feat: add changes to handle jina v2 base code
* fix: do not complicate things
* fix: fix the usage of the code model
* fix: fix comments
* fix: fix linting issues
* fix: remove ollama patches
* style : minor
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* common : increase max number of experts to 160
* common : add tensors ATTN_Q_A, ATTN_Q_A_NORM, ATTN_Q_B, ATTN_KV_A_MQA, ATTN_KV_A_NORM, ATTN_KV_B needed by DeepSeek-V2 MLA (multi-head latent attention) architecture
* common : add model header parameters: leading_dense_block_count, expert_feed_forward_length, expert_shared_count, expert_weights_scale, attention.q_lora_rank, attention.kv_lora_rank, rope.scaling.yarn_log_multiplier
* convert-hf : add model conversion support for DeepseekV2ForCausalLM
* llama : add model types for DeepSeek-V2 and DeepSeek-V2-Lite models
* llama : add two new llm_build_moe_ffn() arguments: scale_w (whether to scale weights of selected MoE experts) and w_scale (numerical value of the scaling factor)
* llama : add inference support for LLM_ARCH_DEEPSEEK2
---------
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
* common : increase max number of experts to 128
* common : add tensor LLM_TENSOR_FFN_NORM_EXPS for normalization before MoE that runs in parallel to attention + ffn
* gguf-py : add architecture-specific block mappings that override selected general block mappings
* convert-hf : add model conversion support for ArcticForCausalLM
* convert-hf : use added_tokens_decoder from tokenizer_config.json to redefine tokens from SentencePiece model (only for ArcticForCausalLM)
* llama : add inference support for LLM_ARCH_ARCTIC
---------
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
* feat: first things to do
* feat: create tensors for Jina architecture
* fix: use other tensors
* feat: embedding gets results
* fix: fix usage of ALIBI
* fix: clean prints
* fix: do some cleanup unused vars
* fix: revert changes to Makefile and CMakeLists
* fix: revert some changes
* fix: fix small detail
* fix: fix convert formatting
* fix: fix linting and editor
* feat: set proper vocab settings
* fix: JinaBertForMaskedLM registration
* feat: support q_normalization and k_normalization in Jina arch
* feat: handle gpt2 tokenizer with Jina architecture
* feat: example comments in embedding
* feat: rename Jina Bert to Jina Bert V2
* fix: add some changes as per review
* feat: proper KQ_pos for Jina embeddings
* feat: add capacity to load models ES and DE for Spanish
* llama : fix pre-tokenizers
* ggml : full ALiBi support
* ggml : update ggml_soft_max_ext() CUDA, SYCL
* ggml : ggml_flash_attn_ext() support ALiBi (CPU)
* ggml : ggml_flash_attn_ext() support ALiBi (Metal)
* ggml : fix warning
* ggml : ggml_flash_attn_ext() support ALiBi (CUDA)
ggml-ci
* minor : clean-up
* embedding : add warning about missing SEP
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* support qwen2moe
* fix-review
* metal : support unary ops for nelements % 4 != 0
* metal : require contiguousness for float4 unary kernels
* metal : require contiguousness for float4 unary kernels (cont)
* fix-review
* names : for brevity "SHARED_EXP" -> "SHEXP"
* llama : reuse build_moe_ffn()
* llama : add model type name
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Add Command R Plus GGUF
* Add Command R Plus GGUF
* Loading works up to LayerNorm2D
* Export new tensors in 1D so they are not quantized.
* Fix embedding layer based on Noeda's example
* Whitespace
* Add line
* Fix unexpected tokens on MPS. Re-add F16 fix. ((Noeda)
* dranger003: Fix block index overflow in CUDA dequantizing.
* Reverted blocked multiplication code as it still has issues and could affect other Llama arches
* export norms as f32
* fix overflow issues during quant and other cleanup
* Type convention
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* dranger003: Fix more int overflow during quant.
