Compare commits

...

19 Commits

Author SHA1 Message Date
Georgi Gerganov
6224e6d4f8
Merge bb0b2c4f56 into 32d6ee6385 2024-12-23 21:25:54 +02:00
Georgi Gerganov
bb0b2c4f56
llama : context
ggml-ci
2024-12-23 21:05:54 +02:00
Georgi Gerganov
0ccae21e6b
cont
ggml-ci
2024-12-23 19:22:24 +02:00
Georgi Gerganov
7035c79fb5
llama : batch
ggml-ci
2024-12-23 18:43:42 +02:00
Georgi Gerganov
a7df0714db
llama : impl
ggml-ci
2024-12-23 17:42:12 +02:00
Georgi Gerganov
b0d6b66b7d
llama : kv cache
ggml-ci
2024-12-23 15:43:16 +02:00
Georgi Gerganov
6eaea63e36
minor 2024-12-23 13:28:56 +02:00
Georgi Gerganov
de014bc339
rebase
Some checks failed
Python check requirements.txt / check-requirements (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
ggml-ci
2024-12-23 11:52:36 +02:00
Georgi Gerganov
e42839382e
examples : fix
ggml-ci
2024-12-23 11:46:51 +02:00
Georgi Gerganov
963fb4d26f
llama : adapter
ggml-ci
2024-12-23 11:46:51 +02:00
Georgi Gerganov
0969970a48
llama : hparams
ggml-ci
2024-12-23 11:46:51 +02:00
Georgi Gerganov
ac62ce0236
llama : model
ggml-ci
2024-12-23 11:46:51 +02:00
Georgi Gerganov
29fd7b56d0
llama : chat
ggml-ci
2024-12-23 11:46:49 +02:00
Georgi Gerganov
c8669a0e55
llama : arch (cont)
ggml-ci
2024-12-23 11:46:39 +02:00
Georgi Gerganov
52063f737d
ci : remove BUILD_SHARED_LIBS=OFF
ggml-ci
2024-12-23 11:46:39 +02:00
Georgi Gerganov
7eb858aab4
llama : mmap
ggml-ci
2024-12-23 11:46:39 +02:00
Georgi Gerganov
4c5b321042
llama : arch 2024-12-23 11:46:39 +02:00
Georgi Gerganov
7b5b594526
llama : control-vector -> adapter 2024-12-23 11:46:38 +02:00
Georgi Gerganov
f9b0e3b382
llama : scatter llama.cpp into multiple modules (wip) 2024-12-23 11:46:37 +02:00
55 changed files with 7798 additions and 7369 deletions

View File

@ -60,8 +60,7 @@ jobs:
-DLLAMA_CURL=ON \ -DLLAMA_CURL=ON \
-DGGML_METAL_USE_BF16=ON \ -DGGML_METAL_USE_BF16=ON \
-DGGML_METAL_EMBED_LIBRARY=ON \ -DGGML_METAL_EMBED_LIBRARY=ON \
-DGGML_RPC=ON \ -DGGML_RPC=ON
-DBUILD_SHARED_LIBS=OFF
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu) cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
- name: Test - name: Test
@ -123,8 +122,7 @@ jobs:
-DLLAMA_FATAL_WARNINGS=ON \ -DLLAMA_FATAL_WARNINGS=ON \
-DLLAMA_CURL=ON \ -DLLAMA_CURL=ON \
-DGGML_METAL=OFF \ -DGGML_METAL=OFF \
-DGGML_RPC=ON \ -DGGML_RPC=ON
-DBUILD_SHARED_LIBS=OFF
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu) cmake --build build --config Release -j $(sysctl -n hw.logicalcpu)
- name: Test - name: Test
@ -181,7 +179,7 @@ jobs:
run: | run: |
mkdir build mkdir build
cd build cd build
cmake .. -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF cmake .. -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=ON -DGGML_RPC=ON
cmake --build . --config Release -j $(nproc) cmake --build . --config Release -j $(nproc)
- name: Test - name: Test
@ -651,23 +649,23 @@ jobs:
matrix: matrix:
include: include:
- build: 'noavx-x64' - build: 'noavx-x64'
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_AVX=OFF -DGGML_AVX2=OFF -DGGML_FMA=OFF -DBUILD_SHARED_LIBS=ON' defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_AVX=OFF -DGGML_AVX2=OFF -DGGML_FMA=OFF'
- build: 'avx2-x64' - build: 'avx2-x64'
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=ON' defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON'
- build: 'avx-x64' - build: 'avx-x64'
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_AVX2=OFF -DBUILD_SHARED_LIBS=ON' defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_AVX2=OFF'
- build: 'avx512-x64' - build: 'avx512-x64'
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_AVX512=ON -DBUILD_SHARED_LIBS=ON' defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_AVX512=ON'
- build: 'openblas-x64' - build: 'openblas-x64'
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BLAS=ON -DBUILD_SHARED_LIBS=ON -DGGML_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"' defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
- build: 'kompute-x64' - build: 'kompute-x64'
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_KOMPUTE=ON -DKOMPUTE_OPT_DISABLE_VULKAN_VERSION_CHECK=ON -DBUILD_SHARED_LIBS=ON' defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_KOMPUTE=ON -DKOMPUTE_OPT_DISABLE_VULKAN_VERSION_CHECK=ON'
- build: 'vulkan-x64' - build: 'vulkan-x64'
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_VULKAN=ON -DBUILD_SHARED_LIBS=ON' defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_VULKAN=ON'
- build: 'llvm-arm64' - build: 'llvm-arm64'
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON' defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON'
- build: 'msvc-arm64' - build: 'msvc-arm64'
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-msvc.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON' defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-msvc.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=O'
- build: 'llvm-arm64-opencl-adreno' - build: 'llvm-arm64-opencl-adreno'
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON' defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON'
@ -914,7 +912,7 @@ jobs:
shell: cmd shell: cmd
run: | run: |
call "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\VC\Auxiliary\Build\vcvars64.bat" call "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\VC\Auxiliary\Build\vcvars64.bat"
cmake -S . -B build -G "Ninja Multi-Config" -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_CUDA=ON -DBUILD_SHARED_LIBS=ON -DGGML_RPC=ON cmake -S . -B build -G "Ninja Multi-Config" -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_CUDA=ON -DGGML_RPC=ON
set /A NINJA_JOBS=%NUMBER_OF_PROCESSORS%-1 set /A NINJA_JOBS=%NUMBER_OF_PROCESSORS%-1
cmake --build build --config Release -j %NINJA_JOBS% -t ggml cmake --build build --config Release -j %NINJA_JOBS% -t ggml
cmake --build build --config Release cmake --build build --config Release

View File

@ -922,14 +922,14 @@ struct common_init_result common_init_from_params(common_params & params) {
common_lora_adapter_container loaded_la; common_lora_adapter_container loaded_la;
loaded_la.path = la.path; loaded_la.path = la.path;
loaded_la.scale = la.scale; loaded_la.scale = la.scale;
loaded_la.adapter = llama_lora_adapter_init(model, la.path.c_str()); loaded_la.adapter.reset(llama_lora_adapter_init(model, la.path.c_str()));
if (loaded_la.adapter == nullptr) { if (loaded_la.adapter == nullptr) {
LOG_ERR("%s: failed to apply lora adapter '%s'\n", __func__, la.path.c_str()); LOG_ERR("%s: failed to apply lora adapter '%s'\n", __func__, la.path.c_str());
llama_free(lctx); llama_free(lctx);
llama_free_model(model); llama_free_model(model);
return iparams; return iparams;
} }
iparams.lora_adapters.push_back(loaded_la); // copy to list of loaded adapters iparams.lora_adapters.emplace_back(std::move(loaded_la)); // copy to list of loaded adapters
} }
if (!params.lora_init_without_apply) { if (!params.lora_init_without_apply) {
common_lora_adapters_apply(lctx, iparams.lora_adapters); common_lora_adapters_apply(lctx, iparams.lora_adapters);
@ -993,8 +993,8 @@ struct common_init_result common_init_from_params(common_params & params) {
llama_perf_context_reset(lctx); llama_perf_context_reset(lctx);
} }
iparams.model = model; iparams.model.reset(model);
iparams.context = lctx; iparams.context.reset(lctx);
return iparams; return iparams;
} }
@ -1003,7 +1003,7 @@ void common_lora_adapters_apply(struct llama_context * ctx, std::vector<common_l
llama_lora_adapter_clear(ctx); llama_lora_adapter_clear(ctx);
for (auto & la : lora_adapters) { for (auto & la : lora_adapters) {
if (la.scale != 0.0f) { if (la.scale != 0.0f) {
llama_lora_adapter_set(ctx, la.adapter, la.scale); llama_lora_adapter_set(ctx, la.adapter.get(), la.scale);
} }
} }
} }

View File

@ -2,7 +2,7 @@
#pragma once #pragma once
#include "llama.h" #include "llama-cpp.h"
#include <string> #include <string>
#include <vector> #include <vector>
@ -30,7 +30,7 @@ struct common_lora_adapter_info {
}; };
struct common_lora_adapter_container : common_lora_adapter_info { struct common_lora_adapter_container : common_lora_adapter_info {
struct llama_lora_adapter * adapter; llama_lora_adapter_ptr adapter;
}; };
using llama_tokens = std::vector<llama_token>; using llama_tokens = std::vector<llama_token>;
@ -479,8 +479,9 @@ std::string fs_get_cache_file(const std::string & filename);
// //
struct common_init_result { struct common_init_result {
struct llama_model * model = nullptr; llama_model_ptr model;
struct llama_context * context = nullptr; llama_context_ptr context;
std::vector<common_lora_adapter_container> lora_adapters; std::vector<common_lora_adapter_container> lora_adapters;
}; };
@ -637,6 +638,10 @@ common_control_vector_data common_control_vector_load(const std::vector<common_c
// Split utils // Split utils
// //
static const char * const LLM_KV_SPLIT_NO = "split.no"; namespace {
static const char * const LLM_KV_SPLIT_COUNT = "split.count";
static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count"; const char * const LLM_KV_SPLIT_NO = "split.no";
const char * const LLM_KV_SPLIT_COUNT = "split.count";
const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
}

View File

@ -434,12 +434,12 @@ static void print_matrix(struct ggml_tensor * probs) {
} }
} }
struct llama_file { struct my_llama_file {
// use FILE * so we don't have to re-open the file to mmap // use FILE * so we don't have to re-open the file to mmap
FILE * fp; FILE * fp;
size_t size; size_t size;
llama_file(const char * fname, const char * mode) { my_llama_file(const char * fname, const char * mode) {
fp = std::fopen(fname, mode); fp = std::fopen(fname, mode);
if (fp == NULL) { if (fp == NULL) {
size = 0; size = 0;
@ -500,7 +500,7 @@ struct llama_file {
return std::string(chars.data(), len); return std::string(chars.data(), len);
} }
~llama_file() { ~my_llama_file() {
if (fp) { if (fp) {
std::fclose(fp); std::fclose(fp);
} }
@ -508,7 +508,7 @@ struct llama_file {
}; };
static bool is_ggml_file(const char * filename) { static bool is_ggml_file(const char * filename) {
llama_file file(filename, "rb"); my_llama_file file(filename, "rb");
if (file.size < 4) { if (file.size < 4) {
return false; return false;
} }
@ -576,7 +576,7 @@ static void load_vocab(const char * filename, const Config * config, struct my_l
} else { } else {
// assume llama2.c vocabulary // assume llama2.c vocabulary
LOG_INF("%s: Assuming llama2.c vocabulary since %s is not a gguf file\n", __func__, filename); LOG_INF("%s: Assuming llama2.c vocabulary since %s is not a gguf file\n", __func__, filename);
llama_file file(filename, "rb"); my_llama_file file(filename, "rb");
if (!file.fp) { if (!file.fp) {
die_fmt("%s: %s", strerror(errno), filename); die_fmt("%s: %s", strerror(errno), filename);
} }

View File

@ -415,12 +415,13 @@ int main(int argc, char ** argv) {
// load the model to get hparams // load the model to get hparams
common_init_result llama_init = common_init_from_params(params); common_init_result llama_init = common_init_from_params(params);
llama_model * model = llama_init.model; llama_model * model = llama_init.model.get();
llama_context * ctx = llama_init.context; llama_context * ctx = llama_init.context.get();
// int n_ctx = llama_n_ctx(ctx); // int n_ctx = llama_n_ctx(ctx);
int n_layers = llama_n_layer(model); int n_layers = llama_n_layer(model);
int n_embd = llama_n_embd(model); int n_embd = llama_n_embd(model);
// get model hint param (a.k.a model arch name) // get model hint param (a.k.a model arch name)
char model_hint[128]; char model_hint[128];
llama_model_meta_val_str(model, "general.architecture", model_hint, 128); llama_model_meta_val_str(model, "general.architecture", model_hint, 128);
@ -474,8 +475,6 @@ int main(int argc, char ** argv) {
// done with the model, we can now free it to make gain some memory // done with the model, we can now free it to make gain some memory
printf("Done evaluate prompts, unload model...\n"); printf("Done evaluate prompts, unload model...\n");
llama_free(ctx);
llama_free_model(model);
bool use_pca = params.cvector_dimre_method == DIMRE_METHOD_PCA; bool use_pca = params.cvector_dimre_method == DIMRE_METHOD_PCA;

View File

@ -97,8 +97,9 @@ int main(int argc, char ** argv) {
// load the model // load the model
common_init_result llama_init = common_init_from_params(params); common_init_result llama_init = common_init_from_params(params);
llama_model * model = llama_init.model; llama_model * model = llama_init.model.get();
llama_context * ctx = llama_init.context; llama_context * ctx = llama_init.context.get();
if (model == NULL) { if (model == NULL) {
LOG_ERR("%s: unable to load model\n", __func__); LOG_ERR("%s: unable to load model\n", __func__);
return 1; return 1;
@ -316,8 +317,6 @@ int main(int argc, char ** argv) {
// clean up // clean up
llama_batch_free(batch); llama_batch_free(batch);
llama_free(ctx);
llama_free_model(model);
llama_backend_free(); llama_backend_free();
return 0; return 0;

View File

@ -162,8 +162,9 @@ int main(int argc, char ** argv) {
// init // init
common_init_result llama_init = common_init_from_params(params); common_init_result llama_init = common_init_from_params(params);
llama_model * model = llama_init.model; llama_model * model = llama_init.model.get();
llama_context * ctx = llama_init.context; llama_context * ctx = llama_init.context.get();
if (model == nullptr || ctx == nullptr) { if (model == nullptr || ctx == nullptr) {
LOG_ERR("%s : failed to init\n", __func__); LOG_ERR("%s : failed to init\n", __func__);
return 1; return 1;
@ -184,9 +185,6 @@ int main(int argc, char ** argv) {
LOG("\n"); LOG("\n");
llama_perf_context_print(ctx); llama_perf_context_print(ctx);
llama_free(ctx);
llama_free_model(model);
llama_backend_free(); llama_backend_free();
return 0; return 0;

View File

@ -2,15 +2,14 @@
#include "common.h" #include "common.h"
#include <algorithm> #include <algorithm>
#include <cmath>
#include <cstdlib> #include <cstdlib>
#include <fstream> #include <fstream>
#include <string> #include <string>
#include <vector> #include <vector>
#include <stdio.h>
#include <string.h>
#include <climits> #include <climits>
#include <cstdio>
#include <cstring>
#include <stdexcept> #include <stdexcept>
#if defined(_WIN32) #if defined(_WIN32)

View File

@ -430,9 +430,10 @@ static void process_logits(
static bool compute_imatrix(llama_context * ctx, const common_params & params) { static bool compute_imatrix(llama_context * ctx, const common_params & params) {
const bool add_bos = llama_add_bos_token(llama_get_model(ctx)); const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
const int n_ctx = llama_n_ctx(ctx); const int n_ctx = llama_n_ctx(ctx);
GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
auto tim1 = std::chrono::high_resolution_clock::now(); auto tim1 = std::chrono::high_resolution_clock::now();
LOG_INF("%s: tokenizing the input ..\n", __func__); LOG_INF("%s: tokenizing the input ..\n", __func__);
@ -618,8 +619,9 @@ int main(int argc, char ** argv) {
// init // init
common_init_result llama_init = common_init_from_params(params); common_init_result llama_init = common_init_from_params(params);
llama_model * model = llama_init.model; llama_model * model = llama_init.model.get();
llama_context * ctx = llama_init.context; llama_context * ctx = llama_init.context.get();
if (model == nullptr || ctx == nullptr) { if (model == nullptr || ctx == nullptr) {
LOG_ERR("%s : failed to init\n", __func__); LOG_ERR("%s : failed to init\n", __func__);
return 1; return 1;
@ -655,9 +657,6 @@ int main(int argc, char ** argv) {
LOG("\n"); LOG("\n");
llama_perf_context_print(ctx); llama_perf_context_print(ctx);
llama_free(ctx);
llama_free_model(model);
llama_backend_free(); llama_backend_free();
return 0; return 0;

View File

@ -131,8 +131,8 @@ int main(int argc, char ** argv) {
LOG_INF("%s: load the model and apply lora adapter, if any\n", __func__); LOG_INF("%s: load the model and apply lora adapter, if any\n", __func__);
common_init_result llama_init = common_init_from_params(params); common_init_result llama_init = common_init_from_params(params);
model = llama_init.model; model = llama_init.model.get();
ctx = llama_init.context; ctx = llama_init.context.get();
if (model == NULL) { if (model == NULL) {
LOG_ERR("%s: unable to load model\n", __func__); LOG_ERR("%s: unable to load model\n", __func__);
@ -581,9 +581,6 @@ int main(int argc, char ** argv) {
LOG("\n"); LOG("\n");
common_perf_print(ctx, smpl); common_perf_print(ctx, smpl);
llama_free(ctx);
llama_free_model(model);
common_sampler_free(smpl); common_sampler_free(smpl);
llama_backend_free(); llama_backend_free();

View File

@ -58,8 +58,8 @@ int main(int argc, char ** argv) {
// load the target model // load the target model
common_init_result llama_init = common_init_from_params(params); common_init_result llama_init = common_init_from_params(params);
llama_model * model = llama_init.model; llama_model * model = llama_init.model.get();
llama_context * ctx = llama_init.context; llama_context * ctx = llama_init.context.get();
// Tokenize the prompt // Tokenize the prompt
std::vector<llama_token> inp; std::vector<llama_token> inp;
@ -474,9 +474,6 @@ int main(int argc, char ** argv) {
llama_batch_free(batch); llama_batch_free(batch);
llama_free(ctx);
llama_free_model(model);
llama_backend_free(); llama_backend_free();
LOG("\n\n"); LOG("\n\n");

