Commit Graph

100 Commits

Author SHA1 Message Date
Pedro Cuenca
b75c38166c
convert : allow conversion of Mistral HF models (#6144)
* Allow conversion of Mistral HF models

* Homogenize Llama, Mistral, Mixtral under the same entry.

* Fix tokenizer, permute tensors

* Use sentencepiece tokenizer, or fall back to hfft.

* convert-hf : small fix for mypy

* convert-hf : fix duplicated block_count

* convert-hf : add vocab size to metadata

---------

Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-03-29 09:15:00 +02:00
Jared Van Bortel
be55134a53
convert : refactor vocab selection logic (#6355) 2024-03-28 11:44:36 -04:00
Pedro Cuenca
e097633f63
convert-hf : fix exception in sentencepiece with added tokens (#6320) 2024-03-26 14:32:19 +02:00
Julius Arkenberg
476b0251b2
llama : add grok-1 support (#6204)
* Add support for Grok model architecture

* Revert convert-hf-to-gguf to default options

* Fixed f_norm_rms_eps bug

* Fix whitespaces

* llama : fix grok rope type

* llama : minor

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-23 18:41:53 +02:00
Thérence
9b03719ad7
convert : add support for CamembertModel architecture (#6119)
Adding support for CamembertModel architecture used by :
https://huggingface.co/dangvantuan/sentence-camembert-large
2024-03-18 10:17:00 +02:00
Andrew Canis
12247f4c69
llama : add Command-R support (#6033)
Information about the Command-R 35B model (128k context) can be found at:
	https://huggingface.co/CohereForAI/c4ai-command-r-v01

Based on the llama2 model with a few changes:

1) New hyper parameter to scale output logits (logit_scale)
2) Uses LayerNorm instead of RMSNorm
3) Transfomer layers have a single shared LayerNorm that feeds into both the
   self-attention and FFN layers in parallel. There is no post-attention LayerNorm.
4) No support for Rotary Position Embeddings (RoPE) scaling
5) No biases used

Find GGUF files here:
	https://huggingface.co/andrewcanis/c4ai-command-r-v01-GGUF

To convert model to GGUF format yourself:

1) Download Command-R Hugging Face safetensors:
	git lfs install
	git clone https://huggingface.co/CohereForAI/c4ai-command-r-v01

2) Run:
	python3 convert-hf-to-gguf.py --outtype f16 ./c4ai-command-r-v01
2024-03-15 22:41:22 +02:00
compilade
c2101a2e90
llama : support Mamba Selective State Space Models (#5328)
* mamba : begin working on support for Mamba SSM

* mamba : begin figuring out how to (ab)use the kv cache for Mamba

* mamba : recurrent inference almost works, but incoherent

* mamba : recurrent inference WORKS!!!

* convert : optionally use d_conv and d_state from config.json for Mamba

* mamba : refactor recurrent conv, resulting in 20% perf increase

It's still slower than I'd like, but I did not really optimize `ggml_exp` yet.

I also refactored `ggml_exp` to work with tensors with more than 2 dimensions.

* ggml : parallelize ggml_exp

This results in 8% faster token generation for Mamba-130M.

* mamba : simplify the conv step with a self-overlapping view

Turns out the conv_state can be made smaller by one column.
Note that this breaks existing GGUFs of Mamba,
because the key_value_length field is tied to the conv_state size.

Convolution with a self-overlapping view is cool!
And it's much simpler than what I initially thought would be necessary
to make the convolution step work with more than 1 token at a time.

Next step is to make the SSM step work on batches of tokens too,
and thus I need to figure out a way to make a parallel selective scan
which will keep the ssm_state small and won't make it bigger
by a factor of (n_layer * batch_size).

* llama : fix Mamba KV self size wrongly displaying as f16 instead of f32

Relatedly, I also tried to see if other types than f32 worked for the states,
but they don't, because of the operators used.
It's probably better anyway to keep lots of precision there,
since the states are small anyway.

