* SimpleChat: Add a skeletal html page
Contains a div placeholder for showing chat messages till now
a text-input for allowing user to enter next chat message/query
to the model.
a submit button to allow sending of the user entered message and
chat till now to the model.
* SimpleChat: A js skeleton with SimpleChat class
Allows maintaining an array of chat message.
Allows adding chat message (from any of the roles be it system,
user, assistant, ...)
Allows showing chat messages till now, in a given div element.
* SimpleChat: request_json, globals, startme
* SimpleChatJS: Roles Class, submitClick
Define Role class with static members corresponding to the roles.
Update startme to
* Get hold of the ui elements.
* Attach a click handler to submit button, which adds the user input
to xchats array and shows the chat messages till now in chat div
element.
Trap DOMContentLoaded to trigger startme
* SimpleChat:HTML: Bring in the js file
* SimpleChat: Rather value wrt input text element
* SimpleChat: Also add completions related prompt
* SimpleChat: Use common helper logic wrt json data
* SimpleChat: Move handling of submit request into its own func
* SimpleChat: Try handshake with llm over its web service endpoint
* SimpleChat:JS: Extract model response and show to user
* SimpleChat:JS: Messages/Prompt, indicate working to end user
* SimpleChat: Try keep input element in view
* SimpleChat: Diff user/assistant msgs, Make input wider
Also show a default message to user
Also add some metas
* SimpleChat: Move into its own sub directory to avoid confusion
* SimpleChat:sh: Add simple shell script to run python3 http.server
So one needs to run the llm server locally
then run this script and access it using a local browser
* SimpleChat:JS: Try trap enter key press wrt input text field
So user can either press submit button or press enter key
* SimpleChat: Allow user to select chat or completion mode
* SimpleChat: Dont submit if already submitted and waiting
Also make chat the default selection wrt mode
* SimpleChat:JS: Handle difference in response
Try read the assistance response from appropriate field in the
response got.
Also examples/server seems to return the response in a slightly
different field, so try account for that also.
* SimpleChat:JS: Force completion mode be single message by default
* SimpleChat: Add a simple readme file
* SimpleChat:HTML: Cleanup/structure UI a bit, Add input for system
* SimpleChat:Allow system prompt to be set, if provided before user
* SimpleChat: Ignore empty user input, without trimming
* SimpleChat:Alert user if they provide sysprompt late or change it
* SimpleChat: Move handling systemprompt into its own func
* SimpleChat:HTML: Add a style for system role message
* SimpleChat: Update the readme file
* SimpleChat:CSS: Move style info into its own css file
To keep it simple, clean and seperate so that things are not
unnecessarily cluttered.
* SimpleChat:CSS: Allow for chat div to be scrollable
* SimpleChat:JS: Try ensure the last entry in chat is visible
Needed because now only the chat div is scrollable and not the full
page.
In last commit the chat div size was fixed to 75% vertical height,
so the full page no longer scrolls, so the old bring user-input
element to view wont work, instead now the last element in the
chat div should be brought into view.
* SimpleChat:JS: bottom of element visible, Set focus to user input
As the generated text could be multiple lines and occupy more space
that the full scrollable div's vertical space, make the bottom of
the last element (which can be such a generated text) in the div
visible by scrolling.
Ensure that the user input box has focus
* SimpleChat: Update notes a bit. Try keep browser happy
Avoid browser quirk mode with DOCTYPE.
Help with accessibility a bit by specifying the language explicitly.
Specify the char encoding explicitly, inturn utf-8 is a safe bet,
even with intermixing of languages if reqd in future.
Add a cache-control http-equiv meta tag, which in all probability
will be ignored.
Defer js loading and execution, just for fun and future, not that
critical here as it stands now.
* SimpleChat:HTML:Group user input+btn together; Note about multichat
* SimpleChat:JS: Allow for changing system prompt anytime for future
* SimpleChat:Readme: Note about handle_systemprompt begin/anytime
* SimpleChat:HTML: Add viewport meta for better mobile friendliness
Without this the page content may look too small.