View File

@ -1,14 +1,9 @@
#include "arg.h" #include "arg.h"
#include "common.h" #include "common.h"
#include "ngram-cache.h" #include "ngram-cache.h"
#include "ggml.h"
#include "llama.h" #include "llama.h"
#include <cstdint>
#include <fstream>
#include <iostream>
#include <string> #include <string>
#include <unordered_map>
#include <vector> #include <vector>
int main(int argc, char ** argv){ int main(int argc, char ** argv){
@ -25,16 +20,16 @@ int main(int argc, char ** argv){
// load the model // load the model
common_init_result llama_init = common_init_from_params(params); common_init_result llama_init = common_init_from_params(params);
llama_model * model = llama_init.model; llama_model_ptr & model = llama_init.model;
llama_context * ctx = llama_init.context; llama_context_ptr & ctx = llama_init.context;
GGML_ASSERT(model != nullptr); GGML_ASSERT(model != nullptr);
// tokenize the prompt // tokenize the prompt
std::vector<llama_token> inp; std::vector<llama_token> inp;
inp = common_tokenize(ctx, params.prompt, true, true); inp = common_tokenize(ctx.get(), params.prompt, true, true);
fprintf(stderr, "%s: tokenization done\n", __func__); fprintf(stderr, "%s: tokenization done\n", __func__);
common_ngram_cache ngram_cache; common_ngram_cache ngram_cache;
common_ngram_cache_update(ngram_cache, LLAMA_NGRAM_STATIC, LLAMA_NGRAM_STATIC, inp, inp.size(), true); common_ngram_cache_update(ngram_cache, LLAMA_NGRAM_STATIC, LLAMA_NGRAM_STATIC, inp, inp.size(), true);
fprintf(stderr, "%s: hashing done, writing file to %s\n", __func__, params.lookup_cache_static.c_str()); fprintf(stderr, "%s: hashing done, writing file to %s\n", __func__, params.lookup_cache_static.c_str());

View File

@ -30,12 +30,11 @@ int main(int argc, char ** argv){
// load the model // load the model
common_init_result llama_init = common_init_from_params(params); common_init_result llama_init = common_init_from_params(params);
llama_model * model = llama_init.model; llama_context_ptr & ctx = llama_init.context;
llama_context * ctx = llama_init.context;
// tokenize the prompt // tokenize the prompt
std::vector<llama_token> inp; std::vector<llama_token> inp;
inp = common_tokenize(ctx, params.prompt, true, true); inp = common_tokenize(ctx.get(), params.prompt, true, true);
common_ngram_cache ngram_cache_context; common_ngram_cache ngram_cache_context;
common_ngram_cache ngram_cache_dynamic; common_ngram_cache ngram_cache_dynamic;
@ -66,7 +65,7 @@ int main(int argc, char ** argv){
} }
const int n_input = inp.size(); const int n_input = inp.size();
const int n_ctx = llama_n_ctx(ctx); const int n_ctx = llama_n_ctx(ctx.get());
int n_drafted = 0; int n_drafted = 0;
int n_accept = 0; int n_accept = 0;
@ -150,9 +149,6 @@ int main(int argc, char ** argv){
LOG_INF("n_accept = %d\n", n_accept); LOG_INF("n_accept = %d\n", n_accept);
LOG_INF("accept = %.3f%%\n", 100.0f * n_accept / n_drafted); LOG_INF("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
llama_free(ctx);
llama_free_model(model);
llama_backend_free(); llama_backend_free();
LOG("\n\n"); LOG("\n\n");

View File

@ -33,8 +33,8 @@ int main(int argc, char ** argv){
// load the model // load the model
common_init_result llama_init = common_init_from_params(params); common_init_result llama_init = common_init_from_params(params);
llama_model * model = llama_init.model; llama_model * model = llama_init.model.get();
llama_context * ctx = llama_init.context; llama_context * ctx = llama_init.context.get();
// tokenize the prompt // tokenize the prompt
std::vector<llama_token> inp; std::vector<llama_token> inp;
@ -243,9 +243,6 @@ int main(int argc, char ** argv){
llama_batch_free(batch_tgt); llama_batch_free(batch_tgt);
llama_free(ctx);
llama_free_model(model);
llama_backend_free(); llama_backend_free();
LOG("\n\n"); LOG("\n\n");

View File

@ -145,18 +145,18 @@ int main(int argc, char ** argv) {
llama_context * ctx = nullptr; llama_context * ctx = nullptr;
common_sampler * smpl = nullptr; common_sampler * smpl = nullptr;
std::vector<common_chat_msg> chat_msgs;
g_model = &model; g_model = &model;
g_ctx = &ctx; g_ctx = &ctx;
g_smpl = &smpl; g_smpl = &smpl;
std::vector<common_chat_msg> chat_msgs;
// load the model and apply lora adapter, if any // load the model and apply lora adapter, if any
LOG_INF("%s: load the model and apply lora adapter, if any\n", __func__); LOG_INF("%s: load the model and apply lora adapter, if any\n", __func__);
common_init_result llama_init = common_init_from_params(params); common_init_result llama_init = common_init_from_params(params);
model = llama_init.model; model = llama_init.model.get();
ctx = llama_init.context; ctx = llama_init.context.get();
if (model == NULL) { if (model == NULL) {
LOG_ERR("%s: error: unable to load model\n", __func__); LOG_ERR("%s: error: unable to load model\n", __func__);
@ -889,9 +889,6 @@ int main(int argc, char ** argv) {
common_sampler_free(smpl); common_sampler_free(smpl);
llama_free(ctx);
llama_free_model(model);
llama_backend_free(); llama_backend_free();
ggml_threadpool_free_fn(threadpool); ggml_threadpool_free_fn(threadpool);

View File

@ -132,8 +132,8 @@ int main(int argc, char ** argv) {
// load the target model // load the target model
common_init_result llama_init = common_init_from_params(params); common_init_result llama_init = common_init_from_params(params);
llama_model * model = llama_init.model; llama_model * model = llama_init.model.get();
llama_context * ctx = llama_init.context; llama_context * ctx = llama_init.context.get();
// load the prompts from an external file if there are any // load the prompts from an external file if there are any
if (params.prompt.empty()) { if (params.prompt.empty()) {
@ -416,9 +416,6 @@ int main(int argc, char ** argv) {
llama_batch_free(batch); llama_batch_free(batch);
llama_free(ctx);
llama_free_model(model);
llama_backend_free(); llama_backend_free();
LOG("\n\n"); LOG("\n\n");

View File

@ -1987,8 +1987,9 @@ int main(int argc, char ** argv) {
// load the model and apply lora adapter, if any // load the model and apply lora adapter, if any
common_init_result llama_init = common_init_from_params(params); common_init_result llama_init = common_init_from_params(params);
llama_model * model = llama_init.model; llama_model * model = llama_init.model.get();
llama_context * ctx = llama_init.context; llama_context * ctx = llama_init.context.get();
if (model == NULL) { if (model == NULL) {
LOG_ERR("%s: unable to load model\n", __func__); LOG_ERR("%s: unable to load model\n", __func__);
return 1; return 1;
@ -2023,9 +2024,6 @@ int main(int argc, char ** argv) {
LOG("\n"); LOG("\n");
llama_perf_context_print(ctx); llama_perf_context_print(ctx);
llama_free(ctx);
llama_free_model(model);
llama_backend_free(); llama_backend_free();
return 0; return 0;

View File

@ -1,7 +1,7 @@
#include "common.h"
#include "ggml.h" #include "ggml.h"
#include "llama.h" #include "llama.h"
#include "llama-impl.h" #include "llama-context.h"
#include "common.h"
#include <algorithm> #include <algorithm>
#include <cassert> #include <cassert>
@ -9,11 +9,9 @@
#include <cmath> #include <cmath>
#include <cstdio> #include <cstdio>
#include <cstring> #include <cstring>
#include <map>
#include <numeric> #include <numeric>
#include <regex> #include <regex>
#include <string> #include <string>
#include <unordered_map>
#include <vector> #include <vector>
#include <thread> #include <thread>
#include <mutex> #include <mutex>
@ -330,13 +328,13 @@ int main(int argc, char ** argv) {
} }
} }
const auto &tensors = llama_internal_get_tensor_map(ctx); const auto & tensors = llama_internal_get_tensor_map(ctx);
// check layer tensors // check layer tensors
int included_layers = 0; int included_layers = 0;
int64_t max_nelements = 0; int64_t max_nelements = 0;
bool is_f16 = false; bool is_f16 = false;
for (const auto& kv_tensor : tensors) { for (const auto & kv_tensor : tensors) {
if (!layer_included(params, kv_tensor.first)) { if (!layer_included(params, kv_tensor.first)) {
continue; continue;
} }
@ -371,8 +369,8 @@ int main(int argc, char ** argv) {
if (!params.include_types.empty() && std::find(params.include_types.begin(), params.include_types.end(), i) == params.include_types.end()) { if (!params.include_types.empty() && std::find(params.include_types.begin(), params.include_types.end(), i) == params.include_types.end()) {
continue; continue;
} }
const auto * qfns = ggml_get_type_traits(type); const auto * qfns = ggml_get_type_traits(type);
const auto * qfns_cpu = ggml_get_type_traits_cpu(type); const auto * qfns_cpu = ggml_get_type_traits_cpu(type);
if (qfns_cpu->from_float && qfns->to_float) { if (qfns_cpu->from_float && qfns->to_float) {
if (params.verbose) { if (params.verbose) {
printf("testing %s ...\n", ggml_type_name(type)); printf("testing %s ...\n", ggml_type_name(type));
@ -382,7 +380,7 @@ int main(int argc, char ** argv) {
error_stats global_stats {}; error_stats global_stats {};
for (const auto& kv_tensor : tensors) { for (const auto & kv_tensor : tensors) {
if (!layer_included(params, kv_tensor.first)) { if (!layer_included(params, kv_tensor.first)) {
continue; continue;
} }

View File

@ -151,8 +151,8 @@ int main(int argc, char ** argv) {
// load the model // load the model
common_init_result llama_init = common_init_from_params(params); common_init_result llama_init = common_init_from_params(params);
llama_model * model = llama_init.model; llama_model * model = llama_init.model.get();
llama_context * ctx = llama_init.context; llama_context * ctx = llama_init.context.get();
if (model == NULL) { if (model == NULL) {
LOG_ERR("%s: unable to load model\n", __func__); LOG_ERR("%s: unable to load model\n", __func__);
@ -298,7 +298,5 @@ int main(int argc, char ** argv) {
// clean up // clean up
llama_batch_free(query_batch); llama_batch_free(query_batch);
llama_free(ctx);
llama_free_model(model);
llama_backend_free(); llama_backend_free();
} }

View File

@ -30,8 +30,8 @@ int main(int argc, char ** argv) {
// init // init
common_init_result llama_init = common_init_from_params(params); common_init_result llama_init = common_init_from_params(params);
llama_model * model = llama_init.model; llama_model * model = llama_init.model.get();
llama_context * ctx = llama_init.context; llama_context * ctx = llama_init.context.get();
if (model == nullptr || ctx == nullptr) { if (model == nullptr || ctx == nullptr) {
fprintf(stderr, "%s : failed to init\n", __func__); fprintf(stderr, "%s : failed to init\n", __func__);
@ -89,8 +89,6 @@ int main(int argc, char ** argv) {
if (llama_decode(ctx, batch)) { if (llama_decode(ctx, batch)) {
fprintf(stderr, "\n%s : failed to evaluate\n", __func__); fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
llama_batch_free(batch); llama_batch_free(batch);
llama_free(ctx);
llama_free_model(model);
return 1; return 1;
} }
n_past += 1; n_past += 1;
@ -98,11 +96,8 @@ int main(int argc, char ** argv) {
printf("\n\n"); printf("\n\n");
// free old context
llama_free(ctx);
// make new context // make new context
auto * ctx2 = llama_new_context_with_model(model, common_context_params_to_llama(params)); llama_context * ctx2 = llama_new_context_with_model(model, common_context_params_to_llama(params));
llama_sampler * smpl2 = llama_sampler_chain_init(sparams); llama_sampler * smpl2 = llama_sampler_chain_init(sparams);
@ -123,8 +118,6 @@ int main(int argc, char ** argv) {
if (read != llama_state_set_data(ctx2, state_mem.data(), state_mem.size())) { if (read != llama_state_set_data(ctx2, state_mem.data(), state_mem.size())) {
fprintf(stderr, "\n%s : failed to read state\n", __func__); fprintf(stderr, "\n%s : failed to read state\n", __func__);
llama_free(ctx2);
llama_free_model(model);
return 1; return 1;
} }
@ -148,8 +141,6 @@ int main(int argc, char ** argv) {
if (llama_decode(ctx2, batch)) { if (llama_decode(ctx2, batch)) {
fprintf(stderr, "\n%s : failed to evaluate\n", __func__); fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
llama_batch_free(batch); llama_batch_free(batch);
llama_free(ctx2);
llama_free_model(model);
return 1; return 1;
} }
n_past += 1; n_past += 1;
@ -157,15 +148,13 @@ int main(int argc, char ** argv) {
printf("\n\n"); printf("\n\n");
llama_free(ctx2);
if (result0 != result1) { if (result0 != result1) {
fprintf(stderr, "\n%s : error : the 2 generations are different\n", __func__); fprintf(stderr, "\n%s : error : the 2 generations are different\n", __func__);
return 1; return 1;
} }
// make new context // make new context
auto * ctx3 = llama_new_context_with_model(model, common_context_params_to_llama(params)); llama_context * ctx3 = llama_new_context_with_model(model, common_context_params_to_llama(params));
llama_sampler * smpl3 = llama_sampler_chain_init(sparams); llama_sampler * smpl3 = llama_sampler_chain_init(sparams);
@ -186,8 +175,6 @@ int main(int argc, char ** argv) {
if (read != llama_state_set_data(ctx3, state_mem.data(), state_mem.size())) { if (read != llama_state_set_data(ctx3, state_mem.data(), state_mem.size())) {
fprintf(stderr, "\n%s : failed to read state\n", __func__); fprintf(stderr, "\n%s : failed to read state\n", __func__);
llama_free(ctx3);
llama_free_model(model);
return 1; return 1;
} }
@ -204,8 +191,6 @@ int main(int argc, char ** argv) {
const size_t ncopy = llama_state_seq_get_data(ctx3, seq_store.data(), seq_store.size(), 0); const size_t ncopy = llama_state_seq_get_data(ctx3, seq_store.data(), seq_store.size(), 0);
if (ncopy != seq_store.size()) { if (ncopy != seq_store.size()) {
fprintf(stderr, "\n%s : seq copy data length %zd does not match expected length %zd\n", __func__, ncopy, seq_store.size()); fprintf(stderr, "\n%s : seq copy data length %zd does not match expected length %zd\n", __func__, ncopy, seq_store.size());
llama_free(ctx3);
llama_free_model(model);
return 1; return 1;
} }
fprintf(stderr, "%s : seq 0 copied, %zd bytes\n", __func__, ncopy); fprintf(stderr, "%s : seq 0 copied, %zd bytes\n", __func__, ncopy);
@ -218,8 +203,6 @@ int main(int argc, char ** argv) {
const size_t nset = llama_state_seq_set_data(ctx3, seq_store.data(), seq_store.size(), 1); const size_t nset = llama_state_seq_set_data(ctx3, seq_store.data(), seq_store.size(), 1);
if (nset != seq_store.size()) { if (nset != seq_store.size()) {
fprintf(stderr, "\n%s : seq set data length %zd does not match expected length %zd\n", __func__, nset, seq_store.size()); fprintf(stderr, "\n%s : seq set data length %zd does not match expected length %zd\n", __func__, nset, seq_store.size());
llama_free(ctx3);
llama_free_model(model);
return 1; return 1;
} }
fprintf(stderr, "%s : seq 1 restored, %zd bytes\n", __func__, nset); fprintf(stderr, "%s : seq 1 restored, %zd bytes\n", __func__, nset);
@ -239,8 +222,6 @@ int main(int argc, char ** argv) {
if (llama_decode(ctx3, batch)) { if (llama_decode(ctx3, batch)) {
fprintf(stderr, "\n%s : failed to evaluate\n", __func__); fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
llama_batch_free(batch); llama_batch_free(batch);
llama_free(ctx3);
llama_free_model(model);
return 1; return 1;
} }
n_past += 1; n_past += 1;
@ -253,8 +234,6 @@ int main(int argc, char ** argv) {
llama_sampler_free(smpl3); llama_sampler_free(smpl3);
llama_batch_free(batch); llama_batch_free(batch);
llama_free(ctx3);
llama_free_model(model);
if (result0 != result2) { if (result0 != result2) {
fprintf(stderr, "\n%s : error : the seq restore generation is different\n", __func__); fprintf(stderr, "\n%s : error : the seq restore generation is different\n", __func__);

