Commit Graph

19 Commits

Author SHA1 Message Date
Johannes Gäßler
081b29bd2a
tests: add tests for GGUF (#10830) 2024-12-17 19:09:35 +01:00
Diego Devesa
cb13ef85a4
remove CMAKE_WINDOWS_EXPORT_ALL_SYMBOLS (#10797)
other windows build fixes
2024-12-12 19:02:49 +01:00
Frankie Robertson
cd2f37b304
Avoid using __fp16 on ARM with old nvcc (#10616) 2024-12-04 01:41:37 +01:00
Diego Devesa
7cc2d2c889
ggml : move AMX to the CPU backend (#10570)
Some checks failed
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* ggml : move AMX to the CPU backend

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-11-29 21:54:58 +01:00
Frankie Robertson
9150f8fef9
Do not include arm_neon.h when compiling CUDA code (ggml/1028) 2024-11-27 11:10:27 +02:00
Johannes Gäßler
02e4eaf22f
ggml-opt: fix data corruption (ggml/1022) 2024-11-21 09:22:02 +02:00
Johannes Gäßler
8a43e940ab ggml: new optimization interface (ggml/988) 2024-11-17 08:30:29 +02:00
Diego Devesa
ae8de6d50a
ggml : build backends as libraries (#10256)
Some checks failed
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-musa.Dockerfile platforms:linux/amd64 tag:full-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-musa.Dockerfile platforms:linux/amd64 tag:light-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-musa.Dockerfile platforms:linux/amd64 tag:server-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Nix aarch64 builds / nix-build-aarch64 (push) Has been cancelled
* ggml : build backends as libraries

---------

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: R0CKSTAR <xiaodong.ye@mthreads.com>
2024-11-14 18:04:35 +01:00
Diego Devesa
9f40989351
ggml : move CPU backend to a separate file (#10144)
Some checks are pending
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-musa.Dockerfile platforms:linux/amd64 tag:full-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-musa.Dockerfile platforms:linux/amd64 tag:light-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-musa.Dockerfile platforms:linux/amd64 tag:server-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
2024-11-03 19:34:08 +01:00
Gilad S.
73afe681aa
fix: use vm_allocate to allocate CPU backend buffer on macOS (#9875)
* fix: use `vm_allocate` to allocate CPU backend buffer on macOS

* fix: switch to `posix_memalign` to keep existing `free()` usages work

* feat: move `GGML_ALIGNED_MALLOC` to `ggml-backend-impl.h`, add support for `vm_allocate` on macOS

* style: formatting

* fix: move const outside of `#ifndef`

* style: formatting

* fix: unused var

* fix: transform `GGML_ALIGNED_MALLOC` and `GGML_ALIGNED_FREE` into functions and add them to `ggml-impl.h`

* fix: unused var

* fix: page align to `GGUF_DEFAULT_ALIGNMENT`

* fix: page align to `TENSOR_ALIGNMENT`

* fix: convert `TENSOR_ALIGNMENT` to a macro

* fix: increase page size to `32` on iOS

* fix: iOS page size

* fix: `hbw_posix_memalign` alignment
2024-10-17 00:36:51 +02:00
bandoti
d6fe7abf04
ggml: unify backend logging mechanism (#9709)
* Add scaffolding for ggml logging macros

* Metal backend now uses GGML logging

* Cuda backend now uses GGML logging

* Cann backend now uses GGML logging

* Add enum tag to parameters

* Use C memory allocation funcs

* Fix compile error

* Use GGML_LOG instead of GGML_PRINT

* Rename llama_state to llama_logger_state

* Prevent null format string

* Fix whitespace

* Remove log callbacks from ggml backends

* Remove cuda log statement
2024-10-03 17:39:03 +02:00
slaren
23e0d70bac
ggml : move common CPU backend impl to new header (#9509)
Some checks are pending
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
2024-09-16 16:22:07 +02:00
Georgi Gerganov
d6a04f872d
ggml : hide ggml_object, ggml_cgraph, ggml_hash_set (#9408)
* ggml : hide ggml_object, ggml_cgraph, ggml_hash_set

ggml-ci

* ggml : add ggml-impl.h to backends

* ggml : fix compiler warnings

ggml-ci

* ggml : add assert upon adding nodes
2024-09-12 14:23:49 +03:00
compilade
9bc6db28d0
ggml-quants : ternary packing for TriLMs and BitNet b1.58 (#8151)
* ggml-quants : 1.625 bpw ternary packing for BitNet 1.58b

* ggml-quants : faster 1.625 bpw AVX2 vec_dot

Not using a lookup table anymore makes it match q4_0 speed.

