* gguf-py, llama : add constants and methods related to Llama-3.1 <|eom_id|> token
* llama : find Llama-3.1 <|eom_id|> token id during vocab loading
* llama-vocab : add Llama-3.1 <|eom_id|> token to the set of tokens stopping the generation
---------
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
* Fix Vulkan repeat op
* Implement Vulkan concat op
* Delete old Vulkan shader generator
* Implement Vulkan im2col op
* Implement Vulkan unary gelu_quick op
* Implement Vulkan group_norm op
* Implement Vulkan timestep_embedding op
* Implement Vulkan upscale op
* Fix Vulkan vk_context tensor extra index issue
* Fix Vulkan matmul shader parameter bug
* Properly fix Vulkan matmul shader parameter bug
* Add Vulkan ADD f16 + f32 -> f16 operator support
* Implement Vulkan tanh op
* Fix Vulkan group count too large Validation error on non-Nvidia GPUs
* Throw error when too much memory is requested
* Fix another Vulkan group count too large Validation error on non-Nvidia GPUs
* Fix matmul MMQ condition
* Implement Vulkan pad op
* Fix Vulkan crash when tensor is used multiple times in a compute graph
* Add Vulkan CONCAT f16 + f16 -> f16 op
* Add Vulkan LEAKY_RELU op
This commit moves the comment for the c parameter from ggml_rope to
ggml_rope_ext. The comment is currently incorrect as ggml_rope does not
have a c parameter (freq_factors tensor).
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* [example] batched-bench "segmentation fault"
When `llama-batched-bench` is invoked _without_ setting `-npl`, "number
of parallel prompts", it segfaults.
The segfault is caused by invoking `max_element()` on a zero-length
vector, `n_pl`
This commit addresses that by first checking to see if the number of
parallel prompts is zero, and if so sets the maximum sequence size to 1;
otherwise, sets it to the original, the result of `max_element()`.
Fixes, when running `lldb build/bin/llama-batched-bench -- -m models/Meta-Llama-3-8B.gguf`
```
* thread #1, queue = 'com.apple.main-thread', stop reason = EXC_BAD_ACCESS (code=1, address=0x0)
frame #0: 0x000000010000366c llama-batched-bench`main(argc=3, argv=0x000000016fdff268) at batched-bench.cpp:72:28
69 llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
70
71 // ensure enough sequences are available
-> 72 ctx_params.n_seq_max = *std::max_element(n_pl.begin(), n_pl.end());
```
* Update examples/batched-bench/batched-bench.cpp
Co-authored-by: compilade <git@compilade.net>
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: compilade <git@compilade.net>
* ggml : reading the runtime sve config of the cpu
* change to one time init to prevent performance drop
* prefix variable to avoid possible conflicts
* revert xxhash fix and add brackets
---------
Co-authored-by: domke <673751-domke@users.noreply.gitlab.com>
* add truncate_bf16
* truncate intermediate fp32 if converting bf16 to bf16
* fix masking in __compute_fp32_to_bf16
* np.int16 no longer used
* missing cast and additional numpy 2.x fix
* ggml-impl : do not flush bf16 subnormals to zero
* ggml : add reference fp32 to bf16 conversion
The fast version is no longer equivalent for all platforms
because of the handling of subnormal values.
* gguf-py : remove flush to zero for bf16 subnormals
* gguf-py : remove float32 truncation to bf16
Rounding achieves the same thing in the cases where this was used.
* missed prototype update in merge
* merge cleanup
---------
Co-authored-by: Francis Couture-Harpin <git@compilade.net>
* Adding support for unified memory
* adding again the documentation about unified memory
* refactoring: Moved the unified memory code in the correct location.
* Fixed compilation error when using hipblas
* cleaning up the documentation
* Updating the documentation
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* adding one more case where the PR should not be enabled
---------
Co-authored-by: matteo serva <matteo.serva@gmail.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* Fix potential race condition as pointed out by @fairydreaming in #8776
* Reference the .o rather than rebuilding every time.
* Adding in CXXFLAGS and LDFLAGS
* Removing unnecessary linker flags.
* gguf_writer.py: add_array() should not add to kv store if empty
* Apply suggestions from code review
I was wondering if there was a specific reason for `if val` but good to hear we can safely use `len(val == 0`
Co-authored-by: compilade <git@compilade.net>
---------
Co-authored-by: compilade <git@compilade.net>
In these codes, we want to retain the value that they previously held
when mask[i] is false. So we should use undisturbed. With the default
agnostic policy of rvv intrinsic, these values can be held or be
written with 1s.
Co-authored-by: carter.li <carter.li@starfivetech.com>
* chore: Fix compiler warnings, add help text, improve CLI options
* Add prototypes for function definitions
* Invert logic of --no-clean option to be more intuitive
* Provide a new help prompt with clear instructions
* chore : Add ignore rule for vulkan shader generator
Signed-off-by: teleprint-me <77757836+teleprint-me@users.noreply.github.com>
* Update ggml/src/vulkan-shaders/vulkan-shaders-gen.cpp
Co-authored-by: 0cc4m <picard12@live.de>
* chore : Remove void and apply C++ style empty parameters
* chore : Remove void and apply C++ style empty parameters
---------
Signed-off-by: teleprint-me <77757836+teleprint-me@users.noreply.github.com>
Co-authored-by: 0cc4m <picard12@live.de>
* llama : refactor session file management
* llama : saving and restoring state checks for overflow
The size of the buffers should now be given to the functions working
with them, otherwise a truncated file could cause out of bound reads.
* llama : stream from session file instead of copying into a big buffer
Loading session files should no longer cause a memory usage spike.
* llama : llama_state_get_size returns the actual size instead of max
This is a breaking change, but makes that function *much* easier
to keep up to date, and it also makes it reflect the behavior
of llama_state_seq_get_size.
* llama : share code between whole and seq_id-specific state saving
Both session file types now use a more similar format.
* llama : no longer store all hparams in session files
Instead, the model arch name is stored.
The layer count and the embedding dimensions of the KV cache
are still verified when loading.
Storing all the hparams is not necessary.
* llama : fix uint64_t format type
* llama : various integer type cast and format string fixes
Some platforms use "%lu" and others "%llu" for uint64_t.
Not sure how to handle that, so casting to size_t when displaying errors.
* llama : remove _context suffix for llama_data_context
* llama : fix session file loading
llama_state_get_size cannot be used to get the max size anymore.
* llama : more graceful error handling of invalid session files
* llama : remove LLAMA_MAX_RNG_STATE
It's no longer necessary to limit the size of the RNG state,
because the max size of session files is not estimated anymore.
* llama : cast seq_id in comparison with unsigned n_seq_max