View File

@ -1494,11 +1494,16 @@ struct server_response {
struct server_context { struct server_context {
common_params params_base; common_params params_base;
common_init_result llama_init;
common_init_result llama_init_dft;
llama_model * model = nullptr; llama_model * model = nullptr;
llama_context * ctx = nullptr; llama_context * ctx = nullptr;
std::vector<common_lora_adapter_container> loras; std::vector<common_lora_adapter_container> loras;
llama_model * model_dft = nullptr; llama_model * model_dft = nullptr;
llama_context_params cparams_dft; llama_context_params cparams_dft;
llama_batch batch = {}; llama_batch batch = {};
@ -1522,21 +1527,6 @@ struct server_context {
float slot_prompt_similarity = 0.0f; float slot_prompt_similarity = 0.0f;
~server_context() { ~server_context() {
if (ctx) {
llama_free(ctx);
ctx = nullptr;
}
if (model) {
llama_free_model(model);
model = nullptr;
}
if (model_dft) {
llama_free_model(model_dft);
model_dft = nullptr;
}
// Clear any sampling context // Clear any sampling context
for (server_slot & slot : slots) { for (server_slot & slot : slots) {
common_sampler_free(slot.smpl); common_sampler_free(slot.smpl);
@ -1559,11 +1549,12 @@ struct server_context {
params_base = params; params_base = params;
common_init_result llama_init = common_init_from_params(params_base); llama_init = common_init_from_params(params_base);
model = llama_init.model; model = llama_init.model.get();
ctx = llama_init.context; ctx = llama_init.context.get();
loras = llama_init.lora_adapters;
loras = std::move(llama_init.lora_adapters);
if (model == nullptr) { if (model == nullptr) {
SRV_ERR("failed to load model, '%s'\n", params_base.model.c_str()); SRV_ERR("failed to load model, '%s'\n", params_base.model.c_str());
@ -1586,25 +1577,22 @@ struct server_context {
params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers; params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
params_dft.n_parallel = 1; params_dft.n_parallel = 1;
common_init_result llama_init_dft = common_init_from_params(params_dft); llama_init_dft = common_init_from_params(params_dft);
model_dft = llama_init_dft.model; model_dft = llama_init_dft.model.get();
if (model_dft == nullptr) { if (model_dft == nullptr) {
SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.c_str()); SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.c_str());
return false; return false;
} }
if (!common_speculative_are_compatible(ctx, llama_init_dft.context)) { if (!common_speculative_are_compatible(ctx, llama_init_dft.context.get())) {
SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.c_str(), params_base.model.c_str()); SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.c_str(), params_base.model.c_str());
llama_free (llama_init_dft.context);
llama_free_model(llama_init_dft.model);
return false; return false;
} }
const int n_ctx_dft = llama_n_ctx(llama_init_dft.context); const int n_ctx_dft = llama_n_ctx(llama_init_dft.context.get());
cparams_dft = common_context_params_to_llama(params_dft); cparams_dft = common_context_params_to_llama(params_dft);
cparams_dft.n_batch = n_ctx_dft; cparams_dft.n_batch = n_ctx_dft;
@ -1612,9 +1600,6 @@ struct server_context {
// force F16 KV cache for the draft model for extra performance // force F16 KV cache for the draft model for extra performance
cparams_dft.type_k = GGML_TYPE_F16; cparams_dft.type_k = GGML_TYPE_F16;
cparams_dft.type_v = GGML_TYPE_F16; cparams_dft.type_v = GGML_TYPE_F16;
// the context is not needed - we will create one for each slot
llama_free(llama_init_dft.context);
} }
return true; return true;

View File

@ -34,7 +34,7 @@ int main(int argc, char ** argv) {
llama_numa_init(params.numa); llama_numa_init(params.numa);
llama_model * model_tgt = NULL; llama_model * model_tgt = NULL;
llama_model * model_dft = NULL; //llama_model * model_dft = NULL;
llama_context * ctx_tgt = NULL; llama_context * ctx_tgt = NULL;
llama_context * ctx_dft = NULL; llama_context * ctx_dft = NULL;
@ -42,8 +42,8 @@ int main(int argc, char ** argv) {
// load the target model // load the target model
common_init_result llama_init_tgt = common_init_from_params(params); common_init_result llama_init_tgt = common_init_from_params(params);
model_tgt = llama_init_tgt.model; model_tgt = llama_init_tgt.model.get();
ctx_tgt = llama_init_tgt.context; ctx_tgt = llama_init_tgt.context.get();
// load the draft model // load the draft model
params.devices = params.speculative.devices; params.devices = params.speculative.devices;
@ -59,8 +59,8 @@ int main(int argc, char ** argv) {
params.cpuparams_batch.n_threads = params.speculative.cpuparams_batch.n_threads; params.cpuparams_batch.n_threads = params.speculative.cpuparams_batch.n_threads;
common_init_result llama_init_dft = common_init_from_params(params); common_init_result llama_init_dft = common_init_from_params(params);
model_dft = llama_init_dft.model; //model_dft = llama_init_dft.model.get();
ctx_dft = llama_init_dft.context; ctx_dft = llama_init_dft.context.get();
if (!common_speculative_are_compatible(ctx_tgt, ctx_dft)) { if (!common_speculative_are_compatible(ctx_tgt, ctx_dft)) {
return 1; return 1;
@ -251,12 +251,6 @@ int main(int argc, char ** argv) {
common_sampler_free(smpl); common_sampler_free(smpl);
common_speculative_free(spec); common_speculative_free(spec);
llama_free(ctx_tgt);
llama_free_model(model_tgt);
llama_free(ctx_dft);
llama_free_model(model_dft);
llama_backend_free(); llama_backend_free();
LOG("\n\n"); LOG("\n\n");

View File

@ -72,8 +72,9 @@ int main(int argc, char ** argv) {
// load the target model // load the target model
common_init_result llama_init_tgt = common_init_from_params(params); common_init_result llama_init_tgt = common_init_from_params(params);
model_tgt = llama_init_tgt.model;
ctx_tgt = llama_init_tgt.context; model_tgt = llama_init_tgt.model.get();
ctx_tgt = llama_init_tgt.context.get();
// load the draft model // load the draft model
params.devices = params.speculative.devices; params.devices = params.speculative.devices;
@ -85,8 +86,9 @@ int main(int argc, char ** argv) {
params.cpuparams_batch.n_threads = params.speculative.cpuparams_batch.n_threads; params.cpuparams_batch.n_threads = params.speculative.cpuparams_batch.n_threads;
common_init_result llama_init_dft = common_init_from_params(params); common_init_result llama_init_dft = common_init_from_params(params);
model_dft = llama_init_dft.model;
ctx_dft = llama_init_dft.context; model_dft = llama_init_dft.model.get();
ctx_dft = llama_init_dft.context.get();
const bool vocab_type_tgt = llama_vocab_type(model_tgt); const bool vocab_type_tgt = llama_vocab_type(model_tgt);
LOG_DBG("vocab_type tgt: %d\n", vocab_type_tgt); LOG_DBG("vocab_type tgt: %d\n", vocab_type_tgt);
@ -631,12 +633,6 @@ int main(int argc, char ** argv) {
llama_batch_free(batch_dft); llama_batch_free(batch_dft);
llama_free(ctx_tgt);
llama_free_model(model_tgt);
llama_free(ctx_dft);
llama_free_model(model_dft);
llama_backend_free(); llama_backend_free();
LOG("\n\n"); LOG("\n\n");

View File

@ -458,8 +458,9 @@ int main(int argc, char ** argv) {
llama_context * ctx_cts = NULL; llama_context * ctx_cts = NULL;
common_init_result llama_init_ttc = common_init_from_params(params); common_init_result llama_init_ttc = common_init_from_params(params);
model_ttc = llama_init_ttc.model;
ctx_ttc = llama_init_ttc.context; model_ttc = llama_init_ttc.model.get();
ctx_ttc = llama_init_ttc.context.get();
// TODO: refactor in a common struct // TODO: refactor in a common struct
params.model = params.vocoder.model; params.model = params.vocoder.model;
@ -470,8 +471,9 @@ int main(int argc, char ** argv) {
params.embedding = true; params.embedding = true;
common_init_result llama_init_cts = common_init_from_params(params); common_init_result llama_init_cts = common_init_from_params(params);
model_cts = llama_init_cts.model;
ctx_cts = llama_init_cts.context; model_cts = llama_init_cts.model.get();
ctx_cts = llama_init_cts.context.get();
std::vector<common_sampler *> smpl(n_parallel); std::vector<common_sampler *> smpl(n_parallel);
for (int i = 0; i < n_parallel; ++i) { for (int i = 0; i < n_parallel; ++i) {
@ -920,12 +922,6 @@ lovely<|t_0.56|><|code_start|><|634|><|596|><|1766|><|1556|><|1306|><|1285|><|14
LOG_INF("%s: audio written to file '%s'\n", __func__, fname.c_str()); LOG_INF("%s: audio written to file '%s'\n", __func__, fname.c_str());
llama_free(ctx_ttc);
llama_free_model(model_ttc);
llama_free(ctx_cts);
llama_free_model(model_cts);
llama_backend_free(); llama_backend_free();
return 0; return 0;

View File

@ -20,6 +20,11 @@ struct llama_sampler_deleter {
void operator()(llama_sampler * sampler) { llama_sampler_free(sampler); } void operator()(llama_sampler * sampler) { llama_sampler_free(sampler); }
}; };
struct llama_lora_adapter_deleter {
void operator()(llama_lora_adapter * lora_adapter) { llama_lora_adapter_free(lora_adapter); }
};
typedef std::unique_ptr<llama_model, llama_model_deleter> llama_model_ptr; typedef std::unique_ptr<llama_model, llama_model_deleter> llama_model_ptr;
typedef std::unique_ptr<llama_context, llama_context_deleter> llama_context_ptr; typedef std::unique_ptr<llama_context, llama_context_deleter> llama_context_ptr;
typedef std::unique_ptr<llama_sampler, llama_sampler_deleter> llama_sampler_ptr; typedef std::unique_ptr<llama_sampler, llama_sampler_deleter> llama_sampler_ptr;
typedef std::unique_ptr<llama_lora_adapter, llama_lora_adapter_deleter> llama_lora_adapter_ptr;

View File

@ -385,6 +385,7 @@ extern "C" {
} llama_chat_message; } llama_chat_message;
// lora adapter // lora adapter
// TODO: rename to llama_adapter_lora
struct llama_lora_adapter; struct llama_lora_adapter;
// Helpers for getting default parameters // Helpers for getting default parameters
@ -416,6 +417,7 @@ extern "C" {
const char * path_model, const char * path_model,
struct llama_model_params params); struct llama_model_params params);
// TODO: rename to llama_model_free
LLAMA_API void llama_free_model(struct llama_model * model); LLAMA_API void llama_free_model(struct llama_model * model);
// TODO: rename to llama_init_from_model // TODO: rename to llama_init_from_model
@ -501,14 +503,19 @@ extern "C" {
const char * fname_out, const char * fname_out,
const llama_model_quantize_params * params); const llama_model_quantize_params * params);
//
// Adapters
//
// Load a LoRA adapter from file // Load a LoRA adapter from file
// The loaded adapter will be associated to the given model, and will be free when the model is deleted // TODO: rename to llama_adapter_lora_init
LLAMA_API struct llama_lora_adapter * llama_lora_adapter_init( LLAMA_API struct llama_lora_adapter * llama_lora_adapter_init(
struct llama_model * model, struct llama_model * model,
const char * path_lora); const char * path_lora);
// Add a loaded LoRA adapter to given context // Add a loaded LoRA adapter to given context
// This will not modify model's weight // This will not modify model's weight
// TODO: rename to llama_set_adapter_lora
LLAMA_API int32_t llama_lora_adapter_set( LLAMA_API int32_t llama_lora_adapter_set(
struct llama_context * ctx, struct llama_context * ctx,
struct llama_lora_adapter * adapter, struct llama_lora_adapter * adapter,
@ -516,16 +523,18 @@ extern "C" {
// Remove a specific LoRA adapter from given context // Remove a specific LoRA adapter from given context
// Return -1 if the adapter is not present in the context // Return -1 if the adapter is not present in the context
// TODO: rename to llama_rm_adapter_lora
LLAMA_API int32_t llama_lora_adapter_remove( LLAMA_API int32_t llama_lora_adapter_remove(
struct llama_context * ctx, struct llama_context * ctx,
struct llama_lora_adapter * adapter); struct llama_lora_adapter * adapter);
// Remove all LoRA adapters from given context // Remove all LoRA adapters from given context
LLAMA_API void llama_lora_adapter_clear( // TODO: rename to llama_clear_adapter_lora
struct llama_context * ctx); LLAMA_API void llama_lora_adapter_clear(struct llama_context * ctx);
// Manually free a LoRA adapter // Manually free a LoRA adapter
// Note: loaded adapters will be free when the associated model is deleted // Note: loaded adapters will be free when the associated model is deleted
// TODO: rename to llama_adapter_lora_free
LLAMA_API void llama_lora_adapter_free(struct llama_lora_adapter * adapter); LLAMA_API void llama_lora_adapter_free(struct llama_lora_adapter * adapter);
// Apply a loaded control vector to a llama_context, or if data is NULL, clear // Apply a loaded control vector to a llama_context, or if data is NULL, clear
@ -534,6 +543,7 @@ extern "C" {
// to an n_embd x n_layers buffer starting from layer 1. // to an n_embd x n_layers buffer starting from layer 1.
// il_start and il_end are the layer range the vector should apply to (both inclusive) // il_start and il_end are the layer range the vector should apply to (both inclusive)
// See llama_control_vector_load in common to load a control vector. // See llama_control_vector_load in common to load a control vector.
// TODO: rename to llama_adapter_cvec_apply
LLAMA_API int32_t llama_control_vector_apply( LLAMA_API int32_t llama_control_vector_apply(
struct llama_context * lctx, struct llama_context * lctx,
const float * data, const float * data,
@ -546,6 +556,8 @@ extern "C" {
// KV cache // KV cache
// //
// TODO: remove llama_kv_cache_view_* API
// Information associated with an individual cell in the KV cache view. // Information associated with an individual cell in the KV cache view.
struct llama_kv_cache_view_cell { struct llama_kv_cache_view_cell {
// The position for this cell. Takes KV cache shifts into account. // The position for this cell. Takes KV cache shifts into account.
@ -592,8 +604,11 @@ extern "C" {
LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view); LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
// Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes) // Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
// TODO: change signature to llama_kv_cache_view_update(struct llama_kv_cache_view * view, const struct llama_context * ctx)
LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view); LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
///
// Returns the number of tokens in the KV cache (slow, use only for debug) // Returns the number of tokens in the KV cache (slow, use only for debug)
// If a KV cell has multiple sequences assigned to it, it will be counted multiple times // If a KV cell has multiple sequences assigned to it, it will be counted multiple times
LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx); LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
@ -663,6 +678,9 @@ extern "C" {
struct llama_context * ctx, struct llama_context * ctx,
llama_seq_id seq_id); llama_seq_id seq_id);
// TODO: the llama_kv_cache_defrag and llama_kv_cache_update API tightly couples llama_context with llama_kv_cache
// how to avoid this?
// Defragment the KV cache // Defragment the KV cache
// This will be applied: // This will be applied:
// - lazily on next llama_decode() // - lazily on next llama_decode()

View File

@ -9,9 +9,19 @@ llama_add_compile_flags()
add_library(llama add_library(llama
../include/llama.h ../include/llama.h
llama.cpp llama.cpp
llama-vocab.cpp llama-adapter.cpp
llama-arch.cpp
llama-batch.cpp
llama-chat.cpp
llama-context.cpp
llama-hparams.cpp
llama-impl.cpp
llama-grammar.cpp llama-grammar.cpp
llama-kv-cache.cpp
llama-mmap.cpp
llama-model.cpp
llama-sampling.cpp llama-sampling.cpp
llama-vocab.cpp
unicode.h unicode.h
unicode.cpp unicode.cpp
unicode-data.cpp unicode-data.cpp