* SimpleChat:HtmlCss: Cleanup UI flow
set margin wrt vmin rather than vw or vh so portrait/landscape ok.
Use flex and flex-grow to put things on the same line as well as
distribute available space as needed. Given two main elements/line
so it remains simple.
In each line have one element with grows and one sits with a basic
comfortably fixed size.
* SimpleChat: textarea for multiline user chat, inturn shift+enter 4 enter
* SimpleChat: Make vertical layout better responsive (flex based)
Also needed to make things cleaner and properly usable whether
landscape or portrait, after changing to multiline textarea rather
than single line user input.
Avoid hardcoding the chat-till-now display area height, instead
make it a flex-growable within a flex column of ui elements within
a fixed vertical area.
* SimpleChat: Rename simplechat.html to index.html, update readme
Instead of providing a seperate shell script, update the readme wrt
how to run/use this web front end.
* SimpleChat: Screen fixed view and scrolling, Printing full
* SimpleChat:JS:CI: Avoid space at end of jsdoc param line
* SimpleChat:JS: MultiChat initial skeleton
Will help maintain multiple independent chats in future
* SimpleChat:JS: Move system prompt begin/anytime into SimpleChat
* SimpleChat:JS:Keep MultiChatUI simple for now
Worry about different chats with different servers for later.
* SimpleChat:JS: Move handle submit into MultiChat, build on same
Create an instance of MultiChatUI and inturn a instance of chat
session, which is what the UI will inturn work on.
* SimpleChat:JS: Move to dictionary of SimpleChat, instead of array
* SimpleChat: Move ui elements into MultiChatUI, Update el IDs
Move ui elements into MultiChatUI, so that current handleUserSubmit
doesnt need to take the element arguments. Also in future, when
user is allowed to switch between different chat sessions, the
UI can be updated as needed by using the elements in UI already
known to MultiChatUI instance.
Rename the element ids' so that they follow a common convention,
as well as one can identify what the element represents in a more
consistant manner.
* SimpleChat:MCUI:Show available chat sessions, try switch btw them
Previous commits brought in / consolidated existing logic into
MultiChatUI class.
Now start adding logic towards multichat support
* show buttons indicating available chat sessions
* on sessin button click, try switch to that session
* SimpleChat:MCUI: Store and use current chat session id
Also
allow to switch chat session optionally, wrt some of the related
helpers.
setup for two chat sessions by default.
* SimpleChat:MCUI: Delay enabling user-input to avoid race
Re-enable user-input, only after response to a user query has been
updated to the chat-div. This ensures that if user tries to switch
chat session, it wont be allowed till chat-request-response flow is
done.
* SimpleChat: Take care of system prompt
Helper to get the latest system prompt and inturn use same to
set the system prompt ui, when switching.
Ensure that system prompt is set if and when enter key is pressed.
* SimpleChat:GetSystemLatest, fix a oversight.
* SimpleChat:MCUI: Allow selected chat-session btn to be highlighted
Also have a general helper for setting class of children.
* SimpleChat:Cleanup corners
Show system prompt in chat space, when it is set by pressing enter,
as a feedback to user.
Alert user, if they try to switch chat session in the middle of
waiting for a response from the ai model.
* SimpleChat:MCUI: Ensure req-resp failure doesnt lock up things
* SimpleChat:MCUI: Support for new chat sessions
Also a general create button helper.
* SimpleChat:MCUI: CreateSessionBtn helper, use wrt NewChat
Also fix a oversight wrt using stale data wrt the list of chat
sessions.
* SimpleChat:MCUI: NewChat btn first before existing chat sessions
* SimpleChat:MCUI:CornerCases:Skip new chat, show only if current
Skip NewChat if user cancels or if one waiting for response from
the ai model.
Dont show a chat with newly got ai model response, if current chat
session has changed, some how. Chat session shouldnt be allowed to
change, if there is a pending response, but still as a additional
sanity check.