* gguf-py : fix formatting

* llama : remove spaces on empty line

* ggml-quants : subtract 1 when back in epi8

This makes the 1.625 bpw type go faster than q4_0. Still not the fastest.

* ggml-quants : Q2_2 now faster than Q4_K on with AVX2

* ggml-quants : cleanup Q1_3 code formatting

* ggml-quants : ARM NEON vec_dot for q2_2 and q1_3

* ggml-quants : use ceiling division when quantizing q1_3

* convert-hf : simplify BitNet pre-quantization

This still results in the exact same tensor weights and scales,
but it reveals some weirdness in the current algorithm.

* convert-hf : allow converting the weird BitNet 1.3B

Its FFN size is 5460 which is not convenient.
The offending tensors are kept in F16,
which makes the final model 5.01 bpw.

* bitnet : replace 1.58b with b1.58, as in the paper

* ggml-quants : fix build failure on Windows

* ggml-quants : attempt to fix Arm 32-bit support

* ggml : add some informative comments in q1_3 vec_dot

* ggml : add TQ1_0 and TQ2_0 ternary quantization types

* ggml : even faster TQ2_0

* ggml : also faster TQ1_0

Same optimization as for TQ2_0 by offsetting the sum instead of the weights.
This makes TQ1_0 almost as fast as Q8_0 on AVX2.

* ggml : fix build issues in certain environments

* ggml : add NEON vec_dot implementation for TQ1_0 and TQ2_0

* ggml : avoid directly using vmlal_high_s8, for 32-bit ARM compat

The compiler seems smart enough to use the same instruction
even when using vget_high_s8 instead.

* ggml : remove q1_3 and q2_2

No more 1.625 bpw and 2.000 bpw,
now instead using 1.6875 bpw and 2.0625 bpw
with TQ1_0 and TQ2_0, respectively.

* llama : remove the separate scale tensors of BitNet b1.58

They won't be needed, since the remaining ternary quant types have
built-in scales.

* ggml-quants : rename fields of TQ1_0 and TQ2_0 structs for consistency

* ggml-quants : allow using vdotq_s32 in TQ2_0 vec_dot

Not yet tested on hardware which supports it,
might not work or might not even compile. But also it might.
It should make the performance better on recent ARM CPUs.

* ggml-quants : remove comment about possible format change of TQ2_0

Making it slightly more convenient for AVX512
but less convenient for everything else is not worth the trouble.

* gguf-py : Numpy (de)quantization for TQ1_0 and TQ2_0

* ggml-quants : use roundf instead of nearest_int for TQ1_0 and TQ2_0

This does not change anything for ternary models,
since their values should never end up being in halfway cases anyway.

* convert : allow direct conversion to TQ1_0 and TQ2_0

The token embeddings and output tensors are kept in F16
to allow quantizing them to Q4_K and Q6_K with llama-quantize.

* llama : handle fallback for TQ1_0 and TQ2_0 with Q4_0

Q4_0 is not completely symmetric (so not lossless for ternary models),
but it should be good enough.

* ggml-quants : allow using ARM dot product instructions for TQ1_0

* ggml-quants : deduplicate TQ1_0 and TQ2_0 __ARM_FEATURE_DOTPROD support

* ggml : remove unused ggml_mul special case

It would otherwise conflict with the more general
optimization coming with Mamba-2.

* ggml : handle TQ1_0 and TQ2_0 in dequantization-based operators

* test-backend-ops : add TQ1_0 and TQ2_0 comments for later

Not yet adding uncommented, because some backends like SYCL and Metal
do not properly handle unknown types in supports_op for GGML_OP_MUL_MAT.
(and Metal also doesn't handle it with GGML_OP_GET_ROWS)
Support for TQ1_0 and TQ2_0 for other backends than CPU
will be added in follow-up pull requests.
2024-09-05 21:48:47 -04:00
jdomke
76614f352e
ggml : reading the runtime sve config of the cpu (#8709)
* ggml : reading the runtime sve config of the cpu

* change to one time init to prevent performance drop

* prefix variable to avoid possible conflicts

* revert xxhash fix and add brackets

---------

Co-authored-by: domke <673751-domke@users.noreply.gitlab.com>
2024-08-03 18:34:41 +02:00
Sigbjørn Skjæret
b72c20b85c
Fix conversion of unnormalized BF16->BF16 weights (#7843)
* add truncate_bf16

* truncate intermediate fp32 if converting bf16 to bf16

* fix masking in __compute_fp32_to_bf16

* np.int16 no longer used

* missing cast and additional numpy 2.x fix

* ggml-impl : do not flush bf16 subnormals to zero

* ggml : add reference fp32 to bf16 conversion

The fast version is no longer equivalent for all platforms
because of the handling of subnormal values.