* mamba : fix self-overlapping view depth stride

* mamba : handle batches of more than 1 token

This means running Mamba no longer crashes when using the default settings!
And probably also slightly faster prompt processing.
Both batched and non-batched processing yield the same output.

Previously, the state was not cleared when starting a sequence.
Next step is to make the KV cache API work as expected for Mamba models.

* ggml: add ggml_ssm_scan to help with parallel selective scan

If the selective scan was implemented without a custom operator,
there would be waaay too many nodes in the graph. For example,
for Mamba-130M, with a batch size of 512 (the default),
a naive selective scan could add at least 24*512=12288 nodes,
which is more than LLAMA_MAX_NODES (8192),
and that's only for the smallest Mamba model.
So it's much cleaner with a custom operator.
Not sure about the name, though.

* ggml : in ggml_ssm_scan, merge multiple rows in the same vec operation

This will help with performance on CPU if ggml_vec_mul_f32
and ggml_vec_add_f32 are ever optimized with SIMD.

* mamba : very basic quantization support

Mostly works, but there is currently no difference
between the variants of a k-quant (e.g. Q4_K_S and Q4_K_M are the same).
Most of the SSM-specific weights can be kept in f32 without affecting
the size that much, since they are relatively small.
(the linear projection weights are responsible for most of Mamba's size)

Too much quantization seems to make the state degrade quite fast, and
the model begins to output gibberish.
It seems to affect bigger models to a lesser extent than small models,
but I'm not sure by how much.

Experimentation will be needed to figure out which weights are more important
for the _M (and _L?) variants of k-quants for Mamba.

* convert : fix wrong name for layer norm weight of offical Mamba models

I was using Q-bert/Mamba-* models before, which have a slighlty different
naming scheme for the weights.
(they start with "model.layers" instead of "backbone.layers")

* mamba : fuse more steps of the SSM scan in the ggml_ssm_scan operator

This increases performance on CPU by around 30% for prompt processing,
and by around 20% for text generation.

However, it also makes the ggml_exp and ggml_soft_plus operators unused.
Whether or not they should be kept will be decided later.

* convert : for Mamba, also consider the "MambaLMHeadModel" arch name

It's the name of the class of the official implementation,
though they don't use it (yet) in the "architectures" field of config.json

* mamba : fix vocab size problems with official models

The perplexity was waaaay to high for models with a non-round vocab size.
Not sure why, but it needed to be fixed in the metadata.

Note that this breaks existing GGUF-converted Mamba models,
but **only if** the vocab size was not already rounded.

* ggml : remove ggml_exp and ggml_soft_plus

They did not exist anyway outside of this branch,
and since ggml_ssm_scan fused operations together, they are unused.
It's always possible to bring them back if needed.

* mamba : remove some useless comments

No code change.

* convert : fix flake8 linter errors

* mamba : apply suggestions from code review

* mamba : remove unecessary branch for row-wise ssm_state and C multiplication

It was previously done to avoid permuting when only one token is processed
at a time (like when generating text), but permuting is cheap,
and dynamically changing the compute graph is not future-proof.

* ggml : in ggml_ssm_scan, use more appropriate asserts

* ggml : rename the destination pointer in ggml_compute_forward_ssm_scan_f32

* mamba : multiple sequences, but one at a time

This is a step towards making this Mamba implementation usable
with the server example (the way the system prompt is kept when clearing
the client slots will need to be changed before this can work, though).

The KV cache size for this kind of model is tied to the maximum number
of sequences kept at any single time.
For now, this number is obtained from n_parallel (plus one,
to have an extra sequence to dedicate to the system prompt),
but there might be a better way to do this which won't also
make the main example use 2 cells even if only 1 is really used.
(for this specific case, --parallel 0 helps)

Simultaneous sequence processing will probably require changes to
ggml_ssm_scan, and possibly a new operator for the conv step.