* SimpleChat: Update readme, title, show usage if no chat to show
* SimpleChat: Cleanup the log/dialog messages a bit
* phi3 : duplicate rope factors in each layer
phi3 : set phi-3 model type as 14B
model loader : simplify the process for duplicating model tensors
llama-bench : remove default pg test
* replace bool parameters in llama_model_loader with named flags
* add phi3 128k support in convert-hf-to-gguf
* add phi3 128k support in cuda
* address build warnings on llama.cpp
* adjust index value in cuda long rope freq factors
* add long rope support in ggml cpu backend
* make freq factors only depend on ctx size
* remove unused rope scaling type 'su' frin gguf converter
* fix flint warnings on convert-hf-to-gguf.py
* set to the short freq factor when context size is small than trained context size
* add one line of comments
* metal : support rope freq_factors
* ggml : update ggml_rope_ext API to support freq. factors
* backends : add dev messages to support rope freq. factors
* minor : style
* tests : update to use new rope API
* backends : fix pragma semicolons
* minor : cleanup
* llama : move rope factors from KV header to tensors
* llama : remove tmp assert
* cuda : fix compile warning
* convert : read/write n_head_kv
* llama : fix uninitialized tensors
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* examples: cache hf model when --model not provided
* examples: cache hf model when --model not provided
* examples: cache hf model when --model not provided
* examples: cache hf model when --model not provided
* examples: cache hf model when --model not provided
* Update brute force test: add_special
* Update brute force test: default values for add_bos_token and add_eos_token
* Enable rtrim when pre-inserting BOS
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Revert "server : fix test regexes"
* Update brute force test: special tokens
* Fix added tokens
- Try to read 'added_tokens.json'.
- Try to read 'tokenizer_config.json'.
- Try to read 'tokenizer.json'.
* Fix special tokens rtrim
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* server : fix test regexes
* android : use "ci-android" branch for CI
* ggml : disable SIMD exp and silu for 32-bit ARM
ggml-ci
* android : do not fetch, use add_subdirectory instead
* cmake : provide binary dir
- Change '--embedding' to '--embeddings' in the README
- Update the description to match the latest --help output
- Added a caution about defining physical batch size
* [server] Cleanup a memory leak on exit
There are a couple memory leaks on exit of the server. This hides others.
After cleaning this up, you can see leaks on slots. But that is another
patch to be sent after this.
* make tab into spaces
* feat: first things to do
* feat: create tensors for Jina architecture
* fix: use other tensors
* feat: embedding gets results
* fix: fix usage of ALIBI
* fix: clean prints
* fix: do some cleanup unused vars
* fix: revert changes to Makefile and CMakeLists
* fix: revert some changes
* fix: fix small detail
* fix: fix convert formatting
* fix: fix linting and editor
* feat: set proper vocab settings
* fix: JinaBertForMaskedLM registration
* feat: support q_normalization and k_normalization in Jina arch
* feat: handle gpt2 tokenizer with Jina architecture
* feat: example comments in embedding
* feat: rename Jina Bert to Jina Bert V2
* fix: add some changes as per review
* feat: proper KQ_pos for Jina embeddings
* feat: add capacity to load models ES and DE for Spanish
* llama : fix pre-tokenizers
* ggml : full ALiBi support
* ggml : update ggml_soft_max_ext() CUDA, SYCL
* ggml : ggml_flash_attn_ext() support ALiBi (CPU)
* ggml : ggml_flash_attn_ext() support ALiBi (Metal)
* ggml : fix warning
* ggml : ggml_flash_attn_ext() support ALiBi (CUDA)
ggml-ci
* minor : clean-up
* embedding : add warning about missing SEP
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
The llama.cpp grammar parser had a bug where forgetting to add a closing
quotation mark to strings would cause parsing to crash. Anyone running a
server on a public endpoint is advised to upgrade. To reproduce this bug
./llamafile -m foo.gguf -p bar --grammar 'root::="'
Credit for discovering and reporting this issue goes to Eclypsium
Security Researcher Richard Johnson <Richard.johnson@eclypsium.com>.