319
src/llama-adapter.cpp Normal file
View File

@ -0,0 +1,319 @@
#include "llama-adapter.h"
#include "llama-model.h"
#include <algorithm>
#include <map>
#include <cassert>
#include <stdexcept>
// vec
struct ggml_tensor * llama_control_vector::tensor_for(int il) const {
if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
return nullptr;
}
return tensors[il];
}
struct ggml_tensor * llama_control_vector::apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const {
ggml_tensor * layer_dir = tensor_for(il);
if (layer_dir != nullptr) {
cur = ggml_add(ctx, cur, layer_dir);
}
return cur;
}
static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
const auto & hparams = model.hparams;
GGML_ASSERT(cvec.tensors.empty());
GGML_ASSERT(cvec.ctxs.empty());
GGML_ASSERT(cvec.bufs.empty());
// create a context for each buffer type
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
auto it = ctx_map.find(buft);
if (it == ctx_map.end()) {
struct ggml_init_params params = {
/*.mem_size =*/ hparams.n_layer*ggml_tensor_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
ggml_context * ctx = ggml_init(params);
if (!ctx) {
return nullptr;
}
ctx_map[buft] = ctx;
cvec.ctxs.emplace_back(ctx);
return ctx;
}
return it->second;
};
// make tensors
cvec.tensors.reserve(hparams.n_layer);
cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
for (size_t il = 1; il < hparams.n_layer; il++) {
ggml_backend_buffer_type_t buft = llama_model_select_buft(model, il);
ggml_context * ctx = ctx_for_buft(buft);
if (!ctx) {
LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
return false;
}
ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
cvec.tensors.push_back(tensor);
}
// allocate tensors / buffers and zero
cvec.bufs.reserve(ctx_map.size());
for (auto it : ctx_map) {
ggml_backend_buffer_type_t buft = it.first;
ggml_context * ctx = it.second;
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
if (!buf) {
LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
return false;
}
ggml_backend_buffer_clear(buf, 0);
cvec.bufs.emplace_back(buf);
}
return true;
}
int32_t llama_control_vector_apply(
struct llama_control_vector & cvec,
const llama_model & model,
const float * data,
size_t len,
int32_t n_embd,
int32_t il_start,
int32_t il_end) {
const auto & hparams = model.hparams;
if (data == nullptr) {
// disable the current control vector (but leave allocated for later)
cvec.layer_start = -1;
cvec.layer_end = -1;
return 0;
}
if (n_embd != (int) hparams.n_embd) {
LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
return 1;
}
if (cvec.tensors.empty()) {
if (!llama_control_vector_init(cvec, model)) {
return 1;
}
}
cvec.layer_start = il_start;
cvec.layer_end = il_end;
for (size_t il = 1; il < hparams.n_layer; il++) {
assert(cvec.tensors[il] != nullptr);
const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
if (off + n_embd <= len) {
ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
}
}
return 0;
}
// lora
llama_lora_weight * llama_lora_adapter::get_weight(struct ggml_tensor * w) {
const std::string name(w->name);
const auto pos = ab_map.find(name);
if (pos != ab_map.end()) {
return &pos->second;
}
return nullptr;
}
void llama_lora_adapter_free(struct llama_lora_adapter * adapter) {
delete adapter;
}
void llama_lora_adapter_init_impl(struct llama_model & model, const char * path_lora, struct llama_lora_adapter & adapter) {
LLAMA_LOG_INFO("%s: loading lora adapter from '%s' ...\n", __func__, path_lora);
ggml_context * ctx_init;
struct gguf_init_params meta_gguf_params = {
/* .no_alloc = */ true,
/* .ctx = */ &ctx_init,
};
gguf_context_ptr ctx_gguf { gguf_init_from_file(path_lora, meta_gguf_params) };
if (!ctx_gguf) {
throw std::runtime_error("failed to load lora adapter file from " + std::string(path_lora));
}
ggml_context_ptr ctx { ctx_init };
// check metadata
{
auto get_kv_str = [&](const std::string & key) -> std::string {
int id = gguf_find_key(ctx_gguf.get(), key.c_str());
return id < 0 ? "" : std::string(gguf_get_val_str(ctx_gguf.get(), id));
};
auto get_kv_f32 = [&](const std::string & key) -> float {
int id = gguf_find_key(ctx_gguf.get(), key.c_str());
return id < 0 ? 0.0f : gguf_get_val_f32(ctx_gguf.get(), id);
};
LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
auto general_type = get_kv_str(llm_kv(LLM_KV_GENERAL_TYPE));
if (general_type != "adapter") {
throw std::runtime_error("expect general.type to be 'adapter', but got: " + general_type);
}
auto general_arch_str = get_kv_str(llm_kv(LLM_KV_GENERAL_ARCHITECTURE));
auto general_arch = llm_arch_from_string(general_arch_str);
if (general_arch != model.arch) {
throw std::runtime_error("model arch and LoRA arch mismatch");
}
auto adapter_type = get_kv_str(llm_kv(LLM_KV_ADAPTER_TYPE));
if (adapter_type != "lora") {
throw std::runtime_error("expect adapter.type to be 'lora', but got: " + adapter_type);
}
adapter.alpha = get_kv_f32(llm_kv(LLM_KV_ADAPTER_LORA_ALPHA));
}
int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
// contexts for each buffer type
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
auto it = ctx_map.find(buft);
if (it == ctx_map.end()) {
// add a new context
struct ggml_init_params params = {
/*.mem_size =*/ n_tensors*ggml_tensor_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
ggml_context * buft_ctx = ggml_init(params);
if (!buft_ctx) {
return nullptr;
}
ctx_map[buft] = buft_ctx;
adapter.ctxs.emplace_back(buft_ctx);
return buft_ctx;
};
return it->second;
};
// bundle lora_a and lora_b into pairs
std::map<std::string, llama_lora_weight> ab_map;
auto str_endswith = [](const std::string & str, const std::string & suffix) {
return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
};
for (ggml_tensor * cur = ggml_get_first_tensor(ctx.get()); cur; cur = ggml_get_next_tensor(ctx.get(), cur)) {
std::string name(cur->name);
if (str_endswith(name, ".lora_a")) {
replace_all(name, ".lora_a", "");
if (ab_map.find(name) == ab_map.end()) {
ab_map[name] = llama_lora_weight(cur, nullptr);
} else {
ab_map[name].a = cur;
}
} else if (str_endswith(name, ".lora_b")) {
replace_all(name, ".lora_b", "");
if (ab_map.find(name) == ab_map.end()) {
ab_map[name] = llama_lora_weight(nullptr, cur);
} else {
ab_map[name].b = cur;
}
} else {
throw std::runtime_error("LoRA tensor '" + name + "' has unexpected suffix");
}
}
// add tensors
for (auto & it : ab_map) {
const std::string & name = it.first;
llama_lora_weight & w = it.second;
if (!w.a || !w.b) {
throw std::runtime_error("LoRA tensor pair for '" + name + "' is missing one component");
}
// device buft and device ctx
auto * model_tensor = llama_model_get_tensor(model, name.c_str());
if (!model_tensor) {
throw std::runtime_error("LoRA tensor '" + name + "' does not exist in base model");
}
struct ggml_context * dev_ctx = ctx_for_buft(ggml_backend_buffer_get_type(model_tensor->buffer));
// validate tensor shape
if (model_tensor->ne[0] != w.a->ne[0] || model_tensor->ne[1] != w.b->ne[1]) {
throw std::runtime_error("tensor '" + name + "' has incorrect shape");
}
if (w.a->ne[1] != w.b->ne[0]) {
throw std::runtime_error("lora_a tensor is not transposed (hint: adapter from \"finetune\" example is no longer supported)");
}
// save tensor to adapter
struct ggml_tensor * tensor_a = ggml_dup_tensor(dev_ctx, w.a);
struct ggml_tensor * tensor_b = ggml_dup_tensor(dev_ctx, w.b);
ggml_set_name(tensor_a, w.a->name);
ggml_set_name(tensor_b, w.b->name);
adapter.ab_map[name] = llama_lora_weight(tensor_a, tensor_b);
}
// allocate tensors / buffers and zero
{
adapter.ctxs.reserve(ctx_map.size());
adapter.bufs.reserve(ctx_map.size());
for (auto & it : ctx_map) {
ggml_backend_buffer_type_t buft = it.first;
ggml_context * ctx_dev = it.second;
ggml_backend_buffer_ptr buf { ggml_backend_alloc_ctx_tensors_from_buft(ctx_dev, buft) };
if (!buf) {
throw std::runtime_error("failed to allocate buffer for lora adapter\n");
}
LLAMA_LOG_INFO("%s: %10s LoRA buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf.get()), ggml_backend_buffer_get_size(buf.get())/1024.0/1024.0);
adapter.bufs.emplace_back(std::move(buf));
}
}
// set tensor data
{
llama_file gguf_file(path_lora, "rb");
std::vector<uint8_t> read_buf;
auto set_tensor = [&](struct ggml_tensor * orig, struct ggml_tensor * dev) {
size_t offs = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), gguf_find_tensor(ctx_gguf.get(), orig->name));
size_t size = ggml_nbytes(orig);
read_buf.resize(size);
gguf_file.seek(offs, SEEK_SET);
gguf_file.read_raw(read_buf.data(), size);
ggml_backend_tensor_set(dev, read_buf.data(), 0, size);
};
for (auto & it : adapter.ab_map) {
auto orig = ab_map[it.first];
auto dev = it.second;
set_tensor(orig.a, dev.a);
set_tensor(orig.b, dev.b);
}
}
LLAMA_LOG_INFO("%s: loaded %zu tensors from lora file\n", __func__, adapter.ab_map.size()*2);
}

68
src/llama-adapter.h Normal file
View File

@ -0,0 +1,68 @@
#pragma once
#include "llama-impl.h"
#include "llama-hparams.h"
#include "ggml-cpp.h"
#include <unordered_map>
#include <vector>
//
// llama_adapter_cvec
//
// TODO: rename to llama_adapter_cvec
struct llama_control_vector {
std::vector<ggml_context_ptr> ctxs;
std::vector<ggml_backend_buffer_ptr> bufs;
std::vector<struct ggml_tensor *> tensors; // per layer
int32_t layer_start = -1;
int32_t layer_end = -1;
struct ggml_tensor * tensor_for(int il) const;
struct ggml_tensor * apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const;
};
int32_t llama_control_vector_apply(
struct llama_control_vector & cvec,
const llama_model & model,
const float * data,
size_t len,
int32_t n_embd,
int32_t il_start,
int32_t il_end);
//
// llama_adapter_lora
//
// TODO: rename to llama_adapter_lora_weight
struct llama_lora_weight {
struct ggml_tensor * a = nullptr;
struct ggml_tensor * b = nullptr;
llama_lora_weight() = default;
llama_lora_weight(struct ggml_tensor * a, struct ggml_tensor * b) : a(a), b(b) {}
};
// TODO: rename to llama_adapter_lora
struct llama_lora_adapter {
// map tensor name to lora_a_b
std::unordered_map<std::string, struct llama_lora_weight> ab_map;
std::vector<ggml_context_ptr> ctxs;
std::vector<ggml_backend_buffer_ptr> bufs;
float alpha;
llama_lora_adapter() = default;
~llama_lora_adapter() = default;
llama_lora_weight * get_weight(struct ggml_tensor * w);
};
void llama_lora_adapter_init_impl(struct llama_model & model, const char * path_lora, struct llama_lora_adapter & adapter);

1414
src/llama-arch.cpp Normal file

File diff suppressed because it is too large Load Diff

391
src/llama-arch.h Normal file
View File

@ -0,0 +1,391 @@
#pragma once
#include "ggml.h" // ggml_op
#include <string>
//
// gguf constants (sync with gguf.py)
//
enum llm_arch {
LLM_ARCH_LLAMA,
LLM_ARCH_DECI,
LLM_ARCH_FALCON,
LLM_ARCH_BAICHUAN,
LLM_ARCH_GROK,
LLM_ARCH_GPT2,
LLM_ARCH_GPTJ,
LLM_ARCH_GPTNEOX,
LLM_ARCH_MPT,
LLM_ARCH_STARCODER,
LLM_ARCH_REFACT,
LLM_ARCH_BERT,
LLM_ARCH_NOMIC_BERT,
LLM_ARCH_JINA_BERT_V2,
LLM_ARCH_BLOOM,
LLM_ARCH_STABLELM,
LLM_ARCH_QWEN,
LLM_ARCH_QWEN2,
LLM_ARCH_QWEN2MOE,
LLM_ARCH_QWEN2VL,
LLM_ARCH_PHI2,
LLM_ARCH_PHI3,
LLM_ARCH_PLAMO,
LLM_ARCH_CODESHELL,
LLM_ARCH_ORION,
LLM_ARCH_INTERNLM2,
LLM_ARCH_MINICPM,
LLM_ARCH_MINICPM3,
LLM_ARCH_GEMMA,
LLM_ARCH_GEMMA2,
LLM_ARCH_STARCODER2,
LLM_ARCH_MAMBA,
LLM_ARCH_XVERSE,
LLM_ARCH_COMMAND_R,
LLM_ARCH_DBRX,
LLM_ARCH_OLMO,
LLM_ARCH_OLMO2,
LLM_ARCH_OLMOE,
LLM_ARCH_OPENELM,
LLM_ARCH_ARCTIC,
LLM_ARCH_DEEPSEEK,
LLM_ARCH_DEEPSEEK2,
LLM_ARCH_CHATGLM,
LLM_ARCH_BITNET,
LLM_ARCH_T5,
LLM_ARCH_T5ENCODER,
LLM_ARCH_JAIS,
LLM_ARCH_NEMOTRON,
LLM_ARCH_EXAONE,
LLM_ARCH_RWKV6,
LLM_ARCH_GRANITE,
LLM_ARCH_GRANITE_MOE,
LLM_ARCH_CHAMELEON,
LLM_ARCH_WAVTOKENIZER_DEC,
LLM_ARCH_UNKNOWN,
};
enum llm_kv {
LLM_KV_GENERAL_TYPE,
LLM_KV_GENERAL_ARCHITECTURE,
LLM_KV_GENERAL_QUANTIZATION_VERSION,
LLM_KV_GENERAL_ALIGNMENT,
LLM_KV_GENERAL_NAME,
LLM_KV_GENERAL_AUTHOR,
LLM_KV_GENERAL_VERSION,
LLM_KV_GENERAL_URL,
LLM_KV_GENERAL_DESCRIPTION,
LLM_KV_GENERAL_LICENSE,
LLM_KV_GENERAL_SOURCE_URL,
LLM_KV_GENERAL_SOURCE_HF_REPO,
LLM_KV_VOCAB_SIZE,
LLM_KV_CONTEXT_LENGTH,
LLM_KV_EMBEDDING_LENGTH,
LLM_KV_FEATURES_LENGTH,
LLM_KV_BLOCK_COUNT,
LLM_KV_LEADING_DENSE_BLOCK_COUNT,
LLM_KV_FEED_FORWARD_LENGTH,
LLM_KV_EXPERT_FEED_FORWARD_LENGTH,
LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH,
LLM_KV_USE_PARALLEL_RESIDUAL,
LLM_KV_TENSOR_DATA_LAYOUT,
LLM_KV_EXPERT_COUNT,
LLM_KV_EXPERT_USED_COUNT,
LLM_KV_EXPERT_SHARED_COUNT,
LLM_KV_EXPERT_WEIGHTS_SCALE,
LLM_KV_POOLING_TYPE,
LLM_KV_LOGIT_SCALE,
LLM_KV_DECODER_START_TOKEN_ID,
LLM_KV_ATTN_LOGIT_SOFTCAPPING,
LLM_KV_FINAL_LOGIT_SOFTCAPPING,
LLM_KV_SWIN_NORM,
LLM_KV_RESCALE_EVERY_N_LAYERS,
LLM_KV_TIME_MIX_EXTRA_DIM,
LLM_KV_TIME_DECAY_EXTRA_DIM,
LLM_KV_RESIDUAL_SCALE,
LLM_KV_EMBEDDING_SCALE,
LLM_KV_ATTENTION_HEAD_COUNT,
LLM_KV_ATTENTION_HEAD_COUNT_KV,
LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
LLM_KV_ATTENTION_CLAMP_KQV,
LLM_KV_ATTENTION_KEY_LENGTH,
LLM_KV_ATTENTION_VALUE_LENGTH,
LLM_KV_ATTENTION_LAYERNORM_EPS,
LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
LLM_KV_ATTENTION_GROUPNORM_EPS,
LLM_KV_ATTENTION_GROUPNORM_GROUPS,
LLM_KV_ATTENTION_CAUSAL,
LLM_KV_ATTENTION_Q_LORA_RANK,
LLM_KV_ATTENTION_KV_LORA_RANK,
LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT,
LLM_KV_ATTENTION_SLIDING_WINDOW,
LLM_KV_ATTENTION_SCALE,
LLM_KV_ROPE_DIMENSION_COUNT,
LLM_KV_ROPE_DIMENSION_SECTIONS,
LLM_KV_ROPE_FREQ_BASE,
LLM_KV_ROPE_SCALE_LINEAR,
LLM_KV_ROPE_SCALING_TYPE,
LLM_KV_ROPE_SCALING_FACTOR,
LLM_KV_ROPE_SCALING_ATTN_FACTOR,
LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
LLM_KV_ROPE_SCALING_FINETUNED,
LLM_KV_ROPE_SCALING_YARN_LOG_MUL,
LLM_KV_SPLIT_NO,
LLM_KV_SPLIT_COUNT,
LLM_KV_SPLIT_TENSORS_COUNT,
LLM_KV_SSM_INNER_SIZE,
LLM_KV_SSM_CONV_KERNEL,
LLM_KV_SSM_STATE_SIZE,
LLM_KV_SSM_TIME_STEP_RANK,
LLM_KV_SSM_DT_B_C_RMS,
LLM_KV_WKV_HEAD_SIZE,
LLM_KV_TOKENIZER_MODEL,
LLM_KV_TOKENIZER_PRE,
LLM_KV_TOKENIZER_LIST,
LLM_KV_TOKENIZER_TOKEN_TYPE,
LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
LLM_KV_TOKENIZER_SCORES,
LLM_KV_TOKENIZER_MERGES,
LLM_KV_TOKENIZER_BOS_ID,
LLM_KV_TOKENIZER_EOS_ID,
LLM_KV_TOKENIZER_EOT_ID,
LLM_KV_TOKENIZER_EOM_ID,
LLM_KV_TOKENIZER_UNK_ID,
LLM_KV_TOKENIZER_SEP_ID,
LLM_KV_TOKENIZER_PAD_ID,
LLM_KV_TOKENIZER_CLS_ID,
LLM_KV_TOKENIZER_MASK_ID,
LLM_KV_TOKENIZER_ADD_BOS,
LLM_KV_TOKENIZER_ADD_EOS,
LLM_KV_TOKENIZER_ADD_PREFIX,
LLM_KV_TOKENIZER_REMOVE_EXTRA_WS,
LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP,
LLM_KV_TOKENIZER_HF_JSON,
LLM_KV_TOKENIZER_RWKV,
LLM_KV_TOKENIZER_FIM_PRE_ID,
LLM_KV_TOKENIZER_FIM_SUF_ID,
LLM_KV_TOKENIZER_FIM_MID_ID,
LLM_KV_TOKENIZER_FIM_PAD_ID,
LLM_KV_TOKENIZER_FIM_REP_ID,
LLM_KV_TOKENIZER_FIM_SEP_ID,
LLM_KV_ADAPTER_TYPE,
LLM_KV_ADAPTER_LORA_ALPHA,
LLM_KV_POSNET_EMBEDDING_LENGTH,
LLM_KV_POSNET_BLOCK_COUNT,
LLM_KV_CONVNEXT_EMBEDDING_LENGTH,
LLM_KV_CONVNEXT_BLOCK_COUNT,
// deprecated:
LLM_KV_TOKENIZER_PREFIX_ID,
LLM_KV_TOKENIZER_SUFFIX_ID,
LLM_KV_TOKENIZER_MIDDLE_ID,
};
enum llm_tensor {
LLM_TENSOR_TOKEN_EMBD,
LLM_TENSOR_TOKEN_EMBD_NORM,
LLM_TENSOR_TOKEN_TYPES,
LLM_TENSOR_POS_EMBD,
LLM_TENSOR_OUTPUT,
LLM_TENSOR_OUTPUT_NORM,
LLM_TENSOR_ROPE_FREQS,
LLM_TENSOR_ROPE_FACTORS_LONG,
LLM_TENSOR_ROPE_FACTORS_SHORT,
LLM_TENSOR_ATTN_Q,
LLM_TENSOR_ATTN_K,
LLM_TENSOR_ATTN_V,
LLM_TENSOR_ATTN_QKV,
LLM_TENSOR_ATTN_OUT,
LLM_TENSOR_ATTN_NORM,
LLM_TENSOR_ATTN_NORM_2,
LLM_TENSOR_ATTN_OUT_NORM,
LLM_TENSOR_ATTN_POST_NORM,
LLM_TENSOR_ATTN_ROT_EMBD,
LLM_TENSOR_FFN_GATE_INP,
LLM_TENSOR_FFN_GATE_INP_SHEXP,
LLM_TENSOR_FFN_NORM,
LLM_TENSOR_FFN_POST_NORM,
LLM_TENSOR_FFN_GATE,
LLM_TENSOR_FFN_DOWN,
LLM_TENSOR_FFN_UP,
LLM_TENSOR_FFN_ACT,
LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
LLM_TENSOR_FFN_GATE_EXP,
LLM_TENSOR_FFN_UP_EXP,
LLM_TENSOR_FFN_NORM_EXPS,
LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
LLM_TENSOR_FFN_GATE_EXPS,
LLM_TENSOR_FFN_UP_EXPS,
LLM_TENSOR_FFN_DOWN_SHEXP,
LLM_TENSOR_FFN_GATE_SHEXP,
LLM_TENSOR_FFN_UP_SHEXP,
LLM_TENSOR_ATTN_Q_NORM,
LLM_TENSOR_ATTN_K_NORM,
LLM_TENSOR_LAYER_OUT_NORM,
LLM_TENSOR_SSM_IN,
LLM_TENSOR_SSM_CONV1D,
LLM_TENSOR_SSM_X,
LLM_TENSOR_SSM_DT,
LLM_TENSOR_SSM_A,
LLM_TENSOR_SSM_D,
LLM_TENSOR_SSM_OUT,
LLM_TENSOR_TIME_MIX_W1,
LLM_TENSOR_TIME_MIX_W2,
LLM_TENSOR_TIME_MIX_LERP_X,
LLM_TENSOR_TIME_MIX_LERP_W,
LLM_TENSOR_TIME_MIX_LERP_K,
LLM_TENSOR_TIME_MIX_LERP_V,
LLM_TENSOR_TIME_MIX_LERP_R,
LLM_TENSOR_TIME_MIX_LERP_G,
LLM_TENSOR_TIME_MIX_FIRST,
LLM_TENSOR_TIME_MIX_DECAY,
LLM_TENSOR_TIME_MIX_DECAY_W1,
LLM_TENSOR_TIME_MIX_DECAY_W2,
LLM_TENSOR_TIME_MIX_KEY,
LLM_TENSOR_TIME_MIX_VALUE,
LLM_TENSOR_TIME_MIX_RECEPTANCE,
LLM_TENSOR_TIME_MIX_GATE,
LLM_TENSOR_TIME_MIX_LN,
LLM_TENSOR_TIME_MIX_OUTPUT,
LLM_TENSOR_CHANNEL_MIX_LERP_K,
LLM_TENSOR_CHANNEL_MIX_LERP_R,
LLM_TENSOR_CHANNEL_MIX_KEY,
LLM_TENSOR_CHANNEL_MIX_RECEPTANCE,
LLM_TENSOR_CHANNEL_MIX_VALUE,
LLM_TENSOR_ATTN_Q_A,
LLM_TENSOR_ATTN_Q_B,
LLM_TENSOR_ATTN_KV_A_MQA,
LLM_TENSOR_ATTN_KV_B,
LLM_TENSOR_ATTN_Q_A_NORM,
LLM_TENSOR_ATTN_KV_A_NORM,
LLM_TENSOR_ATTN_SUB_NORM,
LLM_TENSOR_FFN_SUB_NORM,
LLM_TENSOR_DEC_ATTN_NORM,
LLM_TENSOR_DEC_ATTN_Q,
LLM_TENSOR_DEC_ATTN_K,
LLM_TENSOR_DEC_ATTN_V,
LLM_TENSOR_DEC_ATTN_OUT,
LLM_TENSOR_DEC_ATTN_REL_B,
LLM_TENSOR_DEC_CROSS_ATTN_NORM,
LLM_TENSOR_DEC_CROSS_ATTN_Q,
LLM_TENSOR_DEC_CROSS_ATTN_K,
LLM_TENSOR_DEC_CROSS_ATTN_V,
LLM_TENSOR_DEC_CROSS_ATTN_OUT,
LLM_TENSOR_DEC_CROSS_ATTN_REL_B,
LLM_TENSOR_DEC_FFN_NORM,
LLM_TENSOR_DEC_FFN_GATE,
LLM_TENSOR_DEC_FFN_DOWN,
LLM_TENSOR_DEC_FFN_UP,
LLM_TENSOR_DEC_OUTPUT_NORM,
LLM_TENSOR_ENC_ATTN_NORM,
LLM_TENSOR_ENC_ATTN_Q,
LLM_TENSOR_ENC_ATTN_K,
LLM_TENSOR_ENC_ATTN_V,
LLM_TENSOR_ENC_ATTN_OUT,
LLM_TENSOR_ENC_ATTN_REL_B,
LLM_TENSOR_ENC_FFN_NORM,
LLM_TENSOR_ENC_FFN_GATE,
LLM_TENSOR_ENC_FFN_DOWN,
LLM_TENSOR_ENC_FFN_UP,
LLM_TENSOR_ENC_OUTPUT_NORM,
LLM_TENSOR_CLS,
LLM_TENSOR_CLS_OUT,
LLM_TENSOR_CONV1D,
LLM_TENSOR_CONVNEXT_DW,
LLM_TENSOR_CONVNEXT_NORM,
LLM_TENSOR_CONVNEXT_PW1,
LLM_TENSOR_CONVNEXT_PW2,
LLM_TENSOR_CONVNEXT_GAMMA,
LLM_TENSOR_POS_NET_CONV1,
LLM_TENSOR_POS_NET_CONV2,
LLM_TENSOR_POS_NET_NORM,
LLM_TENSOR_POS_NET_NORM1,
LLM_TENSOR_POS_NET_NORM2,
LLM_TENSOR_POS_NET_ATTN_NORM,
LLM_TENSOR_POS_NET_ATTN_Q,
LLM_TENSOR_POS_NET_ATTN_K,
LLM_TENSOR_POS_NET_ATTN_V,
LLM_TENSOR_POS_NET_ATTN_OUT,
};
enum llm_tensor_layer {
LLM_TENSOR_LAYER_INPUT,
LLM_TENSOR_LAYER_REPEATING,
LLM_TENSOR_LAYER_OUTPUT,
};
struct LLM_KV {
LLM_KV(llm_arch arch);
llm_arch arch;
std::string operator()(llm_kv kv) const;
};
// helper to handle gguf constants
// usage:
//
// const auto tn = LLM_TN(LLM_ARCH_LLAMA);
//
// std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
// std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
// std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
//
struct LLM_TN_IMPL {
const llm_arch arch;
const llm_tensor tensor;
const char * const suffix;
const int bid;
const int xid;
std::string str() const;
operator std::string() const {
return str();
}
friend bool operator==(const std::string & str, const LLM_TN_IMPL & tn) {
return str == tn.str();
}
friend bool operator!=(const std::string & str, const LLM_TN_IMPL & tn) {
return str != tn.str();
}
};
struct LLM_TN {
LLM_TN(llm_arch arch) : arch(arch) {}
llm_arch arch;
LLM_TN_IMPL operator()(llm_tensor tensor, const char * suffix, int bid = -1, int xid = -1) const {
return { arch, tensor, suffix, bid, xid };
}
LLM_TN_IMPL operator()(llm_tensor tensor, int bid = -1, int xid = -1) const {
return { arch, tensor, nullptr, bid, xid };
}
};
struct llm_tensor_info {
llm_tensor_layer layer;
ggml_op op;
};
const char * llm_arch_name(llm_arch arch);
llm_arch llm_arch_from_string(const std::string & name);
const llm_tensor_info & llm_tensor_info_for(llm_tensor tensor);