---------
Co-authored-by: S <seast@Ss-Mac-Studio.local>
Co-authored-by: S <s@example.com>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* initial commit for sealion support
* add sealion support
* minor fix
* q/k ln and pos_embd only if required
* Apply suggestions from code review
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* minor : clear whitespaces
---------
Co-authored-by: bryan <bryansiow@aisingapore.org>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* ggml : update mul_mat_id to use the same tensor for all the experts
* update cuda
* minor
* update metal
* update test-backend-ops
* fix cuda
* Update ggml-metal.m
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* update convert.py
* update convert-hf-to-gguf.py
* update convert.py for mixtral hf models
* Update convert-hf-to-gguf.py
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* cuda : support non-pow-2 number of experts
* allow quantize to work for split and merged experts models in the same way
* cleanup + disable mmap automatically with split tensors models
* update imatrix
* test-backend-ops : test qwen argsort
* update grok model loading
* llama : add merged experts tensors to the grok tensor map
* minor
* gguf : bump version
* fix quantizing of merged experts
* convert-hf-to-gguf.py : update grok (untested)
* make linter happy
* cuda/argsort : use shared memory instead of pool memory
* convert : fix grok tensor names
* metal : add support for non-pow-2 argsort
* llama : more loader cleanup, better error checking
* cuda : fix warning
* llama : still use mmap for loading old models, but copy the data to a host buffer
* add review note
* llama : remove ffn tensor counting + add sanity check
ggml-ci
* convert : fix handling of n_experts == None
ggml-ci
* imatrix : fix ncall counters
* llama : produce error if imatrix size does not match
* quantize : terminate on errors + trace logs
ggml-ci
* metal : pad shared memory to 16 bytes
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* mamba : begin working on support for Mamba SSM
* mamba : begin figuring out how to (ab)use the kv cache for Mamba
* mamba : recurrent inference almost works, but incoherent
* mamba : recurrent inference WORKS!!!
* convert : optionally use d_conv and d_state from config.json for Mamba
* mamba : refactor recurrent conv, resulting in 20% perf increase
It's still slower than I'd like, but I did not really optimize `ggml_exp` yet.
I also refactored `ggml_exp` to work with tensors with more than 2 dimensions.
* ggml : parallelize ggml_exp
This results in 8% faster token generation for Mamba-130M.
* mamba : simplify the conv step with a self-overlapping view
Turns out the conv_state can be made smaller by one column.
Note that this breaks existing GGUFs of Mamba,
because the key_value_length field is tied to the conv_state size.
Convolution with a self-overlapping view is cool!
And it's much simpler than what I initially thought would be necessary
to make the convolution step work with more than 1 token at a time.
Next step is to make the SSM step work on batches of tokens too,
and thus I need to figure out a way to make a parallel selective scan
which will keep the ssm_state small and won't make it bigger
by a factor of (n_layer * batch_size).
* llama : fix Mamba KV self size wrongly displaying as f16 instead of f32
Relatedly, I also tried to see if other types than f32 worked for the states,
but they don't, because of the operators used.
It's probably better anyway to keep lots of precision there,
since the states are small anyway.
* mamba : fix self-overlapping view depth stride
* mamba : handle batches of more than 1 token
This means running Mamba no longer crashes when using the default settings!
And probably also slightly faster prompt processing.
Both batched and non-batched processing yield the same output.
Previously, the state was not cleared when starting a sequence.
Next step is to make the KV cache API work as expected for Mamba models.
* ggml: add ggml_ssm_scan to help with parallel selective scan
If the selective scan was implemented without a custom operator,
there would be waaay too many nodes in the graph. For example,
for Mamba-130M, with a batch size of 512 (the default),
a naive selective scan could add at least 24*512=12288 nodes,
which is more than LLAMA_MAX_NODES (8192),
and that's only for the smallest Mamba model.
So it's much cleaner with a custom operator.
Not sure about the name, though.
* ggml : in ggml_ssm_scan, merge multiple rows in the same vec operation
This will help with performance on CPU if ggml_vec_mul_f32
and ggml_vec_add_f32 are ever optimized with SIMD.