* mamba : support llama_kv_cache_seq_cp

This (mis)uses the logic around K shifts, because tokens in a state
can't be shifted anyway, and because inp_K_shift has the right shape and type.
Using ggml_get_rows is a nice way to do copies, but copy chains can't work.
Fortunately, copy chains don't really seem to be used in the examples.

Each KV cell is dedicated to the sequence ID corresponding to its own index.

* mamba : use a state mask

It's cleaner than the previous heuristic of
checking for the pos of the first token in the batch.

inp_KQ_mask could not be re-used for this, because it has the wrong shape
and because it seems more suited to the next step of
simultaneous sequence processing (helping with the problem of
remembering which token belongs to which sequence(s)/state(s)).

* llama : replace the usage of n_ctx with kv_self.size in many places

* mamba : use n_tokens directly instead of n_tok

* mamba : in comments, properly refer to KV cells instead of slots

* mamba : reduce memory usage of ggml_ssm_scan

From 290.37 MiB to 140.68 MiB of CPU compute buffer size
with Mamba 3B with a batch size of 512.

The result tensor of ggml_ssm_scan was previously a big part
of the CPU compute buffer size. To make it smaller,
it does not contain the intermediate ssm states anymore.
Both y and the last ssm state are combined in the result tensor,
because it seems only a single tensor can be returned by an operator
with the way the graph is built.

* mamba : simultaneous sequence processing

A batch can now contain tokens from multiple sequences.

This is necessary for at least the parallel example, the server example,
and the HellaSwag test in the perplexity example.

However, for this to be useful, uses of llama_kv_cache_seq_rm/cp
will need to be changed to work on whole sequences.

* ggml : add ggml_ssm_conv as a new operator for the conv step of Mamba

This operator makes it possible to use and update the correct states
for each token of the batch in the same way as ggml_ssm_scan.
Other solutions which use existing operators would need loops which would
add too many nodes to the graph (at least the ones I thought of).

Using this operator further reduces the size of the CPU compute buffer
from 140.68 MiB to 103.20 MiB with Mamba 3B with a batch size of 512.
And (at least on CPU), it's a bit faster than before.

Note that "ggml_ssm_conv" is probably not the most appropriate name,
and it could be changed if a better one is found.

* llama : add inp_s_seq as a new input tensor

The most convenient implementation to select the correct state (for Mamba)
for each token is to directly get the correct index from a tensor.
This is why inp_s_seq is storing int32_t and not floats.

The other, less convenient way to select the correct state would be
to have inp_KQ_mask contain 1.0f for each state used by a token
and 0.0f otherwise. This complicates quickly fetching the first used
state of a token, and is also less efficient because a whole row
of the mask would always need to be read for each token.

Using indexes makes it easy to stop searching when there are
no more sequences for a token, and the first sequence assigned
is always very quickly available (it's the first element of each row).

* mamba : support llama_kv_cache_seq_cp copy chains

* mamba : support shifting and dividing the kv cache pos

* mamba : make the server and parallel examples work with whole sequences

A seq_id is dedicated to the system prompt in both cases.

* llama : make llama_kv_cache_seq_rm return whether it succeeded or not

* mamba : dedicate an input tensor for state copy indices

This is cleaner and makes it easier to adapt when/if token positions
(and by extension, inp_K_shift) are no longer integers.

* mamba : adapt perplexity, batched, and batched-bench examples

* perplexity : limit the max number of sequences

This adapts to what the loaded model can provide.

* llama : add llama_n_max_seq to get the upper limit for seq_ids

Used by the perplexity example.

* batched : pass n_parallel to the model's context params

This should have been there already, but it wasn't.

* batched-bench : reserve sequences to support Mamba

* batched-bench : fix tokens being put in wrong sequences

Generation quality isn't what's measured in there anyway,
but at least using the correct sequences avoids using non-consecutive
token positions.