368
src/llama-batch.cpp Normal file
View File

@ -0,0 +1,368 @@
#include "llama-batch.h"
#include <cstring>
#include <algorithm>
llama_ubatch llama_sbatch::reserve_ubatch(size_t n_ubatch, bool has_embd) {
// clear empty sequences
// the previous ubatch is assumed to be gone,
// so nothing should refer to values in these sequences anymore.
for (size_t i = seq.size(); i-- > 0;) {
if (seq[i].length == 0) {
seq.pop_back();
} else {
break;
}
}
ubatch_token.resize(!has_embd ? n_ubatch : 0);
ubatch_embd.resize(has_embd ? n_embd * n_ubatch : 0);
ubatch_pos.resize(n_ubatch);
ubatch_n_seq_id.resize(n_ubatch);
ubatch_seq_id.resize(n_ubatch);
ubatch_output.resize(n_ubatch);
llama_ubatch ubatch = {
/*equal_seqs =*/ true,
/*n_tokens =*/ 0,
/*n_seq_tokens =*/ 0,
/*n_seqs =*/ 0,
/*token =*/ !has_embd ? ubatch_token.data() : nullptr,
/*embd =*/ has_embd ? ubatch_embd.data() : nullptr,
/*pos =*/ ubatch_pos.data(),
/*n_seq_id =*/ ubatch_n_seq_id.data(),
/*seq_id =*/ ubatch_seq_id.data(),
/*output =*/ ubatch_output.data(),
};
return ubatch;
}
void llama_sbatch::add_seq_to_ubatch(llama_ubatch & ubatch, llama_sbatch_seq & seq, size_t length) {
GGML_ASSERT(batch != nullptr);
GGML_ASSERT(length <= seq.length);
// Can only add sequences of equal lengths to a batch,
// otherwise it isn't clear to which sequence a token belongs
GGML_ASSERT(seq.n_seq_id == 0 || ubatch.n_seqs == 0 || length == (size_t) ubatch.n_tokens / ubatch.n_seqs);
GGML_ASSERT((seq.n_seq_id != 0) == ubatch.equal_seqs);
// NOTE: loops are separated for cache-friendliness
if (batch->token) {
if (ubatch.equal_seqs) {
for (size_t i = 0; i < length; ++i) {
ubatch.token[ubatch.n_tokens + i] = batch->token[ids[seq.offset + i]];
}
} else {
// simple split
ubatch.token = batch->token + seq.offset;
}
} else {
ubatch.token = nullptr;
}
if (batch->embd) {
if (ubatch.equal_seqs) {
for (size_t i = 0; i < length; ++i) {
memcpy(
ubatch.embd + (n_embd * (ubatch.n_tokens + i)),
batch->embd + (n_embd * ids[seq.offset + i]),
n_embd * sizeof(float)
);
}
} else {
// simple split
ubatch.embd = batch->embd + (n_embd * seq.offset);
}
} else {
ubatch.embd = nullptr;
}
if (ubatch.equal_seqs) {
for (size_t i = 0; i < length; ++i) {
ubatch.pos[ubatch.n_tokens + i] = batch->pos[ids[seq.offset + i]];
}
} else {
// simple split
ubatch.pos = batch->pos + seq.offset;
}
if (ubatch.equal_seqs) {
ubatch.n_seq_id[ubatch.n_seqs] = seq.n_seq_id;
if (seq.seq_id) {
ubatch.seq_id[ubatch.n_seqs] = seq.seq_id;
}
} else {
// simple split
if (batch->n_seq_id) {
ubatch.n_seq_id = batch->n_seq_id + seq.offset;
} else {
for (size_t i = 0; i < length; ++i) {
ubatch.n_seq_id[ubatch.n_seqs + i] = 1;
}
}
if (batch->seq_id) {
ubatch.seq_id = batch->seq_id + seq.offset;
}
}
if (logits_all) {
for (size_t i = 0; i < length; ++i) {
ubatch.output[ubatch.n_tokens + i] = 1;
out_ids.push_back(ids[seq.offset + i]);
}
} else if (batch->logits) {
if (ubatch.equal_seqs) {
for (size_t i = 0; i < length; ++i) {
size_t id = ids[seq.offset + i];
int8_t is_output = batch->logits[id];
ubatch.output[ubatch.n_tokens + i] = is_output;
if (is_output) { out_ids.push_back(id); }
}
} else {
// simple split
ubatch.output = batch->logits + seq.offset;
for (size_t i = 0; i < length; ++i) {
if (ubatch.output[i] != 0) { out_ids.push_back(seq.offset + i); }
}
}
} else {
// only get last output
for (size_t i = 0; i < length; ++i) {
size_t id = ids[seq.offset + i];
int8_t is_last = id == ids.size() - 1;
ubatch.output[ubatch.n_tokens + i] = is_last;
if (is_last) { out_ids.push_back(id); }
}
}
if (ubatch.n_tokens == 0 && ubatch.n_seqs == 0) {
ubatch.n_seq_tokens = ubatch.equal_seqs ? length : 1;
}
ubatch.n_tokens += length;
ubatch.n_seqs += ubatch.equal_seqs ? 1 : length; // virtual sequences for simple splits
seq.offset += length;
seq.length -= length;
n_tokens -= length;
GGML_ASSERT(ubatch.n_tokens == ubatch.n_seq_tokens * ubatch.n_seqs);
}
llama_ubatch llama_sbatch::split_simple(size_t n_ubatch) {
n_ubatch = n_tokens < n_ubatch ? n_tokens : n_ubatch;
llama_ubatch ubatch = reserve_ubatch(n_ubatch, /* has_embd */ batch->embd != nullptr);
ubatch.equal_seqs = false;
if (!seq.empty()) {
llama_sbatch_seq & s = seq[0];
size_t length = s.length < n_ubatch ? s.length : n_ubatch;
GGML_ASSERT(seq.size() == 1 && s.n_seq_id == 0); // don't mix with other splits
add_seq_to_ubatch(ubatch, s, length);
}
return ubatch;
}
llama_ubatch llama_sbatch::split_equal(size_t n_ubatch) {
n_ubatch = n_tokens < n_ubatch ? n_tokens : n_ubatch;
llama_ubatch ubatch = reserve_ubatch(n_ubatch, /* has_embd */ batch->embd != nullptr);
if (!seq.empty()) {
size_t length = 0;
size_t n_tokens_in_ubatch = 0;
GGML_ASSERT(seq[0].n_seq_id > 0); // should not be mixed with simple splits
// smallest first, because it's easier to split this way;
// starting from the end to pop in constant time.
for (size_t i = seq.size(); i-- > 0;) {
llama_sbatch_seq & s = seq[i];
GGML_ASSERT(s.length > 0);
if (length == 0) {
length = s.length < n_ubatch ? s.length : n_ubatch;
}
add_seq_to_ubatch(ubatch, s, length);
n_tokens_in_ubatch += length;
// shared prompts can't be mixed with any of their sequences,
// so it's safer to compute them in their own ubatch
if (s.n_seq_id > 1) { break; }
// stop when there isn't enough space for another sequence
if (length + n_tokens_in_ubatch > n_ubatch) { break; }
}
}
return ubatch;
}
llama_ubatch llama_sbatch::split_seq(size_t n_ubatch) {
n_ubatch = n_tokens < n_ubatch ? n_tokens : n_ubatch;
llama_ubatch ubatch = reserve_ubatch(n_ubatch, /* has_embd */ batch->embd != nullptr);
if (!seq.empty()) {
llama_sbatch_seq & s = seq[seq.size() - 1];
size_t length = s.length < n_ubatch ? s.length : n_ubatch;
GGML_ASSERT(s.n_seq_id > 0); // should not be mixed with simple splits
add_seq_to_ubatch(ubatch, s, length);
}
return ubatch;
}
void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool simple_split, bool logits_all) {
GGML_ASSERT(batch.n_tokens >= 0);
this->batch = &batch;
this->n_embd = n_embd;
this->logits_all = logits_all;
n_tokens = batch.n_tokens;
ids.resize(n_tokens);
out_ids.clear();
// TODO: reserve out_ids and seq
for (size_t i = 0; i < n_tokens; ++i) {
ids[i] = i;
}
if (simple_split) {
seq.resize(1);
llama_sbatch_seq & s = seq[0];
s.n_seq_id = 0;
s.seq_id = nullptr;
s.offset = 0;
s.length = n_tokens;
return;
}
std::sort(ids.begin(), ids.end(),
[&batch](size_t a, size_t b) {
int32_t n_seq_a = batch.n_seq_id ? batch.n_seq_id[a] : 1;
int32_t n_seq_b = batch.n_seq_id ? batch.n_seq_id[b] : 1;
// sort by seq_id, then by pos
if (n_seq_a == n_seq_b) {
if (batch.seq_id) {
for (int32_t i = 0; i < n_seq_a; ++i) {
llama_seq_id seq_id_a = batch.seq_id[a][i];
llama_seq_id seq_id_b = batch.seq_id[b][i];
// smaller seq_ids go first
if (seq_id_a != seq_id_b) {
return seq_id_a < seq_id_b;
}
}
}
// when all else is equal, sort by pos
if (batch.pos) {
return batch.pos[a] < batch.pos[b];
}
// no pos, sort by id
return a < b;
}
// shared prompts go first
return n_seq_a > n_seq_b;
}
);
// init seq
llama_sbatch_seq * last_seq = nullptr;
for (size_t i = 0; i < n_tokens; ++i) {
const size_t bi = ids[i];
const int32_t n_seqs = batch.n_seq_id[bi];
llama_seq_id * seq_ids = batch.seq_id[bi];
if (last_seq != nullptr) {
bool same = n_seqs == last_seq->n_seq_id;
for (int32_t j = 0; same && j < n_seqs; ++j) {
if (seq_ids[j] != last_seq->seq_id[j]) {
same = false;
}
}
if (same) {
last_seq->length += 1;
continue;
}
}
llama_sbatch_seq new_seq = {n_seqs, seq_ids, i, 1};
seq.push_back(new_seq);
last_seq = &seq.back();
}
// keep shared prompts first at the end, then sort by length descending.
std::sort(seq.begin(), seq.end(),
[](llama_sbatch_seq & a, llama_sbatch_seq & b) {
if (a.n_seq_id == b.n_seq_id) {
return a.length > b.length;
}
return a.n_seq_id < b.n_seq_id;
}
);
}
llama_batch_allocr::llama_batch_allocr(struct llama_batch in_batch, llama_pos p0) {
batch = in_batch;
GGML_ASSERT(batch.n_tokens > 0);
if (!batch.pos) {
pos.resize(batch.n_tokens);
for (int32_t i = 0; i < batch.n_tokens; i++) {
pos[i] = i + p0;
}
batch.pos = pos.data();
}
if (!batch.n_seq_id) {
n_seq_id.resize(batch.n_tokens);
for (int32_t i = 0; i < batch.n_tokens; i++) {
n_seq_id[i] = seq_id_0.size();
}
batch.n_seq_id = n_seq_id.data();
}
if (!batch.seq_id) {
seq_id.resize(batch.n_tokens + 1);
seq_id[batch.n_tokens] = NULL;
for (int32_t i = 0; i < batch.n_tokens; i++) {
seq_id[i] = seq_id_0.data();
}
batch.seq_id = seq_id.data();
}
if (!batch.logits) {
logits.resize(batch.n_tokens);
logits[logits.size() - 1] = true;
batch.logits = logits.data();
}
}
//
// interface implementation
//
struct llama_batch llama_batch_get_one(
llama_token * tokens,
int32_t n_tokens) {
return {
/*n_tokens =*/ n_tokens,
/*tokens =*/ tokens,
/*embd =*/ nullptr,
/*pos =*/ nullptr,
/*n_seq_id =*/ nullptr,
/*seq_id =*/ nullptr,
/*logits =*/ nullptr,
};
}
struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
llama_batch batch = {
/*n_tokens =*/ 0,
/*tokens =*/ nullptr,
/*embd =*/ nullptr,
/*pos =*/ nullptr,
/*n_seq_id =*/ nullptr,
/*seq_id =*/ nullptr,
/*logits =*/ nullptr,
};
if (embd) {
batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
} else {
batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
}
batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc);
batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc);
batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
for (int i = 0; i < n_tokens_alloc; ++i) {
batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
}
batch.seq_id[n_tokens_alloc] = nullptr;
batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc);
return batch;
}
void llama_batch_free(struct llama_batch batch) {
if (batch.token) free(batch.token);
if (batch.embd) free(batch.embd);
if (batch.pos) free(batch.pos);
if (batch.n_seq_id) free(batch.n_seq_id);
if (batch.seq_id) {
for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
free(batch.seq_id[i]);
}
free(batch.seq_id);
}
if (batch.logits) free(batch.logits);
}