* mamba : very basic quantization support
Mostly works, but there is currently no difference
between the variants of a k-quant (e.g. Q4_K_S and Q4_K_M are the same).
Most of the SSM-specific weights can be kept in f32 without affecting
the size that much, since they are relatively small.
(the linear projection weights are responsible for most of Mamba's size)
Too much quantization seems to make the state degrade quite fast, and
the model begins to output gibberish.
It seems to affect bigger models to a lesser extent than small models,
but I'm not sure by how much.
Experimentation will be needed to figure out which weights are more important
for the _M (and _L?) variants of k-quants for Mamba.
* convert : fix wrong name for layer norm weight of offical Mamba models
I was using Q-bert/Mamba-* models before, which have a slighlty different
naming scheme for the weights.
(they start with "model.layers" instead of "backbone.layers")
* mamba : fuse more steps of the SSM scan in the ggml_ssm_scan operator
This increases performance on CPU by around 30% for prompt processing,
and by around 20% for text generation.
However, it also makes the ggml_exp and ggml_soft_plus operators unused.
Whether or not they should be kept will be decided later.
* convert : for Mamba, also consider the "MambaLMHeadModel" arch name
It's the name of the class of the official implementation,
though they don't use it (yet) in the "architectures" field of config.json
* mamba : fix vocab size problems with official models
The perplexity was waaaay to high for models with a non-round vocab size.
Not sure why, but it needed to be fixed in the metadata.
Note that this breaks existing GGUF-converted Mamba models,
but **only if** the vocab size was not already rounded.
* ggml : remove ggml_exp and ggml_soft_plus
They did not exist anyway outside of this branch,
and since ggml_ssm_scan fused operations together, they are unused.
It's always possible to bring them back if needed.
* mamba : remove some useless comments
No code change.
* convert : fix flake8 linter errors
* mamba : apply suggestions from code review
* mamba : remove unecessary branch for row-wise ssm_state and C multiplication
It was previously done to avoid permuting when only one token is processed
at a time (like when generating text), but permuting is cheap,
and dynamically changing the compute graph is not future-proof.
* ggml : in ggml_ssm_scan, use more appropriate asserts
* ggml : rename the destination pointer in ggml_compute_forward_ssm_scan_f32
* mamba : multiple sequences, but one at a time
This is a step towards making this Mamba implementation usable
with the server example (the way the system prompt is kept when clearing
the client slots will need to be changed before this can work, though).
The KV cache size for this kind of model is tied to the maximum number
of sequences kept at any single time.
For now, this number is obtained from n_parallel (plus one,
to have an extra sequence to dedicate to the system prompt),
but there might be a better way to do this which won't also
make the main example use 2 cells even if only 1 is really used.
(for this specific case, --parallel 0 helps)
Simultaneous sequence processing will probably require changes to
ggml_ssm_scan, and possibly a new operator for the conv step.
* mamba : support llama_kv_cache_seq_cp
This (mis)uses the logic around K shifts, because tokens in a state
can't be shifted anyway, and because inp_K_shift has the right shape and type.
Using ggml_get_rows is a nice way to do copies, but copy chains can't work.
Fortunately, copy chains don't really seem to be used in the examples.
Each KV cell is dedicated to the sequence ID corresponding to its own index.
* mamba : use a state mask
It's cleaner than the previous heuristic of
checking for the pos of the first token in the batch.
inp_KQ_mask could not be re-used for this, because it has the wrong shape
and because it seems more suited to the next step of
simultaneous sequence processing (helping with the problem of
remembering which token belongs to which sequence(s)/state(s)).
* llama : replace the usage of n_ctx with kv_self.size in many places
* mamba : use n_tokens directly instead of n_tok
* mamba : in comments, properly refer to KV cells instead of slots
* mamba : reduce memory usage of ggml_ssm_scan
From 290.37 MiB to 140.68 MiB of CPU compute buffer size
with Mamba 3B with a batch size of 512.