* gguf-py : remove flush to zero for bf16 subnormals

* gguf-py : remove float32 truncation to bf16

Rounding achieves the same thing in the cases where this was used.

* missed prototype update in merge

* merge cleanup

---------

Co-authored-by: Francis Couture-Harpin <git@compilade.net>
2024-08-02 15:11:39 -04:00
slaren
2b1f616b20
ggml : reduce hash table reset cost (#8698)
* ggml : reduce hash table reset cost

* fix unreachable code warnings after GGML_ASSERT(false)

* GGML_ASSERT(false) -> GGML_ABORT("fatal error")

* GGML_ABORT use format string
2024-07-27 04:41:55 +02:00
Dibakar Gope
0f1a39f343
ggml : add AArch64 optimized GEMV and GEMM Q4 kernels (#5780)
* Arm AArch64: optimized GEMV and GEMM kernels for q4_0_q8_0, and q8_0_q8_0 quantization

* Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions

* Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions

* Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions

* Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions

* Arm AArch64: add copyright claim only to ggml-aarch64.cpp and ggml-aarch64.h files

* Arm AArch64: minor code refactoring for rebase

* Arm AArch64: minor code refactoring for resolving a build issue with cmake

* Arm AArch64: minor code refactoring to split the Q4_0_AARC64 type into three separate types: Q4_0_4_4, Q4_0_4_8, and Q4_0_8_8

* Arm AArch64: minor code change for resolving a build issue with server-windows

* retrigger checks

* Arm AArch64: minor code changes for rebase

* Arm AArch64: minor changes to skip the pr#7433 vec_dot code for arm cpus with SVE VL not equal to 256 bits

* Arm AArch64: remove stale LLAMA_QKK_64 from CMakeLists.txt and delete build.zig

* Arm AArch64: add reference scalar gemm and gemv, and avoid dynamic memory allocations during quantization for Q4_0_4_4, Q4_0_4_8, and Q4_0_8_8

* Arm AArch64: add multithreaded quantization support for the new types: Q4_0_4_4, Q4_0_4_8, and Q4_0_8_8

* Arm AArch64: minor code refactoring

* Arm AArch64: simplify logic for calling gemm and gemv functions in ggml_compute_forward_mul_mat

* Arm AArch64: minimize changes in ggml_compute_forward_mul_mat

* Arm AArch64: minor code refactoring, and add reference scalar code to quantize routines for new quant types

* Arm AArch64: minor code refactoring

* Arm AArch64: minor code refactoring

* Arm AArch64: minor code refactoring

* rebase on the latest master commit 3fd62a6 and adapt to the new directory structure

* Arm AArch64: remove a redundant comment

* Arm AArch64: add pragma in ggml-aarch64.c to turn -Woverlength-strings warning off

* Arm AArch64: use __aarch64__ check to guard 64-bit neon kernels

* Arm AArch64: update docs/build.md README to include compile time flags for buiilding the Q4_0_4_4 quant type
2024-07-10 15:14:51 +03:00
Georgi Gerganov
f3f65429c4
llama : reorganize source code + improve CMake (#8006)
* scripts : update sync [no ci]

* files : relocate [no ci]

* ci : disable kompute build [no ci]

* cmake : fixes [no ci]

* server : fix mingw build

ggml-ci

* cmake : minor [no ci]

* cmake : link math library [no ci]

* cmake : build normal ggml library (not object library) [no ci]

* cmake : fix kompute build

ggml-ci

* make,cmake : fix LLAMA_CUDA + replace GGML_CDEF_PRIVATE

ggml-ci

* move public backend headers to the public include directory (#8122)

* move public backend headers to the public include directory

* nix test

* spm : fix metal header

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* scripts : fix sync paths [no ci]

* scripts : sync ggml-blas.h [no ci]

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-06-26 18:33:02 +03:00