* mamba : stop abusing attention metadata

This breaks existing converted-to-GGUF Mamba models,
but will allow supporting mixed architectures like MambaFormer
without needing to break Mamba models.

This will also allow changing the size of Mamba's states
without having to reconvert models in the future.
(e.g. using something else than d_conv - 1 columns for the conv_states
 will not require breaking existing converted Mamba models again)

* gguf-py : add new KV metadata key-value pairs for Mamba

* llama : add new metadata key-value pairs for Mamba

* llama : guard against divisions by zero when n_head is 0

* mamba : rename "unlimited" KV cache property to "recurrent"

* mamba : more correctly update the "used" field of the KV cache

* ggml : in ggml_ssm_scan, use a threshold for soft_plus

This is how the official Mamba implementation does it,
and it's also what torch.nn.Softplus does.

* convert : for Mamba, fallback to internal NeoX tokenizer

The resulting models are exactly the same
as if the tokenizer.json and tokenizer_config.json of GPT-NeoX were there.

* mamba : support state saving and restoring

* ggml : implicitly pass src tensors through dst for Mamba-related ops

* mamba : clarify some comments

* server : fix cache_tokens not getting correctly resized

Otherwise, when the "we have to evaluate at least 1 token" special case
was triggered, an extra token was kept in cache_tokens even if it was
removed from the KV cache.

For Mamba, this caused useless prompt reprocessing when the previous
request triggered the above case.

* convert-hf : support new metadata keys for Mamba

For the models available at
https://huggingface.co/collections/state-spaces/transformers-compatible-mamba-65e7b40ab87e5297e45ae406

* mamba : rename metadata to be more similar to transformers library

This breaks existing converted-to-GGUF models,
but the metadata names are more "standard".

* mamba : support mamba-*-hf models

These models share their token_embd.weight with their output.weight

* mamba : add missing spaces

This is purely a formatting change.

* convert-hf : omit output.weight when identical with token_embd.weight

Only for Mamba for now, but it might be relevant for other models eventually.
Most Mamba models actually share these two tensors, albeit implicitly.

* readme : add Mamba to supported models, and add recent API changes

* mamba : move state_seq and state_mask views outside layer loop

A few tensors were also missing `struct` in front of `ggml_tensor`.
2024-03-08 17:31:00 -05:00
Georgi Gerganov
e0843afe1b
flake : fix 2024-03-04 21:50:50 +02:00
Douglas Hanley
475df1d6cf
llama : allow for user specified embedding pooling type (#5849)
* allow for user specified pooling type

* llama : use enum types over int

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-03 12:40:27 +02:00
Jared Van Bortel
c7a0ad8ec9
convert-hf : make model class definitions self-contained (#5825) 2024-03-02 12:21:47 -05:00
Sourab Mangrulkar
c29af7e225
llama : add StarCoder2 support (#5795)
* Add support for starcoder2

* handle rope type

* skip rope freq and rotary embeddings from being serialized

* resolve comments

* Update llama.cpp

* remove redundant changes

* handle `rope-theta`

* llama : change starcoder2 rope type

* address comment

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-01 21:30:46 +02:00
kunal-vaishnavi
e743386728
gemma : fix bfloat16 -> float16 conversion issue (#5810) 2024-03-01 16:08:08 +02:00
Anas Ahouzi
69917dfa55
py : fix StableLM conversion after config.json changes (#5703)
* Fix issues during StableLM models conversion

* Fix hard coded layer_norm_eps

* Support layer_norm_eps for LlavaStableLM

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* Add missing parenthesis

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* Support rotary_factor for LlavaStableLM