88
src/llama-batch.h Normal file
View File

@ -0,0 +1,88 @@
#pragma once
#include "llama.h"
#include <array>
#include <vector>
// very similar to llama_batch,
// but has more metadata about sequences
struct llama_ubatch {
bool equal_seqs;
// TODO: whole_seqs for embeddings?
uint32_t n_tokens; // total tokens (n_seq_tokens * n_seqs)
uint32_t n_seq_tokens; // tokens per sequence
uint32_t n_seqs;
llama_token * token; // [n_tokens]
float * embd; // [n_embd, n_tokens]
llama_pos * pos; // [n_tokens]
int32_t * n_seq_id; // [n_seqs]
llama_seq_id ** seq_id; // [n_seqs]
int8_t * output; // [n_tokens]
};
struct llama_sbatch_seq {
int32_t n_seq_id;
llama_seq_id * seq_id;
size_t offset;
size_t length;
};
// sequence-length-aware batch splitting
struct llama_sbatch {
// tokens left in this batch
size_t n_tokens;
size_t n_embd;
bool logits_all; // TODO: remove once lctx.logits_all is removed too
// sorted indices into the batch
std::vector<size_t> ids;
// batch indices of the output
std::vector<size_t> out_ids;
std::vector<llama_sbatch_seq> seq;
const llama_batch * batch = nullptr;
// buffers for the ubatch
std::vector<llama_token> ubatch_token;
std::vector<float> ubatch_embd;
std::vector<llama_pos> ubatch_pos;
std::vector<int32_t> ubatch_n_seq_id;
std::vector<llama_seq_id *> ubatch_seq_id;
std::vector<int8_t> ubatch_output;
llama_ubatch reserve_ubatch(size_t n_ubatch, bool has_embd = false);
void add_seq_to_ubatch(llama_ubatch & ubatch, llama_sbatch_seq & seq, size_t length);
// simple split, unknown number of sequences of unequal lengths
llama_ubatch split_simple(size_t n_ubatch);
// make batches of equal-length sequences
llama_ubatch split_equal(size_t n_ubatch);
// sequence-wise split
llama_ubatch split_seq(size_t n_ubatch);
void from_batch(const llama_batch & batch, size_t n_embd, bool simple_split = false, bool logits_all = false);
};
// temporary allocate memory for the input batch if needed
struct llama_batch_allocr {
struct llama_batch batch;
std::array<llama_seq_id, 1> seq_id_0 = { 0 }; // default sequence id
std::vector<llama_pos> pos;
std::vector<int32_t> n_seq_id;
std::vector<llama_seq_id *> seq_id;
std::vector<int8_t> logits;
// optionally fulfill the batch returned by llama_batch_get_one
llama_batch_allocr(struct llama_batch in_batch, llama_pos p0);
};

549
src/llama-chat.cpp Normal file
View File

@ -0,0 +1,549 @@
#include "llama-chat.h"
#include "llama.h"
#include <map>
#include <sstream>
#if __cplusplus >= 202000L
#define LU8(x) (const char*)(u8##x)
#else
#define LU8(x) u8##x
#endif
// trim whitespace from the beginning and end of a string
static std::string trim(const std::string & str) {
size_t start = 0;
size_t end = str.size();
while (start < end && isspace(str[start])) {
start += 1;
}
while (end > start && isspace(str[end - 1])) {
end -= 1;
}
return str.substr(start, end - start);
}
static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
{ "chatml", LLM_CHAT_TEMPLATE_CHATML },
{ "llama2", LLM_CHAT_TEMPLATE_LLAMA_2 },
{ "llama2-sys", LLM_CHAT_TEMPLATE_LLAMA_2_SYS },
{ "llama2-sys-bos", LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS },
{ "llama2-sys-strip", LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP },
{ "mistral-v1", LLM_CHAT_TEMPLATE_MISTRAL_V1 },
{ "mistral-v3", LLM_CHAT_TEMPLATE_MISTRAL_V3 },
{ "mistral-v3-tekken", LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN },
{ "mistral-v7", LLM_CHAT_TEMPLATE_MISTRAL_V7 },
{ "phi3", LLM_CHAT_TEMPLATE_PHI_3 },
{ "falcon3", LLM_CHAT_TEMPLATE_FALCON_3 },
{ "zephyr", LLM_CHAT_TEMPLATE_ZEPHYR },
{ "monarch", LLM_CHAT_TEMPLATE_MONARCH },
{ "gemma", LLM_CHAT_TEMPLATE_GEMMA },
{ "orion", LLM_CHAT_TEMPLATE_ORION },
{ "openchat", LLM_CHAT_TEMPLATE_OPENCHAT },
{ "vicuna", LLM_CHAT_TEMPLATE_VICUNA },
{ "vicuna-orca", LLM_CHAT_TEMPLATE_VICUNA_ORCA },
{ "deepseek", LLM_CHAT_TEMPLATE_DEEPSEEK },
{ "deepseek2", LLM_CHAT_TEMPLATE_DEEPSEEK_2 },
{ "command-r", LLM_CHAT_TEMPLATE_COMMAND_R },
{ "llama3", LLM_CHAT_TEMPLATE_LLAMA_3 },
{ "chatglm3", LLM_CHAT_TEMPLATE_CHATGML_3 },
{ "chatglm4", LLM_CHAT_TEMPLATE_CHATGML_4 },
{ "minicpm", LLM_CHAT_TEMPLATE_MINICPM },
{ "exaone3", LLM_CHAT_TEMPLATE_EXAONE_3 },
{ "rwkv-world", LLM_CHAT_TEMPLATE_RWKV_WORLD },
{ "granite", LLM_CHAT_TEMPLATE_GRANITE },
{ "gigachat", LLM_CHAT_TEMPLATE_GIGACHAT },
{ "megrez", LLM_CHAT_TEMPLATE_MEGREZ },
};
llm_chat_template llm_chat_template_from_str(const std::string & name) {
return LLM_CHAT_TEMPLATES.at(name);
}
llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
try {
return llm_chat_template_from_str(tmpl);
} catch (const std::out_of_range &) {
// ignore
}
auto tmpl_contains = [&tmpl](const char * haystack) -> bool {
return tmpl.find(haystack) != std::string::npos;
};
if (tmpl_contains("<|im_start|>")) {
return LLM_CHAT_TEMPLATE_CHATML;
} else if (tmpl.find("mistral") == 0 || tmpl_contains("[INST]")) {
if (tmpl_contains("[SYSTEM_PROMPT]")) {
return LLM_CHAT_TEMPLATE_MISTRAL_V7;
} else if (
// catches official 'v1' template
tmpl_contains("' [INST] ' + system_message")
// catches official 'v3' and 'v3-tekken' templates
|| tmpl_contains("[AVAILABLE_TOOLS]")
) {
// Official mistral 'v1', 'v3' and 'v3-tekken' templates
// See: https://github.com/mistralai/cookbook/blob/main/concept-deep-dive/tokenization/chat_templates.md
// See: https://github.com/mistralai/cookbook/blob/main/concept-deep-dive/tokenization/templates.md
if (tmpl_contains(" [INST]")) {
return LLM_CHAT_TEMPLATE_MISTRAL_V1;
} else if (tmpl_contains("\"[INST]\"")) {
return LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN;
}
return LLM_CHAT_TEMPLATE_MISTRAL_V3;
} else {
// llama2 template and its variants
// [variant] support system message
// See: https://huggingface.co/blog/llama2#how-to-prompt-llama-2
bool support_system_message = tmpl_contains("<<SYS>>");
bool add_bos_inside_history = tmpl_contains("bos_token + '[INST]");
bool strip_message = tmpl_contains("content.strip()");
if (strip_message) {
return LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP;
} else if (add_bos_inside_history) {
return LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS;
} else if (support_system_message) {
return LLM_CHAT_TEMPLATE_LLAMA_2_SYS;
} else {
return LLM_CHAT_TEMPLATE_LLAMA_2;
}
}
} else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|end|>")) {
return LLM_CHAT_TEMPLATE_PHI_3;
} else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|user|>")) {
return LLM_CHAT_TEMPLATE_FALCON_3;
} else if (tmpl_contains("<|user|>") && tmpl_contains("<|endoftext|>")) {
return LLM_CHAT_TEMPLATE_ZEPHYR;
} else if (tmpl_contains("bos_token + message['role']")) {
return LLM_CHAT_TEMPLATE_MONARCH;
} else if (tmpl_contains("<start_of_turn>")) {
return LLM_CHAT_TEMPLATE_GEMMA;
} else if (tmpl_contains("'\\n\\nAssistant: ' + eos_token")) {
// OrionStarAI/Orion-14B-Chat
return LLM_CHAT_TEMPLATE_ORION;
} else if (tmpl_contains("GPT4 Correct ")) {
// openchat/openchat-3.5-0106
return LLM_CHAT_TEMPLATE_OPENCHAT;
} else if (tmpl_contains("USER: ") && tmpl_contains("ASSISTANT: ")) {
// eachadea/vicuna-13b-1.1 (and Orca variant)
if (tmpl_contains("SYSTEM: ")) {
return LLM_CHAT_TEMPLATE_VICUNA_ORCA;
}
return LLM_CHAT_TEMPLATE_VICUNA;
} else if (tmpl_contains("### Instruction:") && tmpl_contains("<|EOT|>")) {
// deepseek-ai/deepseek-coder-33b-instruct
return LLM_CHAT_TEMPLATE_DEEPSEEK;
} else if (tmpl_contains("<|START_OF_TURN_TOKEN|>") && tmpl_contains("<|USER_TOKEN|>")) {
// CohereForAI/c4ai-command-r-plus
return LLM_CHAT_TEMPLATE_COMMAND_R;
} else if (tmpl_contains("<|start_header_id|>") && tmpl_contains("<|end_header_id|>")) {
return LLM_CHAT_TEMPLATE_LLAMA_3;
} else if (tmpl_contains("[gMASK]sop")) {
// chatglm3-6b
return LLM_CHAT_TEMPLATE_CHATGML_3;
} else if (tmpl_contains("[gMASK]<sop>")) {
return LLM_CHAT_TEMPLATE_CHATGML_4;
} else if (tmpl_contains(LU8("<用户>"))) {
// MiniCPM-3B-OpenHermes-2.5-v2-GGUF
return LLM_CHAT_TEMPLATE_MINICPM;
} else if (tmpl_contains("'Assistant: ' + message['content'] + eos_token")) {
return LLM_CHAT_TEMPLATE_DEEPSEEK_2;
} else if (tmpl_contains("[|system|]") && tmpl_contains("[|assistant|]") && tmpl_contains("[|endofturn|]")) {
// ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/discussions/8#66bae61b1893d14ee8ed85bb
// EXAONE-3.0-7.8B-Instruct
return LLM_CHAT_TEMPLATE_EXAONE_3;
} else if (tmpl_contains("rwkv-world")) {
return LLM_CHAT_TEMPLATE_RWKV_WORLD;
} else if (tmpl_contains("<|start_of_role|>")) {
return LLM_CHAT_TEMPLATE_GRANITE;
} else if (tmpl_contains("message['role'] + additional_special_tokens[0] + message['content'] + additional_special_tokens[1]")) {
return LLM_CHAT_TEMPLATE_GIGACHAT;
} else if (tmpl_contains("<|role_start|>")) {
return LLM_CHAT_TEMPLATE_MEGREZ;
}
return LLM_CHAT_TEMPLATE_UNKNOWN;
}
// Simple version of "llama_apply_chat_template" that only works with strings
// This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
int32_t llm_chat_apply_template(
llm_chat_template tmpl,
const std::vector<const llama_chat_message *> & chat,
std::string & dest, bool add_ass) {
// Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
std::stringstream ss;
if (tmpl == LLM_CHAT_TEMPLATE_CHATML) {
// chatml template
for (auto message : chat) {
ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
}
if (add_ass) {
ss << "<|im_start|>assistant\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V7) {
// Official mistral 'v7' template
// See: https://huggingface.co/mistralai/Mistral-Large-Instruct-2411#basic-instruct-template-v7
for (auto message : chat) {
std::string role(message->role);
std::string content(message->content);
if (role == "system") {
ss << "[SYSTEM_PROMPT] " << content << "[/SYSTEM_PROMPT]";
} else if (role == "user") {
ss << "[INST] " << content << "[/INST]";
}
else {
ss << " " << content << "</s>";
}
}
} else if (tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V1
|| tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V3
|| tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN) {
// See: https://github.com/mistralai/cookbook/blob/main/concept-deep-dive/tokenization/chat_templates.md
// See: https://github.com/mistralai/cookbook/blob/main/concept-deep-dive/tokenization/templates.md
std::string leading_space = tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V1 ? " " : "";
std::string trailing_space = tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN ? "" : " ";
bool trim_assistant_message = tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V3;
bool is_inside_turn = false;
for (auto message : chat) {
if (!is_inside_turn) {
ss << leading_space << "[INST]" << trailing_space;
is_inside_turn = true;
}
std::string role(message->role);
std::string content(message->content);
if (role == "system") {
ss << content << "\n\n";
} else if (role == "user") {
ss << content << leading_space << "[/INST]";
} else {
ss << trailing_space << (trim_assistant_message ? trim(content) : content) << "</s>";
is_inside_turn = false;
}
}
} else if (
tmpl == LLM_CHAT_TEMPLATE_LLAMA_2
|| tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS
|| tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS
|| tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP) {
// llama2 template and its variants
// [variant] support system message
// See: https://huggingface.co/blog/llama2#how-to-prompt-llama-2
bool support_system_message = tmpl != LLM_CHAT_TEMPLATE_LLAMA_2;
// [variant] add BOS inside history
bool add_bos_inside_history = tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS;
// [variant] trim spaces from the input message
bool strip_message = tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP;
// construct the prompt
bool is_inside_turn = true; // skip BOS at the beginning
ss << "[INST] ";
for (auto message : chat) {
std::string content = strip_message ? trim(message->content) : message->content;
std::string role(message->role);
if (!is_inside_turn) {
is_inside_turn = true;
ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
}
if (role == "system") {
if (support_system_message) {
ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
} else {
// if the model does not support system message, we still include it in the first message, but without <<SYS>>
ss << content << "\n";
}
} else if (role == "user") {
ss << content << " [/INST]";
} else {
ss << content << "</s>";
is_inside_turn = false;
}
}
} else if (tmpl == LLM_CHAT_TEMPLATE_PHI_3) {
// Phi 3
for (auto message : chat) {
std::string role(message->role);
ss << "<|" << role << "|>\n" << message->content << "<|end|>\n";
}
if (add_ass) {
ss << "<|assistant|>\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_FALCON_3) {
// Falcon 3
for (auto message : chat) {
std::string role(message->role);
ss << "<|" << role << "|>\n" << message->content << "\n";
}
if (add_ass) {
ss << "<|assistant|>\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_ZEPHYR) {
// zephyr template
for (auto message : chat) {
ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
}
if (add_ass) {
ss << "<|assistant|>\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_MONARCH) {
// mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
for (auto message : chat) {
std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
ss << bos << message->role << "\n" << message->content << "</s>\n";
}
if (add_ass) {
ss << "<s>assistant\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_GEMMA) {
// google/gemma-7b-it
std::string system_prompt = "";
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
// there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
system_prompt = trim(message->content);
continue;
}
// in gemma, "assistant" is "model"
role = role == "assistant" ? "model" : message->role;
ss << "<start_of_turn>" << role << "\n";
if (!system_prompt.empty() && role != "model") {
ss << system_prompt << "\n\n";
system_prompt = "";
}
ss << trim(message->content) << "<end_of_turn>\n";
}
if (add_ass) {
ss << "<start_of_turn>model\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_ORION) {
// OrionStarAI/Orion-14B-Chat
std::string system_prompt = "";
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
// there is no system message support, we will merge it with user prompt
system_prompt = message->content;
continue;
} else if (role == "user") {
ss << "Human: ";
if (!system_prompt.empty()) {
ss << system_prompt << "\n\n";
system_prompt = "";
}
ss << message->content << "\n\nAssistant: </s>";
} else {
ss << message->content << "</s>";
}
}
} else if (tmpl == LLM_CHAT_TEMPLATE_OPENCHAT) {
// openchat/openchat-3.5-0106,
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
ss << message->content << "<|end_of_turn|>";
} else {
role[0] = toupper(role[0]);
ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
}
}
if (add_ass) {
ss << "GPT4 Correct Assistant:";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_VICUNA || tmpl == LLM_CHAT_TEMPLATE_VICUNA_ORCA) {
// eachadea/vicuna-13b-1.1 (and Orca variant)
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
// Orca-Vicuna variant uses a system prefix
if (tmpl == LLM_CHAT_TEMPLATE_VICUNA_ORCA) {
ss << "SYSTEM: " << message->content << "\n";
} else {
ss << message->content << "\n\n";
}
} else if (role == "user") {
ss << "USER: " << message->content << "\n";
} else if (role == "assistant") {
ss << "ASSISTANT: " << message->content << "</s>\n";
}
}
if (add_ass) {
ss << "ASSISTANT:";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_DEEPSEEK) {
// deepseek-ai/deepseek-coder-33b-instruct
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
ss << message->content;
} else if (role == "user") {
ss << "### Instruction:\n" << message->content << "\n";
} else if (role == "assistant") {
ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
}
}
if (add_ass) {
ss << "### Response:\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_COMMAND_R) {
// CohereForAI/c4ai-command-r-plus
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
} else if (role == "user") {
ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
} else if (role == "assistant") {
ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
}
}
if (add_ass) {
ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_LLAMA_3) {
// Llama 3
for (auto message : chat) {
std::string role(message->role);
ss << "<|start_header_id|>" << role << "<|end_header_id|>\n\n" << trim(message->content) << "<|eot_id|>";
}
if (add_ass) {
ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_CHATGML_3) {
// chatglm3-6b
ss << "[gMASK]" << "sop";
for (auto message : chat) {
std::string role(message->role);
ss << "<|" << role << "|>" << "\n " << message->content;
}
if (add_ass) {
ss << "<|assistant|>";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_CHATGML_4) {
ss << "[gMASK]" << "<sop>";
for (auto message : chat) {
std::string role(message->role);
ss << "<|" << role << "|>" << "\n" << message->content;
}
if (add_ass) {
ss << "<|assistant|>";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_MINICPM) {
// MiniCPM-3B-OpenHermes-2.5-v2-GGUF
for (auto message : chat) {
std::string role(message->role);
if (role == "user") {
ss << LU8("<用户>");
ss << trim(message->content);
ss << "<AI>";
} else {
ss << trim(message->content);
}
}
} else if (tmpl == LLM_CHAT_TEMPLATE_DEEPSEEK_2) {
// DeepSeek-V2
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
ss << message->content << "\n\n";
} else if (role == "user") {
ss << "User: " << message->content << "\n\n";
} else if (role == "assistant") {
ss << "Assistant: " << message->content << LU8("<end▁of▁sentence>");
}
}
if (add_ass) {
ss << "Assistant:";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_EXAONE_3) {
// ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/discussions/8#66bae61b1893d14ee8ed85bb
// EXAONE-3.0-7.8B-Instruct
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
ss << "[|system|]" << trim(message->content) << "[|endofturn|]\n";
} else if (role == "user") {
ss << "[|user|]" << trim(message->content) << "\n";
} else if (role == "assistant") {
ss << "[|assistant|]" << trim(message->content) << "[|endofturn|]\n";
}
}
if (add_ass) {
ss << "[|assistant|]";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_RWKV_WORLD) {
// this template requires the model to have "\n\n" as EOT token
for (auto message : chat) {
std::string role(message->role);
if (role == "user") {
ss << "User: " << message->content << "\n\nAssistant:";
} else {
ss << message->content << "\n\n";
}
}
} else if (tmpl == LLM_CHAT_TEMPLATE_GRANITE) {
// IBM Granite template
for (const auto & message : chat) {
std::string role(message->role);
ss << "<|start_of_role|>" << role << "<|end_of_role|>";
if (role == "assistant_tool_call") {
ss << "<|tool_call|>";
}
ss << message->content << "<|end_of_text|>\n";
}
if (add_ass) {
ss << "<|start_of_role|>assistant<|end_of_role|>\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_GIGACHAT) {
// GigaChat template
bool has_system = !chat.empty() && std::string(chat[0]->role) == "system";
// Handle system message if present
if (has_system) {
ss << "<s>" << chat[0]->content << "<|message_sep|>";
} else {
ss << "<s>";
}
// Process remaining messages
for (size_t i = has_system ? 1 : 0; i < chat.size(); i++) {
std::string role(chat[i]->role);
if (role == "user") {
ss << "user<|role_sep|>" << chat[i]->content << "<|message_sep|>"
<< "available functions<|role_sep|>[]<|message_sep|>";
} else if (role == "assistant") {
ss << "assistant<|role_sep|>" << chat[i]->content << "<|message_sep|>";
}
}
// Add generation prompt if needed
if (add_ass) {
ss << "assistant<|role_sep|>";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_MEGREZ) {
// Megrez template
for (auto message : chat) {
std::string role(message->role);
ss << "<|role_start|>" << role << "<|role_end|>" << message->content << "<|turn_end|>";
}
if (add_ass) {
ss << "<|role_start|>assistant<|role_end|>";
}
} else {
// template not supported
return -1;
}
dest = ss.str();
return dest.size();
}
// public interface
int32_t llama_chat_builtin_templates(const char ** output, size_t len) {
auto it = LLM_CHAT_TEMPLATES.begin();
for (size_t i = 0; i < std::min(len, LLM_CHAT_TEMPLATES.size()); i++) {
output[i] = it->first.c_str();
std::advance(it, 1);
}
return (int32_t) LLM_CHAT_TEMPLATES.size();
}