* Revert "Revert "llava : add support for moondream vision language model (#6899)""
This reverts commit 9da243b36a.
* Fix num_positions and embeddings initialization
* convert-hf : begin refactoring write_tensor
* convert : upgrade to sentencepiece v0.2.0
* convert-hf : remove unused n_dims in extra_*_tensors
* convert-hf : simplify MoE weights stacking
* convert-hf : flake8 linter doesn't like semicolons
* convert-hf : allow unusual model part names
For example, loading `model-00001-of-00001.safetensors` now works.
* convert-hf : fix stacking MoE expert tensors
`torch.stack` and `torch.cat` don't do the same thing.
* convert-hf : fix Mamba conversion
Tested to work even with a SentencePiece-based tokenizer.
* convert : use a string for the SentencePiece tokenizer path
* convert-hf : display tensor shape
* convert-hf : convert norms to f32 by default
* convert-hf : sort model part names
`os.listdir` is said to list files in arbitrary order.
Sorting the file names should let "model-00009-of-00042.safetensors"
be loaded before "model-00010-of-00042.safetensors".
* convert-hf : use an ABC for Model again
It seems Protocol can't be used as a statically type-checked ABC,
because its subclasses also can't be instantiated. (why did it seem to work?)
At least there's still a way to throw an error when forgetting to define
the `model_arch` property of any registered Model subclasses.
* convert-hf : use a plain class for Model, and forbid direct instantiation
There are no abstract methods used anyway,
so using ABC isn't really necessary.
* convert-hf : more consistent formatting of cmdline args
* convert-hf : align the message logged for converted tensors
* convert-hf : fix Refact conversion
* convert-hf : save memory with lazy evaluation
* convert-hf : flake8 doesn't like lowercase L as a variable name
* convert-hf : remove einops requirement for InternLM2
* convert-hf : faster model parts loading
Instead of pre-loading them all into a dict, iterate on the tensors
in the model parts progressively as needed in Model.write_tensors
Conversion for some architectures relies on checking for the presence
of specific tensor names, so for multi-part models, the weight map is read
from the relevant json file to quickly get these names up-front.
* convert-hf : minor changes for consistency
* gguf-py : add tqdm as a dependency
It's small, and used for a progress bar
in GGUFWriter.write_tensors_to_file
* Added themes support with two sample themes and a favicon.
* Newline
* Newline
* Newline
* Trailing whitespace
* Increased opacity for contrast
* Increase opacity.
Check actions cancelled for some other priority job and I can't seem to manually re-run them, so MOAR OPACITY
* Opacity action trigger.
Trying to re-trigger the cancelled action.
* One more opacity adjustment
This Actions pipeline is failing for random issues.
* Delete examples/server/themes/buttons_top/completion.js
This will be served from the static string built-in to server.
* Delete examples/server/themes/buttons_top/index.js
This will be served from the static string built-in to server.
* Delete examples/server/themes/wild/completion.js
This will be served from the static string built-in to server.
* Delete examples/server/themes/buttons_top/json-schema-to-grammar.mjs
This will be served from the static string built-in to server.
* Delete examples/server/themes/wild/index.js
This will be served from the static string built-in to server.
* Delete examples/server/themes/wild/json-schema-to-grammar.mjs
This will be served from the static string built-in to server.
* Replaced underscore.
* Introduce bfloat16 support
Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as
their canonical floating point format.
┌sign
│
│ ┌exponent
│ │
│ │ ┌mantissa
│ │ │
│┌──┴───┐┌─┴───┐
0b0000000000000000 brain16
This encoding has the same number of exponent bits as float32. That
makes conversion relatively straightforward, even in the absence of
hardware support. For example, converting brain16 to binary32 means
simply shifting 16 bits to the left.