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* fix typo

* Add StableLMEpochForCausalLM for safety

Co-authored-by: compilade <113953597+compilade@users.noreply.github.com>

* Add StableLMEpochForCausalLM for safety 2

Co-authored-by: compilade <113953597+compilade@users.noreply.github.com>

---------

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
Co-authored-by: Jared Van Bortel <jared@nomic.ai>
Co-authored-by: compilade <113953597+compilade@users.noreply.github.com>
2024-02-25 11:54:04 +02:00
Jared Van Bortel
54fbcd2ce6
convert : fix missing ftype for gemma (#5690) 2024-02-23 20:39:14 +02:00
Jared Van Bortel
15499eb942
mpt : do not duplicate token_embd.weight on disk (#5670) 2024-02-22 17:05:23 -05:00
Georgi Gerganov
847eedbdb2
py : add Gemma conversion from HF models (#5647)
* py : add gemma conversion from HF models

* Update convert-hf-to-gguf.py

Co-authored-by: Aarni Koskela <akx@iki.fi>

* Update convert-hf-to-gguf.py

Co-authored-by: Aarni Koskela <akx@iki.fi>

* Update convert-hf-to-gguf.py

Co-authored-by: Jared Van Bortel <jared@nomic.ai>

---------

Co-authored-by: Aarni Koskela <akx@iki.fi>
Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-22 23:22:48 +02:00
Georgi Gerganov
5a9e2f60ba
py : minor fixes (#5668) 2024-02-22 20:13:25 +02:00
Douglas Hanley
4524290e87
Use correct type of pooling for embedding models (#5500)
Use correct type of pooling for embedding models
2024-02-15 12:21:49 -05:00
Jared Van Bortel
ea9c8e1143
llama : add support for Nomic Embed (#5468) 2024-02-13 12:03:53 -05:00
Douglas Hanley
03bf161eb6
llama : support batched embeddings (#5466)
* batched embedding: pool outputs by sequence id. updated embedding example

* bring back non-causal attention

* embd : minor improvements

* llama : minor

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-13 14:06:58 +02:00
Douglas Hanley
2891c8aa9a
Add support for BERT embedding models (#5423)
* BERT model graph construction (build_bert)
* WordPiece tokenizer (llm_tokenize_wpm)
* Add flag for non-causal attention models
* Allow for models that only output embeddings
* Support conversion of BERT models to GGUF
* Based on prior work by @xyzhang626 and @skeskinen

---------

Co-authored-by: Jared Van Bortel <jared@nomic.ai>
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-11 11:21:38 -05:00
runfuture
4aa43fab56
llama : fix MiniCPM (#5392)
* fix bug for norm_rms_eps missing

* to align with the same order as convert.py for model write

* fix: undo HF models permute tensor

* update for flake8 lint
2024-02-08 12:36:19 +02:00
runfuture
316c7faf77
llama : add MiniCPM support (#5346)
* support minicpm arch.

* fix tab/space typo.

* convert minicpm model via convert-hf-gguf.py

* try to make tokenizer work

* fix bug for quantize minicpm

* fix for flake8 lint

* remove convert-minicpm.py

* fix for editorconfig

* correct minicpm model type (size)

* constants expanded for minicpm

* Minor change of the constant names for minicpm
2024-02-07 08:15:56 +02:00
Guoteng
7e1ae372f3
py : fix internlm2-hf convert to gguf (#5305)
* py : fix internlm2-hf convert to gguf

* ggml-ci
2024-02-05 11:04:06 +02:00
Mirror Azure
2d40085c26
py : add check for '.attn.masked_bias' layers to GPT2model (#5281) 2024-02-02 13:39:09 +02:00
Guoteng
ce32060198
llama : support InternLM2 (#5184)
* support InternLM2 inference
  * add add_space_prefix KV pair
2024-02-01 11:19:51 +02:00
sharpHL
f2e69d28c0
llama : add support for Orion-14B (#5118)
* add support for Orion-14B(https://huggingface.co/OrionStarAI/Orion-14B-Chat)

* flake8 support

* Update llama.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update llama.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update llama.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update llama.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update llama.cpp

Co-authored-by: slaren <slarengh@gmail.com>

* Update llama.cpp

* Update llama.cpp

---------

Co-authored-by: lixiaopu <lixiaopu@cmcm.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2024-01-28 10:00:30 +02:00
compilade
d6bd4d46dd
llama : support StableLM 2 1.6B (#5052)
* llama : support StableLM 2 1.6B

