* server : remove multitask from server_task
* refactor completions handler
* fix embeddings
* use res_ok everywhere
* small change for handle_slots_action
* use unordered_set everywhere
* (try) fix test
* no more "mutable" lambda
* Apply suggestions from code review
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* use deque
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Introduce ggml_compute_threadpool
- OpenMP functional: check
- Vanilla ggml functional: Check
- ggml w/threadpool functional: Check
- OpenMP no regression: No glaring problems
- Vanilla ggml no regression: No glaring problems
- ggml w/threadpool no regression: No glaring problems
* Minor fixes
* fixed use after release bug
* fixed a harmless race condition
* Fix Android bulid issue
* fix more race conditions
* fix deadlock for cases where cgraph.n_nodes == 1
and fix --poll case
* threadpool: use cpu_get_num_math to set the default number of threadpool threads
This way we avoid using E-Cores and Hyperthreaded siblings.
* bench: create fresh threadpool for each test
For benchmarking it's better to start a fresh pool for each test with the exact number of threads
needed for that test. Having larger pools is suboptimal (causes more load, etc).
* atomics: always use stdatomics with clang and use relaxed memory order when polling in ggml_barrier
This also removes sched_yield() calls from ggml_barrier() to match OpenMP behavior.
* threadpool: make polling the default to match openmp behavior
All command line args now allow for setting poll to 0 (false).
* threadpool: do not wakeup threads in already paused threadpool
* fix potential race condition in check_for_work
* threadpool: do not create two threadpools if their params are identical
* threadpool: reduce pause/resume/wakeup overhead in common cases
We now start threadpool in paused state only if we have two.
The resume is now implicit (ie new work) which allows for reduced locking and context-switch overhead.
* threadpool: add support for hybrid polling
poll params (--poll, ...) now specify "polling level", i.e. how aggresively we poll before waiting on cond.var.
poll=0 means no polling, 1 means poll for 128K rounds then wait, 2 for 256K rounds, ...
The default value of 50 (ie 50x128K rounds) seems like a decent default across modern platforms.
We can tune this further as things evolve.
* threadpool: reduce the number of barrier required
New work is now indicated with an atomic counter that is incremented for
each new graph that needs to be computed.
This removes the need for extra barrier for clearing the "new_work" and
removes the special case for trivial graphs.
* threadpool: remove special-casing for disposable threadpools
With the efficient hybrid polling there is no need to make disposable pools any different.
This simplifies the overall logic and reduces branching.
Include n_threads in debug print for disposable threadpool.
Declare pause and stop flags as atomic_bool
This doesn't actually generate any memory barriers and simply informs
the thread sanitizer that these flags can be written & read by different
threads without locking.
* threadpool: do not clear barrier counters between graphs computes (fixes race with small graphs)
This fixes the race condition with very small graphs where the main thread happens to
start a new graph while the workers are just about to exit from barriers.
* threadpool: use relaxed order for chunk sync
Full memory barrier is an overkill for this since each thread works on different chunk
* threadpool: remove abort_callback from threadpool state
* threadpool: better naming for thread/cpumask releated functions
* threadpool: consistent use of int type for n_threads params
* threadpool: add support for ggml_threadpool_params_default/init
Also removes the need for explicit mask_specified param.
all-zero cpumask means use default (usually inherited) cpu affinity mask.
* threadpool: move typedef into ggml.h
* threadpool: fix apply_priority() function name
* threadpool: fix swift wrapper errors due to n_threads int type cleanup
* threadpool: enable --cpu-mask and other threadpool related options only if threadpool is enabled
* threadpool: replace checks for compute_thread ret code with proper status check
* threadpool: simplify threadpool init logic and fix main thread affinity application
Most of the init code is now exactly the same between threadpool and openmp.
* threadpool: update threadpool resume/pause function names
* threadpool: enable openmp by default for now
* threadpool: don't forget to free workers state when omp is enabled
* threadpool: avoid updating process priority on the platforms that do not require it
On Windows we need to change overall process priority class in order to set thread priorities,
but on Linux, Mac, etc we do not need to touch the overall process settings.
* threadpool: update calling thread prio and affinity only at start/resume
This avoids extra syscalls for each graph_compute()
* llama-bench: turn threadpool params into vectors, add output headers, etc
* llama-bench: add support for cool off between tests --delay
This helps for long running tests on platforms that are thermally limited (phones, laptops, etc).
--delay (disabled by default) introduces the sleep for N seconds before starting each test.
* threadpool: move process priority setting into the apps (bench and cli)
This avoids changing the overall process priority on Windows for the apps
that use ggml/llama.cpp directy.
* threadpool: move all pause/resume logic into ggml
* threadpool: futher api cleanup and prep for future refactoring
All threadpool related functions and structs use ggml_threadpool prefix.
* threadpool: minor indent fixes
* threadpool: improve setprioty error message
* Update examples/llama-bench/llama-bench.cpp
Co-authored-by: slaren <slarengh@gmail.com>
* threadpool: fix indent in set_threadpool call
* use int32_t for n_thread type in public llama.cpp API
* threadpool: use _new and _free instead of _create and _release
* fix two more public APIs to use int32_t for n_threads
* build: set _GNU_SOURCE for Adroid
---------
Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com>
Co-authored-by: fmz <quic_fzaghlou@quic.com>
Co-authored-by: Max Krasnyansky <max.krasnyansky@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
* server : refactor middleware and /health endpoint
* move "fail_on_no_slot" to /slots
* Update examples/server/server.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* fix server tests
* fix CI
* update server docs
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* common : Changed tuple to struct (TODO fix)
Use struct `llama_init_result` to replace the previous
std::tuple<struct llama_model *, struct llama_context *>
* delete llama_init_default_params()
* delete the extra whitespace
* server: Retrieve prompt template in /props
This PR adds the following:
- Expose the model's Jinja2 prompt template from the model in the /props endpoint.