The result tensor of ggml_ssm_scan was previously a big part
of the CPU compute buffer size. To make it smaller,
it does not contain the intermediate ssm states anymore.
Both y and the last ssm state are combined in the result tensor,
because it seems only a single tensor can be returned by an operator
with the way the graph is built.
* mamba : simultaneous sequence processing
A batch can now contain tokens from multiple sequences.
This is necessary for at least the parallel example, the server example,
and the HellaSwag test in the perplexity example.
However, for this to be useful, uses of llama_kv_cache_seq_rm/cp
will need to be changed to work on whole sequences.
* ggml : add ggml_ssm_conv as a new operator for the conv step of Mamba
This operator makes it possible to use and update the correct states
for each token of the batch in the same way as ggml_ssm_scan.
Other solutions which use existing operators would need loops which would
add too many nodes to the graph (at least the ones I thought of).
Using this operator further reduces the size of the CPU compute buffer
from 140.68 MiB to 103.20 MiB with Mamba 3B with a batch size of 512.
And (at least on CPU), it's a bit faster than before.
Note that "ggml_ssm_conv" is probably not the most appropriate name,
and it could be changed if a better one is found.
* llama : add inp_s_seq as a new input tensor
The most convenient implementation to select the correct state (for Mamba)
for each token is to directly get the correct index from a tensor.
This is why inp_s_seq is storing int32_t and not floats.
The other, less convenient way to select the correct state would be
to have inp_KQ_mask contain 1.0f for each state used by a token
and 0.0f otherwise. This complicates quickly fetching the first used
state of a token, and is also less efficient because a whole row
of the mask would always need to be read for each token.
Using indexes makes it easy to stop searching when there are
no more sequences for a token, and the first sequence assigned
is always very quickly available (it's the first element of each row).
* mamba : support llama_kv_cache_seq_cp copy chains
* mamba : support shifting and dividing the kv cache pos
* mamba : make the server and parallel examples work with whole sequences
A seq_id is dedicated to the system prompt in both cases.
* llama : make llama_kv_cache_seq_rm return whether it succeeded or not
* mamba : dedicate an input tensor for state copy indices
This is cleaner and makes it easier to adapt when/if token positions
(and by extension, inp_K_shift) are no longer integers.
* mamba : adapt perplexity, batched, and batched-bench examples
* perplexity : limit the max number of sequences
This adapts to what the loaded model can provide.
* llama : add llama_n_max_seq to get the upper limit for seq_ids
Used by the perplexity example.
* batched : pass n_parallel to the model's context params
This should have been there already, but it wasn't.
* batched-bench : reserve sequences to support Mamba
* batched-bench : fix tokens being put in wrong sequences
Generation quality isn't what's measured in there anyway,
but at least using the correct sequences avoids using non-consecutive
token positions.
* mamba : stop abusing attention metadata
This breaks existing converted-to-GGUF Mamba models,
but will allow supporting mixed architectures like MambaFormer
without needing to break Mamba models.
This will also allow changing the size of Mamba's states
without having to reconvert models in the future.
(e.g. using something else than d_conv - 1 columns for the conv_states
will not require breaking existing converted Mamba models again)
* gguf-py : add new KV metadata key-value pairs for Mamba
* llama : add new metadata key-value pairs for Mamba
* llama : guard against divisions by zero when n_head is 0
* mamba : rename "unlimited" KV cache property to "recurrent"
* mamba : more correctly update the "used" field of the KV cache
* ggml : in ggml_ssm_scan, use a threshold for soft_plus
This is how the official Mamba implementation does it,
and it's also what torch.nn.Softplus does.
* convert : for Mamba, fallback to internal NeoX tokenizer
The resulting models are exactly the same
as if the tokenizer.json and tokenizer_config.json of GPT-NeoX were there.
* mamba : support state saving and restoring
* ggml : implicitly pass src tensors through dst for Mamba-related ops
* mamba : clarify some comments
* server : fix cache_tokens not getting correctly resized
Otherwise, when the "we have to evaluate at least 1 token" special case
was triggered, an extra token was kept in cache_tokens even if it was
removed from the KV cache.