* convert : fix Qwen's set_vocab wrongly naming all special tokens [PAD{id}]

* convert : refactor Qwen's set_vocab to use it for StableLM 2 too

* nix : add tiktoken to llama-python-extra

* convert : use presence of tokenizer.json to determine StableLM tokenizer loader

It's a less arbitrary heuristic than the vocab size.
2024-01-22 13:21:52 +02:00
Jared Van Bortel
b43ebde3b0
convert : partially revert PR #4818 (#5041) 2024-01-20 18:14:18 -05:00
Shijie
9b75cb2b3c
llama : support upcoming Qwen2 (#5037) 2024-01-19 13:53:13 +02:00
Georgi Gerganov
de9a147df1 py : fix flake8 lint 2024-01-19 13:52:22 +02:00
chiranko
2b3b999cac
llama : add CodeShell support (#5016)
* llama: add codeshell support

* llama.cpp: fix codeshell with NeoX rope

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-19 11:07:27 +02:00
Georgi Gerganov
5c99960901
py : remove unnecessary hasattr (#4903) 2024-01-16 20:59:31 +02:00
Georgi Gerganov
15ebe59210
convert : update phi-2 to latest HF repo (#4903)
* convert : update phi-2 to latest HF repo

ggml-ci

* py : try to fix flake stuff
2024-01-13 13:44:37 +02:00
Georgi Gerganov
2d00741e12
py : fix lint (#4889) 2024-01-12 13:03:38 +02:00
Georgi Gerganov
f445c0e68c
llama : fix llm_build_k_shift to use correct n_rot (#4889)
* llama : fix llm_build_k_shift to use correct n_rot

ggml-ci

* llama : always use hparams.n_rot for ggml_rope_custom

ggml-ci

* convert : fix persimmon conversion to write correct n_rot
2024-01-12 13:01:56 +02:00
Nam D. Tran
26f3071d71
py : re-enable mmap in convert hf (#4732)
* update: awq support llama-7b model

* update: change order

* update: benchmark results for llama2-7b

* update: mistral 7b v1 benchmark

* update: support 4 models

* fix: Readme

* update: ready for PR

* update: readme

* fix: readme

* update: change order import

* black

* format code

* update: work for bot mpt and awqmpt

* update: readme

* Rename to llm_build_ffn_mpt_awq

* Formatted other files

* Fixed params count

* fix: remove code

* update: more detail for mpt

* fix: readme

* fix: readme

* update: change folder architecture

* fix: common.cpp

* fix: readme

* fix: remove ggml_repeat

* update: cicd

* update: cicd

* uppdate: remove use_awq arg

* update: readme

* llama : adapt plamo to new ffn

ggml-ci

* fix: update torch version

---------

Co-authored-by: Trần Đức Nam <v.namtd12@vinai.io>
Co-authored-by: Le Hoang Anh <v.anhlh33@vinai.io>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-02 11:23:38 +02:00
crasm
04ac0607e9
python : add check-requirements.sh and GitHub workflow (#4585)
* python: add check-requirements.sh and GitHub workflow

This script and workflow forces package versions to remain compatible
across all convert*.py scripts, while allowing secondary convert scripts
to import dependencies not wanted in convert.py.