- Change log-level from Error to Warning for warning about template mismatch.
The front-end stands a better chance of actually executing the Jinja template format correctly. Server is currently just guessing it.
Ideally this should have been inside a JSON block that expose the same key/value pairs as listed during startup in "llm_load_print_meta" function.
* Make string buffer dynamic
* Add doc and better string handling
* Using chat_template naming convention
* Use intermediate vector for string assignment
* server : Smart selection of available slot using Longest Common Substring
* add usage
* remove trailing whitespaces
* Use Longest Common Prefix (LCP) instead of LCS
* Rename argument
* avoid to get prompt in infill mode and embedding mode
* remove embedding mode
* refactor format
---------
Co-authored-by: wudexiang <wudexiang@bytedance.com>
* common : gpt_params_parse do not print usage
* common : rework usage print (wip)
* common : valign
* common : rework print_usage
* infill : remove cfg support
* common : reorder args
* server : deduplicate parameters
ggml-ci
* common : add missing header
ggml-ci
* common : remote --random-prompt usages
ggml-ci
* examples : migrate to gpt_params
ggml-ci
* batched-bench : migrate to gpt_params
* retrieval : migrate to gpt_params
* common : change defaults for escape and n_ctx
* common : remove chatml and instruct params
ggml-ci
* common : passkey use gpt_params
* ic
* migrate my eary work
* add the belonging stuff: css,favicon etc
* de prompts
* chore: Update HTML meta tags in index.html file
* add api-key css classes
* some necessary fixes
* Add API key CSS classes and update styling in style.css
* clean the code
* move API to the top, rearrange param sliders. update css
* add tooltips to the parameters with comprehensible explanations
* fix FloatField and BoolField tooltips
* fix grammar field width
* use template literales for promptFormats.js
* update const ModelGenerationInfo
* remove ms per token, since not relevant for most webui users and use cases
* add phi-3 prompt template
* add phi3 to dropdown
* add css class
* update forgotten css theme
* add user message suffix
* fix chatml & add llama3 format
* fix llama3 prompt template
* more prompt format fixes
* add more comon stop tokens
* add missing char
* do not separate with new line or comma
* move prompt style
* add hacky llama2 prompt solution, reduce redundancy in promptFormats.js
* fix toggle state localstorage
* add cmd-r prompt et reduce redundancy
* set default prompt to empty
* move files, clean code
* fix css path
* add a button to the new ui
* move new ui to "/public" due to otherwise problematic CORS behaviour
* include new ui in cpp
* fix wrong link to old ui
* renaming to ensure consistency
* fix typos "prompt-format" -> "prompt-formats"
* use correct indent
* add new ui files to makefile
* fix typo
* [server] Cleanup a memory leak on exit
There are a couple memory leaks on exit of the server. This hides others.
After cleaning this up, you can see leaks on slots. But that is another
patch to be sent after this.
* make tab into spaces
This will reproduce the issue in llama13b
{
'prompt': 'Q: hello world \nA: ',
'stop': ['\n'],
'temperature': 0.0,
'n_predict': 10,
'cache_prompt': True,
'n_probs': 10
}
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
* imatrix: save the dataset file used in the output file
* llama: support kv overrides type string string
* common: factorize KV Overrides parsing between common and server
* quantize: add imatrix n entries and dataset KV metadata
quantize: factorize KV Overrides parsing between common
#6656
* llama: remove kv override str_value initialization as it does not compile on some toolchain
* quantize: add imatrix m_last_call as `quantize.imatrix.chunks_count`
* quantize: add imatrix filename in KV
* llama: add llama_model_kv_override_free
* common: add llama_model_kv_override_free
common: free kv override if used after model loading
* llama: finally move the string KV override value to the stack
* llama : minor
* no need to add a NUL to the std::vector, std::string can be initialized from a pair of iterators.
Co-authored-by: slaren <slarengh@gmail.com>
* kv override: ensure string termination
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
* server: cap n_predict if not set to n_ctx_train
* server: fix infinite loop
* server: infinite loop, move in process_token
server: infinite loop: set stop limit to true
* minor: spaces
* minor: spaces
* server: include prompt tokens in the EOS limit
* fix: revert showing control tokens by default
* feat: revert changes to default behavior of llama_token_to_piece; provide overridden declaration to receive "bool special" param to toggle showing control tokens
* feat: use the overridden declaration of llama_token_to_piece from common/common.cpp to specify "false" so that control tokens are not shown in chat completion responses"
* common : simplify
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Support Llama 3 conversion
The tokenizer is BPE.
* style
* Accept suggestion
Co-authored-by: Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com>
* llama : add llama_token_is_eog()
ggml-ci
* llama : auto-detect more EOT tokens when missing in KV data
* convert : replacing EOS token is a hack
* llama : fix codegemma EOT token + add TODOs
* llama : fix model type string for 8B model
---------
Co-authored-by: Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>