* iq1_m: make it work for QK_K = 64 (WIP)
* iq1_m: make it work for QK_K = 64 (scalar and AVX2)
* iq1_m: QK_K = 64 seems to work on Metal and ARM_NEON
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* iq1_m: basics
* iq1_m: basics-2
* iq1_m: CUDA dequantize works
Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B.
* iq1_m: separate shifts for each group of 8 in a block
We get
PPL(LLaMA-v2-7B ) = 9.2810
PPL(LLaMA-v2-13B) = 6.8105
Not bad, but slightly higher than
sqrt(PPL(IQ1_S) * PPL(IQ2_XXS))
which is the expected outcome given that IQ1_M is
halfway between IQ1_S and IQ2_XXS in terms of bpw.
From this, we would expect
PPL = 9.14 for LLaMA-v2-7B
PPL = 6.63 for LLaMA-v2-13B
* iq1_m: go to 3-bit scales
There is slight increase in PPL, but the 0.0625 bpw reduction
in size is totally worth it.
We now have
PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw
PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw
PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw
* iq1_m: scalar dot product
* iq1_m: AVX2 dot product
* iq1_m: very slightly faster AVX2 dot product
* iq1_m: ARM_NEON dot product
Works, but very slow (10.5 t/s)
* iq1_m: Metal - dequantize works, dot product does not
* iq1_m: Metal now works
About the same performance as iq1_s.
* iq1_m: minor
* iq1_m: checking pure iq1_m quantization
It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight
with Q4_K.
* iiq1_m: slightly faster ARM_NEON dot product
10.5 t/s -> 11.65 t/s
* iq1_m: faster ARM_NEON dot product
11.65 t/s -> 14.9 t/s
* iq1_m: another minor ARM_NEON dot product improvement
14.9 -> 15.0 t/s
* iq1_m: small PPL improvement via super-block scale adjustment
After quantizing block scales redo the super-block scale fit.
PPL(LLaMA-v2-7B ) = 9.3346
PPL(LLaMA-v2-13B) = 6.8419
PPL(LLaMA-v2-70B) = 4.8294
PPL(Mistral-7B ) = 8.1624
* iq1_m: adapt to CUDA refactoring
* iq1_m: remove unused variable
We have progressed to warnings being errors.
* iq1_m: add to backend-ops tests
* iq1_m: fix Windows ARM
* iq1_m: use common definition of iq1m_scale_t
* cuda: assert -> NO_DEVICE_CODE
* iq1_M: PR comments
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* iq1_s: we can do even better
Spent one of the 4 scale bits on a signs of a 0.125 shift.
I.e., quants are now -1 + delta, delta, 1 + delta, where delta
is +/- 0.125.
CUDA works, same performance as before.
PPL(LLaMA-v2-7B) is now 11.85!
* iq1_s: make scalar and AVX2 work with the new version
* iq1_s: make Neon work with new version.
~10% drop in performance, so will need some more work.
* iq1_s: make Metal work with new version
* iq1_s: very slightly faster dequantize on Metal
* iq1_s: fix dequantize on the CPU
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* Trying blocvks of 16 for IQ1_S - seems slightly better
* iq1s_blocks16: Adjust scale fudge factor to 1.125
* iq1s_blocks16: going to blocks of 32
with 2048 lattice points, so same bpw.
This is even better than blocks of 16.
Should I try blocks of 64? But to keep the same
bpw, when I go to 4096 lattice points, I need to
remove blocks alltogether and just have superblocks of
256 weights.
* iq1s_blocks16: Use 2*<x^2> as sigma2 in weight adjustment
* iq1s_blocks16: scalar and AVX2 dot products
* iq1s_blocks16: CUDA dot product
* iq1s_blocks16: Metal works, Neon does not
Metal works but TG is dog slow (35 t/s). PP is OKish (493 t/s).
Not seeing the bug in the Neon implementation for now.
* iq1s_blocks16: fixed Neon
* iq1s_blocks16: very slightly faster TG on Metal
Still pathetic at 37 t/s
* iq1s_blocks16: speedup Metal by packing codebook into uint32_t's
* Formatting
* iq1s_blocks16: uint32_t codebook is also better in CUDA
TG-128 is now 204 t/s up from 194 t/s.
PP-512 is 5890 t/s, so significantly better than other quants
* iq1s_blocks16: slightly faster Neon dot product
* iq1s_blocks16: faster AVX2 dot product
* iq1s_blocks16: adjust to ggml-common.h
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>