* Move requirements into ./requirements

* Fail on "==" being used for package requirements (but can be suppressed)

* Enforce "compatible release" syntax instead of ==

* Update workflow

* Add upper version bound for transformers and protobuf

* improve check-requirements.sh

* small syntax change

* don't remove venvs if nocleanup is passed

* See if this fixes docker workflow

* Move check-requirements.sh into ./scripts/

---------

Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2023-12-29 16:50:29 +02:00
manikbhandari
ea5497df5d
gpt2 : Add gpt2 architecture integration (#4555) 2023-12-28 15:03:57 +01:00
Nam D. Tran
f6793491b5
llama : add AWQ for llama, llama2, mpt, and mistral models (#4593)
* update: awq support llama-7b model

* update: change order

* update: benchmark results for llama2-7b

* update: mistral 7b v1 benchmark

* update: support 4 models

* fix: Readme

* update: ready for PR

* update: readme

* fix: readme

* update: change order import

* black

* format code

* update: work for bot mpt and awqmpt

* update: readme

* Rename to llm_build_ffn_mpt_awq

* Formatted other files

* Fixed params count

* fix: remove code

* update: more detail for mpt

* fix: readme

* fix: readme

* update: change folder architecture

* fix: common.cpp

* fix: readme

* fix: remove ggml_repeat

* update: cicd

* update: cicd

* uppdate: remove use_awq arg

* update: readme

* llama : adapt plamo to new ffn

ggml-ci

---------

Co-authored-by: Trần Đức Nam <v.namtd12@vinai.io>
Co-authored-by: Le Hoang Anh <v.anhlh33@vinai.io>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-27 17:39:45 +02:00
Shintarou Okada
753be377b6
llama : add PLaMo model (#3557)
* add plamo mock

* add tensor loading

* plamo convert

* update norm

* able to compile

* fix norm_rms_eps hparam

* runnable

* use inp_pos

* seems ok

* update kqv code

* remove develop code

* update README

* shuffle attn_q.weight and attn_output.weight for broadcasting

* remove plamo_llm_build_kqv and use llm_build_kqv

* fix style

* update

* llama : remove obsolete KQ_scale

* plamo : fix tensor names for correct GPU offload

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-24 15:35:49 +02:00
Ebey Abraham
b9e74f9bca
llama : add phi-2 + fix NeoX rope + ggml_mul_mat_set_prec (#4490)
* phi2 implementation

* fix breaking change

* phi-2 : various fixes

* phi-2 : use layer norm eps

* py : whitespaces

* llama : fix meta KV override bug

* convert : phi don't add BOS token

* convert : revert "added_tokens_decoder" change

* phi-2 : scale Q instead of KQ for better precision

* ggml : fix NeoX rope to rotate just first n_dims

* cuda : less diff in the rope_neox kernel

* ggml : add ggml_mul_mat_set_prec

ggml-ci

* Update ggml-cuda.cu

Co-authored-by: slaren <slarengh@gmail.com>

* Update ggml-cuda.cu

Co-authored-by: slaren <slarengh@gmail.com>

* cuda : ggml_cuda_op_mul_mat_cublas support F32 precision

* cuda : remove oboslete comment

---------

Co-authored-by: Ebey Abraham <ebeyabraham@microsoft.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2023-12-18 19:27:47 +02:00
slaren
799a1cb13b
llama : add Mixtral support (#4406)
* convert : support Mixtral as LLAMA arch

* convert : fix n_ff typo

* llama : model loading

* ggml : sync latest ggml_mul_mat_id

* llama : update graph to support MoE

* llama : fix cur -> cur_expert

* llama : first working version

* llama : fix expert weighting in the FFN

* ggml : ggml_get_rows support 2D indexing [n_tokens, n_experts] (cpu only)

* ggml : add n_as argument to ggml_mul_mat_id

* ggml : fix ggml_get_rows to take into account ne02 / ne11

* metal : add more general support for ggml_get_rows + tests

* llama : add basic support for offloading moe with CUDA

* metal : add/mul/div use general kernel when src1 not cont

* metal : reduce the kernel launches for ggml_mul_mat_id

* ggml : get_rows : support non-contiguos tensors with gaps, generalize up to 3D

* ggml : update get_rows f16 and q

* cuda : support non-contiguous src1 in get_rows

* llama : offload missing ffn_moe_silu

* metal : fix ggml_get_rows to work with non-cont src1

* metal : add indirect mat-vec kernels for all quantization types

* llama : do not quantize expert gating tensors

* llama : add n_expert and n_expert_used to hparams + change quants

* test-backend-ops : add moe test

* cuda : fix get_rows when ncols is odd

* convert : determine n_ctx correctly

* metal : fix ggml_mul_mat_id for F32

* test-backend-ops : make experts more evenly probable (test_moe)