┌sign
│
│ ┌exponent
│ │
│ │ ┌mantissa
│ │ │
│┌──┴───┐┌─┴───────────────────┐
0b00000000000000000000000000000000 IEEE binary32
The issue is that converting bf16 to fp16 can result in information
loss. Only 13% of bf16 numbers can be precisely represented in fp16
which in practice ends up being 99.71% of Mistral 7b v0.2's weights
however there is currently no way other than fp32 to get the others
┌sign
│
│ ┌exponent
│ │
│ │ ┌mantissa
│ │ │
│┌─┴─┐┌─┴──────┐
0b0000000000000000 IEEE binary16
This change fixes that, by adding a bf16 data type to GGML. Support
for CPU inference has been implemented along with optimizations for
the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2
improves somewhere around -0.0024 to -0.0046 compared to using fp16
* Remove GGML code that's not needed
* Minimize the GGML API surface area for BF16
* Remove bf16 luts
* Make the GGML header look nicer
* Fix documentation
* Apply ggerganov's fixes for test-backend-ops
* Add BF16 code for new ggml_validate_row_data() function
* Fixed save_imatrix to match old behaviour for MoE
This fix is simple and clear, but unnecessarily doubles the memory overhead..
* Fixed missing idx variable
* Unconditionally increment ncall
Co-authored-by: slaren <slarengh@gmail.com>
* Fixed 2 bugs in save_imatrix()
- Fixed segfault bug because the counts vector needed to be created.
- Fixed pre-existing bug didn't actually add to the counts for "--combine" option.
* ncall needs summing too
* Trailing whitespace
---------
Co-authored-by: slaren <slarengh@gmail.com>
* Update log text (EOS to EOG)
The log text "found EOS" is no longer always correct, here, because there is now an is-EOG check that also returns true for EOT.
* Improve log msg. further by using "an" instead of "some".
As suggested, to avoid misunderstanding (no multiple EOG tokens found, just one).
This will reproduce the issue in llama13b
{
'prompt': 'Q: hello world \nA: ',
'stop': ['\n'],
'temperature': 0.0,
'n_predict': 10,
'cache_prompt': True,
'n_probs': 10
}
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
* imatrix: save the dataset file used in the output file
* llama: support kv overrides type string string
* common: factorize KV Overrides parsing between common and server
* quantize: add imatrix n entries and dataset KV metadata
quantize: factorize KV Overrides parsing between common
#6656
* llama: remove kv override str_value initialization as it does not compile on some toolchain
* quantize: add imatrix m_last_call as `quantize.imatrix.chunks_count`
* quantize: add imatrix filename in KV
* llama: add llama_model_kv_override_free
* common: add llama_model_kv_override_free
common: free kv override if used after model loading
* llama: finally move the string KV override value to the stack
* llama : minor
* no need to add a NUL to the std::vector, std::string can be initialized from a pair of iterators.
Co-authored-by: slaren <slarengh@gmail.com>
* kv override: ensure string termination
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
* server: cap n_predict if not set to n_ctx_train
* server: fix infinite loop
* server: infinite loop, move in process_token
server: infinite loop: set stop limit to true
* minor: spaces
* minor: spaces
* server: include prompt tokens in the EOS limit
* add support for moondream vision language model
This required making the following changes to the CLIP model:
1. Support for patch embedding bias.
2. Make class embedding and pre-layernorm optional.
3. Add support for post-layernorm.
* Update examples/llava/clip.cpp
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit renamesthe lerp (linear interpolation) function in clip.cpp
to avoid a conflict with the lerp function in the <cmath> standard C++
library when using c++20.
The motivation for this change is to enable projects that use c++20 to
be able to compile clip.cpp without having to resort to patching it. The
lerp function was added to cmath in version C++20 (202002L) and is why
this is not causing any issue at the moment as C++11/C++17 is currently
used by llama.cpp.
I realize that llama.cpp uses either C++11 (or C++17 in the case for
SYCL) but wanted to ask if this would be an acceptable change just the
same.