50
src/llama-chat.h Normal file
View File

@ -0,0 +1,50 @@
#pragma once
#include <string>
#include <vector>
#include <cstdint>
enum llm_chat_template {
LLM_CHAT_TEMPLATE_CHATML,
LLM_CHAT_TEMPLATE_LLAMA_2,
LLM_CHAT_TEMPLATE_LLAMA_2_SYS,
LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS,
LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP,
LLM_CHAT_TEMPLATE_MISTRAL_V1,
LLM_CHAT_TEMPLATE_MISTRAL_V3,
LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN,
LLM_CHAT_TEMPLATE_MISTRAL_V7,
LLM_CHAT_TEMPLATE_PHI_3,
LLM_CHAT_TEMPLATE_FALCON_3,
LLM_CHAT_TEMPLATE_ZEPHYR,
LLM_CHAT_TEMPLATE_MONARCH,
LLM_CHAT_TEMPLATE_GEMMA,
LLM_CHAT_TEMPLATE_ORION,
LLM_CHAT_TEMPLATE_OPENCHAT,
LLM_CHAT_TEMPLATE_VICUNA,
LLM_CHAT_TEMPLATE_VICUNA_ORCA,
LLM_CHAT_TEMPLATE_DEEPSEEK,
LLM_CHAT_TEMPLATE_DEEPSEEK_2,
LLM_CHAT_TEMPLATE_COMMAND_R,
LLM_CHAT_TEMPLATE_LLAMA_3,
LLM_CHAT_TEMPLATE_CHATGML_3,
LLM_CHAT_TEMPLATE_CHATGML_4,
LLM_CHAT_TEMPLATE_MINICPM,
LLM_CHAT_TEMPLATE_EXAONE_3,
LLM_CHAT_TEMPLATE_RWKV_WORLD,
LLM_CHAT_TEMPLATE_GRANITE,
LLM_CHAT_TEMPLATE_GIGACHAT,
LLM_CHAT_TEMPLATE_MEGREZ,
LLM_CHAT_TEMPLATE_UNKNOWN,
};
struct llama_chat_message;
llm_chat_template llm_chat_template_from_str(const std::string & name);
llm_chat_template llm_chat_detect_template(const std::string & tmpl);
int32_t llm_chat_apply_template(
llm_chat_template tmpl,
const std::vector<const llama_chat_message *> & chat,
std::string & dest, bool add_ass);

1337
src/llama-context.cpp Normal file

File diff suppressed because it is too large Load Diff

126
src/llama-context.h Normal file
View File

@ -0,0 +1,126 @@
#pragma once
#include "llama-impl.h"
#include "llama-batch.h"
#include "llama-cparams.h"
#include "llama-model.h"
#include "llama-kv-cache.h"
#include "llama-adapter.h"
#include "ggml-cpp.h"
#include <map>
#include <unordered_map>
#include <vector>
#include <set>
struct llama_context {
llama_context(const llama_model & model)
: model(model)
, t_start_us(model.t_start_us)
, t_load_us(model.t_load_us) {}
const struct llama_model & model;
struct llama_cparams cparams;
struct llama_sbatch sbatch; // TODO: revisit if needed
struct llama_kv_cache kv_self;
struct llama_control_vector cvec;
std::unordered_map<struct llama_lora_adapter *, float> lora_adapters;
std::vector<ggml_backend_ptr> backends;
std::vector<std::pair<ggml_backend_t, ggml_backend_set_n_threads_t>> set_n_threads_fns;
ggml_backend_t backend_cpu = nullptr;
ggml_threadpool_t threadpool = nullptr;
ggml_threadpool_t threadpool_batch = nullptr;
bool has_evaluated_once = false;
mutable int64_t t_start_us;
mutable int64_t t_load_us;
mutable int64_t t_p_eval_us = 0;
mutable int64_t t_eval_us = 0;
mutable int64_t t_compute_start_us = 0;
mutable int64_t n_queued_tokens = 0;
mutable int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
mutable int32_t n_eval = 0; // number of eval calls
// host buffer for the model output (logits and embeddings)
ggml_backend_buffer_ptr buf_output;
// decode output (2-dimensional array: [n_outputs][n_vocab])
size_t logits_size = 0; // capacity (of floats) for logits
float * logits = nullptr;
std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
size_t output_size = 0; // capacity (of tokens positions) for the output buffers
int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
bool logits_all = false;
// embeddings output (2-dimensional array: [n_outputs][n_embd])
// populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
size_t embd_size = 0; // capacity (of floats) for embeddings
float * embd = nullptr;
// sequence embeddings output (map of [n_embd] vectors)
// populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
std::map<llama_seq_id, std::vector<float>> embd_seq;
// whether we are computing encoder output or decoder output
bool is_encoding = false;
// TODO: find a better way to accommodate mutli-dimension position encoding methods
// number of position id each token get, 1 for each token in most cases.
// when using m-rope, it will be 3 position ids per token to representing 3 dimension coordinate.
int n_pos_per_token = 1;
// output of the encoder part of the encoder-decoder models
std::vector<float> embd_enc;
std::vector<std::set<llama_seq_id>> seq_ids_enc;
// memory buffers used to evaluate the model
std::vector<uint8_t> buf_compute_meta;
ggml_backend_sched_ptr sched;
ggml_abort_callback abort_callback = nullptr;
void * abort_callback_data = nullptr;
// input tensors
struct ggml_tensor * inp_tokens; // I32 [n_batch]
struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
struct ggml_tensor * inp_pos; // I32 [n_batch]
struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
struct ggml_tensor * inp_KQ_mask_swa; // F32 [kv_size, n_batch]
struct ggml_tensor * inp_K_shift; // I32 [kv_size]
struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
struct ggml_tensor * inp_cls; // I32 [n_batch]
struct ggml_tensor * inp_s_copy; // I32 [kv_size]
struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
struct ggml_tensor * inp_pos_bucket; // I32 [n_batch|n_kv, n_batch]
struct ggml_tensor * inp_embd_enc; // F32 [n_embd, n_outputs_enc]
struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch]
};
// TODO: make these methods of llama_context
void llama_set_k_shift(struct llama_context & lctx);
void llama_set_s_copy(struct llama_context & lctx);
// Make sure enough space is available for outputs.
// Returns max number of outputs for which space was reserved.
size_t llama_output_reserve(struct llama_context & lctx, size_t n_outputs);
// make the outputs have the same order they had in the user-provided batch
void llama_output_reorder(struct llama_context & ctx);
// For internal test use
// TODO: remove
const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(struct llama_context * ctx);

1
src/llama-cparams.cpp Normal file
View File

@ -0,0 +1 @@
#include "llama-cparams.h"

37
src/llama-cparams.h Normal file
View File

@ -0,0 +1,37 @@
#pragma once
#include "llama.h"
#include <cstdint>
struct llama_cparams {
uint32_t n_ctx; // context size used during inference
uint32_t n_batch;
uint32_t n_ubatch;
uint32_t n_seq_max;
int n_threads; // number of threads to use for generation
int n_threads_batch; // number of threads to use for batch processing
float rope_freq_base;
float rope_freq_scale;
uint32_t n_ctx_orig_yarn;
// These hyperparameters are not exposed in GGUF, because all
// existing YaRN models use the same values for them.
float yarn_ext_factor;
float yarn_attn_factor;
float yarn_beta_fast;
float yarn_beta_slow;
float defrag_thold;
bool embeddings;
bool causal_attn;
bool offload_kqv;
bool flash_attn;
bool no_perf;
enum llama_pooling_type pooling_type;
ggml_backend_sched_eval_callback cb_eval;
void * cb_eval_user_data;
};

View File

@ -1,5 +1,6 @@
#include "llama-grammar.h" #include "llama-grammar.h"
#include "llama-impl.h"
#include "llama-vocab.h" #include "llama-vocab.h"
#include "llama-sampling.h" #include "llama-sampling.h"

View File

@ -1,8 +1,10 @@
#pragma once #pragma once
#include "llama-impl.h" #include "llama.h"
#include <map> #include <map>
#include <string>
#include <vector>
struct llama_vocab; struct llama_vocab;

71
src/llama-hparams.cpp Normal file
View File

@ -0,0 +1,71 @@
#include "llama-hparams.h"
#include "ggml.h"
uint32_t llama_hparams::n_head(uint32_t il) const {
if (il < n_layer) {
return n_head_arr[il];
}
GGML_ABORT("fatal error");
}
uint32_t llama_hparams::n_head_kv(uint32_t il) const {
if (il < n_layer) {
return n_head_kv_arr[il];
}
GGML_ABORT("fatal error");
}
uint32_t llama_hparams::n_ff(uint32_t il) const {
if (il < n_layer) {
return n_ff_arr[il];
}
GGML_ABORT("fatal error");
}
uint32_t llama_hparams::n_gqa(uint32_t il) const {
const uint32_t n_head = this->n_head(il);
const uint32_t n_head_kv = this->n_head_kv(il);
if (n_head_kv == 0) {
return 0;
}
return n_head/n_head_kv;
}
uint32_t llama_hparams::n_embd_k_gqa(uint32_t il) const {
const uint32_t n_head_kv = this->n_head_kv(il);
return n_embd_head_k * n_head_kv;
}
uint32_t llama_hparams::n_embd_v_gqa(uint32_t il) const {
const uint32_t n_head_kv = this->n_head_kv(il);
return n_embd_head_v * n_head_kv;
}
uint32_t llama_hparams::n_embd_k_s() const {
if (wkv_head_size != 0) {
// for RWKV models
return 2 * n_embd;
}
// TODO: maybe support other convolution strides than 1
// NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
}
uint32_t llama_hparams::n_embd_v_s() const {
if (wkv_head_size != 0) {
// corresponds to RWKV's wkv_states size
return n_embd * wkv_head_size;
}
// corresponds to Mamba's ssm_states size
return ssm_d_state * ssm_d_inner;
}

131
src/llama-hparams.h Normal file
View File

@ -0,0 +1,131 @@
#pragma once
#include "llama.h"
#include <array>
// bump if necessary
#define LLAMA_MAX_LAYERS 512
#define LLAMA_MAX_EXPERTS 160 // DeepSeekV2
struct llama_hparams_posnet {
uint32_t n_embd;
uint32_t n_layer;
};
struct llama_hparams_convnext {
uint32_t n_embd;
uint32_t n_layer;
};
struct llama_hparams {
bool vocab_only;
bool rope_finetuned;
bool use_par_res;
bool swin_norm;
uint32_t n_vocab = 0;
uint32_t n_ctx_train; // context size the model was trained on
uint32_t n_embd;
uint32_t n_embd_features = 0;
uint32_t n_layer;
uint32_t n_rot;
uint32_t n_swa = 0; // sliding window attention (SWA)
uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
uint32_t n_expert = 0;
uint32_t n_expert_used = 0;
uint32_t n_vocab_type = 0; // for BERT-style token types
uint32_t n_rel_attn_bkts = 0;
// for WavTokenizer
struct llama_hparams_posnet posnet;
struct llama_hparams_convnext convnext;
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_arr;
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
uint32_t n_layer_dense_lead = 0;
uint32_t n_lora_q = 0;
uint32_t n_lora_kv = 0;
uint32_t n_ff_exp = 0;
uint32_t n_ff_shexp = 0;
uint32_t n_expert_shared = 0;
uint32_t n_norm_groups = 0;
float expert_weights_scale = 0.0;
float f_norm_eps;
float f_norm_rms_eps;
float f_norm_group_eps;
float f_attn_logit_softcapping = 50.0f;
float f_final_logit_softcapping = 30.0f;
// for RWKV
uint32_t rescale_every_n_layers = 0;
uint32_t time_mix_extra_dim = 0;
uint32_t time_decay_extra_dim = 0;
uint32_t wkv_head_size = 0;
float rope_attn_factor = 1.0f;
float rope_freq_base_train;
float rope_freq_scale_train;
uint32_t n_ctx_orig_yarn;
float rope_yarn_log_mul;
int rope_sections[4]; // TODO: actually this should be std::array (I was wrong)
// for State Space Models
uint32_t ssm_d_conv = 0;
uint32_t ssm_d_inner = 0;
uint32_t ssm_d_state = 0;
uint32_t ssm_dt_rank = 0;
bool ssm_dt_b_c_rms = false;
float f_clamp_kqv = 0.0f;
float f_max_alibi_bias = 0.0f;
float f_logit_scale = 0.0f;
// Additional scale factors (Granite/Granite MoE)
float f_residual_scale = 0.0f;
float f_embedding_scale = 0.0f;
float f_attention_scale = 0.0f;
bool causal_attn = true;
bool use_alibi = false;
bool attn_soft_cap = false;
// needed by encoder-decoder models (e.g. T5, FLAN-T5)
// ref: https://github.com/ggerganov/llama.cpp/pull/8141
llama_token dec_start_token_id = LLAMA_TOKEN_NULL;
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
uint32_t n_head(uint32_t il = 0) const;
uint32_t n_head_kv(uint32_t il = 0) const;
uint32_t n_ff(uint32_t il = 0) const;
uint32_t n_gqa(uint32_t il = 0) const;
// dimension of key embeddings across all k-v heads
uint32_t n_embd_k_gqa(uint32_t il = 0) const;
// dimension of value embeddings across all k-v heads
uint32_t n_embd_v_gqa(uint32_t il = 0) const;
// dimension of the rolling state embeddings
// corresponds to Mamba's conv_states size or RWKV's token_shift states size
uint32_t n_embd_k_s() const;
// dimension of the recurrent state embeddings
uint32_t n_embd_v_s() const;
};
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");

91
src/llama-impl.cpp Normal file
View File

@ -0,0 +1,91 @@
#include "llama-impl.h"
#include "llama.h"
#include <climits>
#include <cstdarg>
#include <vector>
struct llama_logger_state {
ggml_log_callback log_callback = llama_log_callback_default;
void * log_callback_user_data = nullptr;
};
static llama_logger_state g_logger_state;
time_meas::time_meas(int64_t & t_acc, bool disable) : t_start_us(disable ? -1 : ggml_time_us()), t_acc(t_acc) {}
time_meas::~time_meas() {
if (t_start_us >= 0) {
t_acc += ggml_time_us() - t_start_us;
}
}
void llama_log_set(ggml_log_callback log_callback, void * user_data) {
ggml_log_set(log_callback, user_data);
g_logger_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
g_logger_state.log_callback_user_data = user_data;
}
static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
va_list args_copy;
va_copy(args_copy, args);
char buffer[128];
int len = vsnprintf(buffer, 128, format, args);
if (len < 128) {
g_logger_state.log_callback(level, buffer, g_logger_state.log_callback_user_data);
} else {
char * buffer2 = new char[len + 1];
vsnprintf(buffer2, len + 1, format, args_copy);
buffer2[len] = 0;
g_logger_state.log_callback(level, buffer2, g_logger_state.log_callback_user_data);
delete[] buffer2;
}
va_end(args_copy);
}
void llama_log_internal(ggml_log_level level, const char * format, ...) {
va_list args;
va_start(args, format);
llama_log_internal_v(level, format, args);
va_end(args);
}
void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
(void) level;
(void) user_data;
fputs(text, stderr);
fflush(stderr);
}
void replace_all(std::string & s, const std::string & search, const std::string & replace) {
if (search.empty()) {
return;
}
std::string builder;
builder.reserve(s.length());
size_t pos = 0;
size_t last_pos = 0;
while ((pos = s.find(search, last_pos)) != std::string::npos) {
builder.append(s, last_pos, pos - last_pos);
builder.append(replace);
last_pos = pos + search.length();
}
builder.append(s, last_pos, std::string::npos);
s = std::move(builder);
}
std::string format(const char * fmt, ...) {
va_list ap;
va_list ap2;
va_start(ap, fmt);
va_copy(ap2, ap);
int size = vsnprintf(NULL, 0, fmt, ap);
GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
std::vector<char> buf(size + 1);
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
GGML_ASSERT(size2 == size);
va_end(ap2);
va_end(ap);
return std::string(buf.data(), size);
}