* test-backend-ops : cleanup, add moe test for batches

* test-backend-ops : add cpy from f32 -> all types test

* test-backend-ops : fix dequantize block offset

* llama : fix hard-coded number of experts

* test-backend-ops : simplify and disable slow tests to avoid CI timeout

* test-backend-ops : disable MOE test with thread sanitizer

* cuda : fix mul_mat_id with multi gpu

* convert : use 1e6 rope_freq_base for mixtral

* convert : fix style

* convert : support safetensors format

* gguf-py : bump version

* metal : add cpy f16 -> f32 kernel

* metal : fix binary ops for ne10 % 4 != 0

* test-backend-ops : add one more sum_rows test

* ggml : do not use BLAS with ggml_mul_mat_id

* convert-hf : support for mixtral-instruct (#4428)

* convert : typo fix, add additional hyperparameters, use LLaMA arch for Mixtral-instruct

* convert : use sentencepiece tokenizer for Mixtral-instruct

* convert : make flake8 happy

* metal : fix soft_max kernels

ref: 1914017863

* metal : limit kernels to not use more than the allowed threads

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Radek Pilar <github@mrkva.eu>
2023-12-13 14:04:25 +02:00
Shijie
37c746d687
llama : add Qwen support (#4281)
* enable qwen to llama.cpp

* llama : do not GPU split bias tensors

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-01 20:16:31 +02:00
Galunid
1ddb52ec38
scripts : Use mmap in torch load (#4202)
* Use mmap in torch load, prefer .bin files when loading

* Revert .bin > .safetensors preference
2023-11-25 22:45:02 +01:00
Galunid
189d68446e
convert : fix tensors using grad in some models (#4173) 2023-11-24 15:02:49 +01:00
Galunid
f23c0359a3
ci : add flake8 to github actions (python linting) (#4129)
Disabled rules:

* E203 Whitespace before ':' - disabled because we often use 'C' Style where values are aligned

* E211 Whitespace before '(' (E211) - disabled because we often use 'C' Style where values are aligned

* E221 Multiple spaces before operator - disabled because we often use 'C' Style where values are aligned

* E225 Missing whitespace around operator - disabled because it's broken so often it seems like a standard

* E231 Missing whitespace after ',', ';', or ':' - disabled because we often use 'C' Style where values are aligned

* E241 Multiple spaces after ',' - disabled because we often use 'C' Style where values are aligned

* E251 Unexpected spaces around keyword / parameter equals - disabled because it's broken so often it seems like a standard

* E261 At least two spaces before inline comment - disabled because it's broken so often it seems like a standard

* E266 Too many leading '#' for block comment - sometimes used as "section" separator

* E501 Line too long - disabled because it's broken so often it seems like a standard

* E701 Multiple statements on one line (colon) - broken only in convert.py when defining abstract methods (we can use# noqa instead)

* E704 Multiple statements on one line - broken only in convert.py when defining abstract methods (we can use# noqa instead)
2023-11-20 11:35:47 +01:00
John
11173c92d6
py : Falcon HF compatibility (#4104)
Falcon HF compatibility
2023-11-17 17:24:30 +02:00
Galunid
36eed0c42c
stablelm : StableLM support (#3586)
* Add support for stablelm-3b-4e1t
* Supports GPU offloading of (n-1) layers
2023-11-14 11:17:12 +01:00
Galunid
a75fa576ab
scripts: Generalize convert scripts (#3838)
* Replace convert-*-hf-to-gguf.py files with convert-hf-to-gguf.py
2023-11-09 11:09:29 +01:00