For Mamba, this caused useless prompt reprocessing when the previous
request triggered the above case.
* convert-hf : support new metadata keys for Mamba
For the models available at
https://huggingface.co/collections/state-spaces/transformers-compatible-mamba-65e7b40ab87e5297e45ae406
* mamba : rename metadata to be more similar to transformers library
This breaks existing converted-to-GGUF models,
but the metadata names are more "standard".
* mamba : support mamba-*-hf models
These models share their token_embd.weight with their output.weight
* mamba : add missing spaces
This is purely a formatting change.
* convert-hf : omit output.weight when identical with token_embd.weight
Only for Mamba for now, but it might be relevant for other models eventually.
Most Mamba models actually share these two tensors, albeit implicitly.
* readme : add Mamba to supported models, and add recent API changes
* mamba : move state_seq and state_mask views outside layer loop
A few tensors were also missing `struct` in front of `ggml_tensor`.
* BERT model graph construction (build_bert)
* WordPiece tokenizer (llm_tokenize_wpm)
* Add flag for non-causal attention models
* Allow for models that only output embeddings
* Support conversion of BERT models to GGUF
* Based on prior work by @xyzhang626 and @skeskinen
---------
Co-authored-by: Jared Van Bortel <jared@nomic.ai>
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* convert : support Mixtral as LLAMA arch
* convert : fix n_ff typo
* llama : model loading
* ggml : sync latest ggml_mul_mat_id
* llama : update graph to support MoE
* llama : fix cur -> cur_expert
* llama : first working version
* llama : fix expert weighting in the FFN
* ggml : ggml_get_rows support 2D indexing [n_tokens, n_experts] (cpu only)
* ggml : add n_as argument to ggml_mul_mat_id
* ggml : fix ggml_get_rows to take into account ne02 / ne11
* metal : add more general support for ggml_get_rows + tests
* llama : add basic support for offloading moe with CUDA
* metal : add/mul/div use general kernel when src1 not cont
* metal : reduce the kernel launches for ggml_mul_mat_id
* ggml : get_rows : support non-contiguos tensors with gaps, generalize up to 3D
* ggml : update get_rows f16 and q
* cuda : support non-contiguous src1 in get_rows
* llama : offload missing ffn_moe_silu
* metal : fix ggml_get_rows to work with non-cont src1
* metal : add indirect mat-vec kernels for all quantization types
* llama : do not quantize expert gating tensors
* llama : add n_expert and n_expert_used to hparams + change quants
* test-backend-ops : add moe test
* cuda : fix get_rows when ncols is odd
* convert : determine n_ctx correctly
* metal : fix ggml_mul_mat_id for F32
* test-backend-ops : make experts more evenly probable (test_moe)
* test-backend-ops : cleanup, add moe test for batches
* test-backend-ops : add cpy from f32 -> all types test
* test-backend-ops : fix dequantize block offset
* llama : fix hard-coded number of experts
* test-backend-ops : simplify and disable slow tests to avoid CI timeout
* test-backend-ops : disable MOE test with thread sanitizer
* cuda : fix mul_mat_id with multi gpu
* convert : use 1e6 rope_freq_base for mixtral
* convert : fix style
* convert : support safetensors format
* gguf-py : bump version
* metal : add cpy f16 -> f32 kernel
* metal : fix binary ops for ne10 % 4 != 0
* test-backend-ops : add one more sum_rows test
* ggml : do not use BLAS with ggml_mul_mat_id
* convert-hf : support for mixtral-instruct (#4428)
* convert : typo fix, add additional hyperparameters, use LLaMA arch for Mixtral-instruct
* convert : use sentencepiece tokenizer for Mixtral-instruct
* convert : make flake8 happy
* metal : fix soft_max kernels
ref: 1914017863
* metal : limit kernels to not use more than the allowed threads
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Radek Pilar <github@mrkva.eu>