Refs: https://en.cppreference.com/w/cpp/numeric/lerp
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* Implement '--keep-split' to quantize model into several shards
* Add test script
* Update examples/quantize/quantize.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Split model correctly even if tensor id is out-of-order
* Update llama_model_quantize_params
* Fix preci failures
---------
Co-authored-by: z5269887 <z5269887@unsw.edu.au>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* fix: revert showing control tokens by default
* feat: revert changes to default behavior of llama_token_to_piece; provide overridden declaration to receive "bool special" param to toggle showing control tokens
* feat: use the overridden declaration of llama_token_to_piece from common/common.cpp to specify "false" so that control tokens are not shown in chat completion responses"
* common : simplify
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* `build`: generate hex dumps of server assets on the fly
* build: workaround lack of -n on gnu xxd
* build: don't use xxd in cmake
* build: don't call xxd from build.zig
* build: more idiomatic hexing
* build: don't use xxd in Makefile (od hackery instead)
* build: avoid exceeding max cmd line limit in makefile hex dump
* build: hex dump assets at cmake build time (not config time)
* Support Llama 3 conversion
The tokenizer is BPE.
* style
* Accept suggestion
Co-authored-by: Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com>
* llama : add llama_token_is_eog()
ggml-ci
* llama : auto-detect more EOT tokens when missing in KV data
* convert : replacing EOS token is a hack
* llama : fix codegemma EOT token + add TODOs
* llama : fix model type string for 8B model
---------
Co-authored-by: Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* ggml : group all experts in a single ggml_mul_mat_id
cuda : improve mmid row copy
* cuda : fix bin bcast with non-cont src0
* test-backend-ops : only run all mul mat tests for base types
* llama : disable moe offloading with SYCL
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This change upstreams llamafile's cpu matrix multiplication kernels
which improve image and prompt evaluation speed. For starters, Q4_0
and Q8_0 weights should go ~40% faster on CPU. The biggest benefits
are with data types like f16 / f32, which process prompts 2x faster
thus making them faster than quantized data types for prompt evals.
This change also introduces bona fide AVX512 support since tinyBLAS
is able to exploit the larger register file. For example, on my CPU
llama.cpp llava-cli processes an image prompt at 305 tokens/second,
using the Q4_K and Q4_0 types, which has always been faster than if
we used f16 LLaVA weights, which at HEAD go 188 tokens/second. With
this change, f16 LLaVA performance leap frogs to 464 tokens/second.
On Intel Core i9-14900K this change improves F16 prompt perf by 5x.
For example, using llama.cpp at HEAD with Mistral 7b f16 to process
a 215 token prompt will go 13 tok/sec. This change has fixes making
it go 52 tok/sec. It's mostly thanks to my vectorized outer product
kernels but also because I added support for correctly counting the
number of cores on Alderlake, so the default thread count discounts
Intel's new efficiency cores. Only Linux right now can count cores.
This work was sponsored by Mozilla who's given permission to change
the license of this code from Apache 2.0 to MIT. To read more about
what's improved, and how it works, see: https://justine.lol/matmul/
This commit updates the hf.sh script usage to include the --outdir option
and specifies the models directory as the output directory.
The motivation for this is to avoid cluttering the root directory with
model files.
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* Fix --split-max-size
Byte size calculation was done on int and overflowed.
* add tests.sh
* add examples test scripts to ci run
Will autodiscover examples/*/tests.sh scripts and run them.
* move WORK_PATH to a subdirectory
* clean up before and after test
* explicitly define which scripts to run
* add --split-max-size to readme
* disable mmap to fix memcpy crash, add missed cmd in guide, fix softmax
* refactor to disable mmap for SYCL backend
* fix compile error in other os
* refactor the solution, use host buf to fix it, instead of disable mmap
* keep to support mmap()
* use host buff to reduce malloc times
* revert to malloc/free solution, for threaad safe