* ggml: Added run-time detection of neon, i8mm and sve
Adds run-time detection of the Arm instructions set features
neon, i8mm and sve for Linux and Apple build targets.
* ggml: Extend feature detection to include non aarch64 Arm arch
* ggml: Move definition of ggml_arm_arch_features to the global data section
* ggml-quants : 1.625 bpw ternary packing for BitNet 1.58b
* ggml-quants : faster 1.625 bpw AVX2 vec_dot
Not using a lookup table anymore makes it match q4_0 speed.
* gguf-py : fix formatting
* llama : remove spaces on empty line
* ggml-quants : subtract 1 when back in epi8
This makes the 1.625 bpw type go faster than q4_0. Still not the fastest.
* ggml-quants : Q2_2 now faster than Q4_K on with AVX2
* ggml-quants : cleanup Q1_3 code formatting
* ggml-quants : ARM NEON vec_dot for q2_2 and q1_3
* ggml-quants : use ceiling division when quantizing q1_3
* convert-hf : simplify BitNet pre-quantization
This still results in the exact same tensor weights and scales,
but it reveals some weirdness in the current algorithm.
* convert-hf : allow converting the weird BitNet 1.3B
Its FFN size is 5460 which is not convenient.
The offending tensors are kept in F16,
which makes the final model 5.01 bpw.
* bitnet : replace 1.58b with b1.58, as in the paper
* ggml-quants : fix build failure on Windows
* ggml-quants : attempt to fix Arm 32-bit support
* ggml : add some informative comments in q1_3 vec_dot
* ggml : add TQ1_0 and TQ2_0 ternary quantization types
* ggml : even faster TQ2_0
* ggml : also faster TQ1_0
Same optimization as for TQ2_0 by offsetting the sum instead of the weights.
This makes TQ1_0 almost as fast as Q8_0 on AVX2.
* ggml : fix build issues in certain environments
* ggml : add NEON vec_dot implementation for TQ1_0 and TQ2_0
* ggml : avoid directly using vmlal_high_s8, for 32-bit ARM compat
The compiler seems smart enough to use the same instruction
even when using vget_high_s8 instead.
* ggml : remove q1_3 and q2_2
No more 1.625 bpw and 2.000 bpw,
now instead using 1.6875 bpw and 2.0625 bpw
with TQ1_0 and TQ2_0, respectively.
* llama : remove the separate scale tensors of BitNet b1.58
They won't be needed, since the remaining ternary quant types have
built-in scales.
* ggml-quants : rename fields of TQ1_0 and TQ2_0 structs for consistency
* ggml-quants : allow using vdotq_s32 in TQ2_0 vec_dot
Not yet tested on hardware which supports it,
might not work or might not even compile. But also it might.
It should make the performance better on recent ARM CPUs.
* ggml-quants : remove comment about possible format change of TQ2_0
Making it slightly more convenient for AVX512
but less convenient for everything else is not worth the trouble.
* gguf-py : Numpy (de)quantization for TQ1_0 and TQ2_0
* ggml-quants : use roundf instead of nearest_int for TQ1_0 and TQ2_0
This does not change anything for ternary models,
since their values should never end up being in halfway cases anyway.
* convert : allow direct conversion to TQ1_0 and TQ2_0
The token embeddings and output tensors are kept in F16
to allow quantizing them to Q4_K and Q6_K with llama-quantize.
* llama : handle fallback for TQ1_0 and TQ2_0 with Q4_0
Q4_0 is not completely symmetric (so not lossless for ternary models),
but it should be good enough.
* ggml-quants : allow using ARM dot product instructions for TQ1_0
* ggml-quants : deduplicate TQ1_0 and TQ2_0 __ARM_FEATURE_DOTPROD support
* ggml : remove unused ggml_mul special case
It would otherwise conflict with the more general
optimization coming with Mamba-2.
* ggml : handle TQ1_0 and TQ2_0 in dequantization-based operators
* test-backend-ops : add TQ1_0 and TQ2_0 comments for later
Not yet adding uncommented, because some backends like SYCL and Metal
do not properly handle unknown types in supports_op for GGML_OP_MUL_MAT.
(and Metal also doesn't handle it with GGML_OP_GET_ROWS)
Support for TQ1_0 and TQ2_0 for other backends than CPU
will be added in follow-up pull requests.
* ggml : reading the runtime sve config of the cpu
* change to one time init to prevent performance drop
* prefix variable to avoid possible conflicts
* revert xxhash fix and add brackets
---------
Co-authored-by: domke <673751-domke@users.noreply.gitlab.com>
In these codes, we want to retain the value that they previously held
when mask[i] is false. So we should use undisturbed. With the default
agnostic policy of rvv intrinsic, these values can be held or be
written with 1s.
Co-authored-by: carter.li <carter.li@starfivetech.com>
Apply a loop tiling technique to the generic path, which provides
performance upside for ISAs with enough registers to take advantage
of it. Also helps the compiler optimize this path.
* Arm AArch64: optimized GEMV and GEMM kernels for q4_0_q8_0, and q8_0_q8_0 quantization
* Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions
* Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions
* Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions
* Arm AArch64: add optimized GEMV and GEMM asm kernels for q4_0_q8_0 quantization and refactor code to address llama.cpp pr#5780 suggestions
* Arm AArch64: add copyright claim only to ggml-aarch64.cpp and ggml-aarch64.h files
* Arm AArch64: minor code refactoring for rebase
* Arm AArch64: minor code refactoring for resolving a build issue with cmake
* Arm AArch64: minor code refactoring to split the Q4_0_AARC64 type into three separate types: Q4_0_4_4, Q4_0_4_8, and Q4_0_8_8
* Arm AArch64: minor code change for resolving a build issue with server-windows
* retrigger checks
* Arm AArch64: minor code changes for rebase
* Arm AArch64: minor changes to skip the pr#7433 vec_dot code for arm cpus with SVE VL not equal to 256 bits
* Arm AArch64: remove stale LLAMA_QKK_64 from CMakeLists.txt and delete build.zig
* Arm AArch64: add reference scalar gemm and gemv, and avoid dynamic memory allocations during quantization for Q4_0_4_4, Q4_0_4_8, and Q4_0_8_8
* Arm AArch64: add multithreaded quantization support for the new types: Q4_0_4_4, Q4_0_4_8, and Q4_0_8_8
* Arm AArch64: minor code refactoring
* Arm AArch64: simplify logic for calling gemm and gemv functions in ggml_compute_forward_mul_mat
* Arm AArch64: minimize changes in ggml_compute_forward_mul_mat
* Arm AArch64: minor code refactoring, and add reference scalar code to quantize routines for new quant types
* Arm AArch64: minor code refactoring
* Arm AArch64: minor code refactoring
* Arm AArch64: minor code refactoring
* rebase on the latest master commit 3fd62a6 and adapt to the new directory structure
* Arm AArch64: remove a redundant comment
* Arm AArch64: add pragma in ggml-aarch64.c to turn -Woverlength-strings warning off
* Arm AArch64: use __aarch64__ check to guard 64-bit neon kernels
* Arm AArch64: update docs/build.md README to include compile time flags for buiilding the Q4_0_4_4 quant type