View File

@ -1,10 +1,8 @@
#pragma once #pragma once
#include "llama.h" #include "ggml.h" // for ggml_log_level
#include <string> #include <string>
#include <vector>
#include <stdexcept>
#ifdef __GNUC__ #ifdef __GNUC__
#ifdef __MINGW32__ #ifdef __MINGW32__
@ -36,146 +34,16 @@ void llama_log_callback_default(ggml_log_level level, const char * text, void *
// //
struct time_meas { struct time_meas {
time_meas(int64_t & t_acc, bool disable = false) : t_start_us(disable ? -1 : ggml_time_us()), t_acc(t_acc) {} time_meas(int64_t & t_acc, bool disable = false);
~time_meas();
~time_meas() {
if (t_start_us >= 0) {
t_acc += ggml_time_us() - t_start_us;
}
}
const int64_t t_start_us; const int64_t t_start_us;
int64_t & t_acc; int64_t & t_acc;
}; };
static void replace_all(std::string & s, const std::string & search, const std::string & replace) { void replace_all(std::string & s, const std::string & search, const std::string & replace);
if (search.empty()) {
return;
}
std::string builder;
builder.reserve(s.length());
size_t pos = 0;
size_t last_pos = 0;
while ((pos = s.find(search, last_pos)) != std::string::npos) {
builder.append(s, last_pos, pos - last_pos);
builder.append(replace);
last_pos = pos + search.length();
}
builder.append(s, last_pos, std::string::npos);
s = std::move(builder);
}
const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map( // TODO: rename to llama_format ?
struct llama_context * ctx LLAMA_ATTRIBUTE_FORMAT(1, 2)
); std::string format(const char * fmt, ...);
// the ring buffer works similarly to std::deque, but with a fixed capacity
template<typename T>
struct ring_buffer {
ring_buffer(size_t cap) : capacity(cap), data(cap) {}
T & front() {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
return data[first];
}
const T & front() const {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
return data[first];
}
T & back() {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
return data[pos];
}
const T & back() const {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
return data[pos];
}
void push_back(const T & value) {
if (capacity == 0) {
throw std::runtime_error("ring buffer: capacity is zero");
}
if (sz == capacity) {
// advance the start when buffer is full
first = (first + 1) % capacity;
} else {
sz++;
}
data[pos] = value;
pos = (pos + 1) % capacity;
}
T pop_front() {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
T value = data[first];
first = (first + 1) % capacity;
sz--;
return value;
}
//T & operator[](size_t i) {
// if (i >= sz) {
// throw std::runtime_error("ring buffer: index out of bounds");
// }
// return data[(first + i) % capacity];
//}
//const T & at(size_t i) const {
// if (i >= sz) {
// throw std::runtime_error("ring buffer: index out of bounds");
// }
// return data[(first + i) % capacity];
//}
const T & rat(size_t i) const {
if (i >= sz) {
throw std::runtime_error("ring buffer: index out of bounds");
}
return data[(first + sz - i - 1) % capacity];
}
std::vector<T> to_vector() const {
std::vector<T> result;
result.reserve(sz);
for (size_t i = 0; i < sz; i++) {
result.push_back(data[(first + i) % capacity]);
}
return result;
}
void clear() {
// here only reset the status of the buffer
sz = 0;
first = 0;
pos = 0;
}
bool empty() const {
return sz == 0;
}
size_t size() const {
return sz;
}
size_t capacity = 0;
size_t sz = 0;
size_t first = 0;
size_t pos = 0;
std::vector<T> data;
};

718
src/llama-kv-cache.cpp Normal file
View File

@ -0,0 +1,718 @@
#include "llama-kv-cache.h"
#include "llama-impl.h"
#include "llama-batch.h"
#include "llama-cparams.h"
#include "llama-model.h"
#include <algorithm>
#include <limits>
#include <map>
static const llama_kv_cache_slot_info llama_kv_cache_slot_info_failed{false};
uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams) {
// the FA kernels require padding to avoid extra runtime boundary checks
return cparams.flash_attn ? 256u : 32u;
}
bool llama_kv_cache_init(
struct llama_kv_cache & cache,
const llama_model & model,
const llama_cparams & cparams,
ggml_type type_k,
ggml_type type_v,
uint32_t kv_size,
bool offload) {
const struct llama_hparams & hparams = model.hparams;
const int32_t n_layer = hparams.n_layer;
cache.has_shift = false;
cache.recurrent = llama_model_is_recurrent(&model);
cache.v_trans = !cache.recurrent && !cparams.flash_attn;
cache.can_shift = !cache.recurrent && model.arch != LLM_ARCH_DEEPSEEK2; // not supported due to MLA
LLAMA_LOG_INFO("%s: kv_size = %d, offload = %d, type_k = '%s', type_v = '%s', n_layer = %d, can_shift = %d\n",
__func__, kv_size, offload, ggml_type_name(type_k), ggml_type_name(type_v), n_layer, cache.can_shift);
cache.head = 0;
cache.size = kv_size;
cache.used = 0;
cache.type_k = type_k;
cache.type_v = type_v;
cache.cells.clear();
cache.cells.resize(kv_size);
// create a context for each buffer type
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
auto it = ctx_map.find(buft);
if (it == ctx_map.end()) {
struct ggml_init_params params = {
/*.mem_size =*/ size_t(2u*n_layer*ggml_tensor_overhead()),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
ggml_context * ctx = ggml_init(params);
if (!ctx) {
return nullptr;
}
ctx_map[buft] = ctx;
cache.ctxs.emplace_back(ctx);
return ctx;
}
return it->second;
};
cache.k_l.reserve(n_layer);
cache.v_l.reserve(n_layer);
for (int i = 0; i < n_layer; i++) {
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s();
LLAMA_LOG_DEBUG("%s: layer %d: n_embd_k_gqa = %d, n_embd_v_gqa = %d\n", __func__, i, n_embd_k_gqa, n_embd_v_gqa);
ggml_backend_buffer_type_t buft;
if (offload) {
auto * dev = model.dev_layer.at(i).dev;
buft = ggml_backend_dev_buffer_type(dev);
} else {
buft = ggml_backend_cpu_buffer_type();
}
ggml_context * ctx = ctx_for_buft(buft);
if (!ctx) {
LLAMA_LOG_ERROR("%s: failed to create ggml context for kv cache\n", __func__);
return false;
}
ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
ggml_format_name(k, "cache_k_l%d", i);
ggml_format_name(v, "cache_v_l%d", i);
cache.k_l.push_back(k);
cache.v_l.push_back(v);
}
// allocate tensors and initialize the buffers to avoid NaNs in the padding
for (auto it : ctx_map) {
auto * buft = it.first;
auto * ctx = it.second;
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
if (!buf) {
LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
return false;
}
ggml_backend_buffer_clear(buf, 0);
LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
cache.bufs.emplace_back(buf);
}
return true;
}
struct llama_kv_cache_slot_info llama_kv_cache_find_slot(
struct llama_kv_cache & cache,
const struct llama_ubatch & batch) {
const uint32_t n_tokens = batch.n_tokens;
const uint32_t n_seqs = batch.n_seqs;
const uint32_t n_seq_tokens = batch.n_seq_tokens;
if (cache.recurrent) {
// For recurrent state architectures (like Mamba or RWKV),
// each cache cell can store the state for a whole sequence.
// A slot should be always be contiguous.
// can only process batches with an equal number of new tokens in each sequence
GGML_ASSERT(batch.equal_seqs);
int32_t min = cache.size - 1;
int32_t max = 0;
// everything should fit if all seq_ids are smaller than the max
for (uint32_t s = 0; s < n_seqs; ++s) {
const uint32_t n_seq_id = batch.n_seq_id[s];
for (uint32_t j = 0; j < n_seq_id; ++j) {
const llama_seq_id seq_id = batch.seq_id[s][j];
if (seq_id < 0 || (uint32_t) seq_id >= cache.size) {
// too big seq_id
// TODO: would it be possible to resize the cache instead?
LLAMA_LOG_ERROR("%s: seq_id=%d >= n_seq_max=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
return llama_kv_cache_slot_info_failed;
}
if (j > 0) {
llama_kv_cell & seq = cache.cells[seq_id];
if (seq.tail >= 0) {
llama_kv_cell & cell = cache.cells[seq.tail];
// clear cells from seq_ids that become shared
// (should not normally happen, but let's handle it anyway)
cell.seq_id.erase(seq_id);
seq.tail = -1;
if (cell.seq_id.empty()) {
cell.pos = -1;
cell.src = -1;
cache.used -= 1;
}
}
}
}
}
#ifndef NDEBUG
{
std::vector<int32_t> tails_verif;
tails_verif.assign(cache.size, -1);
for (uint32_t i = 0; i < cache.size; ++i) {
llama_kv_cell & cell = cache.cells[i];
for (llama_seq_id seq_id : cell.seq_id) {
if (tails_verif[seq_id] != -1) {
LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tails_verif[seq_id]);
}
tails_verif[seq_id] = i;
}
}
for (uint32_t i = 0; i < cache.size; ++i) {
if (tails_verif[i] != cache.cells[i].tail) {
LLAMA_LOG_ERROR("%s: wrong tail for seq_id %d, (%d instead of %d)\n", __func__, i, cache.cells[i].tail, tails_verif[i]);
}
}
}
#endif
// find next empty cell
uint32_t next_empty_cell = cache.head;
for (uint32_t i = 0; i < cache.size; ++i) {
if (next_empty_cell >= cache.size) { next_empty_cell -= cache.size; }
llama_kv_cell & cell = cache.cells[next_empty_cell];
if (cell.is_empty()) { break; }
next_empty_cell += 1;
}
// find usable cell range
for (uint32_t s = 0; s < n_seqs; ++s) {
const llama_seq_id seq_id = batch.seq_id[s][0];
llama_kv_cell & seq_meta = cache.cells[seq_id];
bool has_cell = false;
if (seq_meta.tail >= 0) {
llama_kv_cell & cell = cache.cells[seq_meta.tail];
GGML_ASSERT(cell.has_seq_id(seq_id));
// does this seq_id "own" the cell?
if (cell.seq_id.size() == 1) { has_cell = true; }
}
if (!has_cell) {
llama_kv_cell & empty_cell = cache.cells[next_empty_cell];
GGML_ASSERT(empty_cell.is_empty());
// copy old tail into the empty cell
if (seq_meta.tail >= 0) {
llama_kv_cell & orig_cell = cache.cells[seq_meta.tail];
empty_cell.pos = orig_cell.pos;
empty_cell.src = orig_cell.src;
orig_cell.seq_id.erase(seq_id);
empty_cell.seq_id.insert(seq_id); // will be overwritten
}
seq_meta.tail = next_empty_cell;
// find next empty cell
if (s + 1 < n_seqs) {
next_empty_cell += 1;
for (uint32_t i = 0; i < cache.size; ++i) {
if (next_empty_cell >= cache.size) { next_empty_cell -= cache.size; }
llama_kv_cell & cell = cache.cells[next_empty_cell];
if (cell.is_empty()) { break; }
next_empty_cell += 1;
}
}
}
if (min > seq_meta.tail) { min = seq_meta.tail; }
if (max < seq_meta.tail) { max = seq_meta.tail; }
}
// gather and re-order
for (uint32_t s = 0; s < n_seqs; ++s) {
int32_t dst_id = s + min;
int32_t src_id = cache.cells[batch.seq_id[s][0]].tail;
if (dst_id != src_id) {
llama_kv_cell & dst_cell = cache.cells[dst_id];
llama_kv_cell & src_cell = cache.cells[src_id];
std::swap(dst_cell.pos, src_cell.pos);
std::swap(dst_cell.src, src_cell.src);
std::swap(dst_cell.seq_id, src_cell.seq_id);
// swap tails (assuming they NEVER overlap)
for (const llama_seq_id seq_id : src_cell.seq_id) {
cache.cells[seq_id].tail = src_id;
}
for (const llama_seq_id seq_id : dst_cell.seq_id) {
cache.cells[seq_id].tail = dst_id;
}
}
}
// update the pos of the used seqs
for (uint32_t s = 0; s < n_seqs; ++s) {
const llama_pos last_pos = batch.pos[n_seq_tokens * s + n_seq_tokens - 1];
int32_t cell_id = s + min;
llama_kv_cell & cell = cache.cells[cell_id];
if (cell.pos >= 0 && last_pos != cell.pos + (llama_pos) n_seq_tokens) {
// What should happen when the pos backtracks or skips a value?
// Clearing the state mid-batch would require special-casing which isn't done.
LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d with %u new tokens\n",
__func__, last_pos, cell.pos, batch.seq_id[s][0], n_seq_tokens);
}
cell.pos = last_pos;
cell.seq_id.clear();
for (int32_t j = 0; j < batch.n_seq_id[s]; ++j) {
const llama_seq_id seq_id = batch.seq_id[s][j];
cell.seq_id.insert(seq_id);
cache.cells[seq_id].tail = cell_id;
}
}
// allow getting the range of used cells, from head to head + n
cache.head = min;
cache.n = max - min + 1;
cache.used = std::count_if(cache.cells.begin(), cache.cells.end(),
[](const llama_kv_cell& cell){ return !cell.is_empty(); });
// sanity check
return llama_kv_cache_slot_info(cache.n >= n_seqs);
}
// otherwise, one cell per token.
if (n_tokens > cache.size) {
LLAMA_LOG_ERROR("%s: n_tokens=%d > cache.size=%d\n", __func__, n_tokens, cache.size);
return llama_kv_cache_slot_info_failed;
}
uint32_t n_tested = 0;
while (true) {
if (cache.head + n_tokens > cache.size) {
n_tested += cache.size - cache.head;
cache.head = 0;
continue;
}
bool found = true;
for (uint32_t i = 0; i < n_tokens; i++) {
if (cache.cells[cache.head + i].pos >= 0) {
found = false;
cache.head += i + 1;
n_tested += i + 1;
break;
}
}
if (found) {
break;
}
if (n_tested >= cache.size) {
//LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
return llama_kv_cache_slot_info_failed;
}
}
for (uint32_t s = 0; s < n_seqs; s++) {
for (uint32_t i = 0; i < n_seq_tokens; ++i) {
uint32_t k = s*n_seq_tokens + i;
cache.cells[cache.head + k].pos = batch.pos[k];
for (int32_t j = 0; j < batch.n_seq_id[s]; j++) {
cache.cells[cache.head + k].seq_id.insert(batch.seq_id[s][j]);
}
}
}
cache.used += n_tokens;
return llama_kv_cache_slot_info(cache.head, cache.head + n_tokens);
}
uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
for (uint32_t i = cache.size; i > 0; --i) {
const llama_kv_cell & cell = cache.cells[i - 1];
if (cell.pos >= 0 && !cell.is_empty()) {
return i;
}
}
return 0;
}
void llama_kv_cache_clear(struct llama_kv_cache & cache) {
for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
cache.cells[i].pos = -1;
cache.cells[i].seq_id.clear();
cache.cells[i].src = -1;
cache.cells[i].tail = -1;
}
cache.head = 0;
cache.used = 0;
for (auto & buf : cache.bufs) {
ggml_backend_buffer_clear(buf.get(), 0);
}
}
bool llama_kv_cache_seq_rm(
struct llama_kv_cache & cache,
llama_seq_id seq_id,
llama_pos p0,
llama_pos p1) {
uint32_t new_head = cache.size;
if (p0 < 0) p0 = 0;
if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
// models like Mamba or RWKV can't have a state partially erased
if (cache.recurrent) {
if (seq_id >= (int64_t) cache.size) {
// could be fatal
return false;
}
if (0 <= seq_id) {
int32_t & tail_id = cache.cells[seq_id].tail;
if (tail_id >= 0) {
const llama_kv_cell & cell = cache.cells[tail_id];
// partial intersection is invalid
if ((0 < p0 && p0 <= cell.pos) || (0 < p1 && p1 <= cell.pos)) {
return false;
}
// invalidate tails which will be cleared
if (p0 <= cell.pos && cell.pos < p1) {
tail_id = -1;
}
}
} else {
// seq_id is negative, then the range should include everything or nothing
if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
return false;
}
}
}
for (uint32_t i = 0; i < cache.size; ++i) {
if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
if (seq_id < 0) {
cache.cells[i].seq_id.clear();
} else if (cache.cells[i].has_seq_id(seq_id)) {
cache.cells[i].seq_id.erase(seq_id);
} else {
continue;
}
if (cache.cells[i].is_empty()) {
// keep count of the number of used cells
if (cache.cells[i].pos >= 0) cache.used--;
cache.cells[i].pos = -1;
cache.cells[i].src = -1;
if (new_head == cache.size) new_head = i;
}
}
}
// If we freed up a slot, set head to it so searching can start there.
if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
return true;
}
void llama_kv_cache_seq_cp(
struct llama_kv_cache & cache,
llama_seq_id seq_id_src,
llama_seq_id seq_id_dst,
llama_pos p0,
llama_pos p1) {
if (p0 < 0) p0 = 0;
if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
if (cache.recurrent) {
if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
llama_kv_cell & tail_src = cache.cells[seq_id_src];
llama_kv_cell & tail_dst = cache.cells[seq_id_dst];
if (tail_dst.tail >= 0) {
// clear destination seq_id if it wasn't empty
llama_kv_cell & cell_dst = cache.cells[tail_dst.tail];
cell_dst.seq_id.erase(seq_id_dst);
tail_dst.tail = -1;
if (cell_dst.seq_id.empty()) {
cell_dst.pos = -1;
cell_dst.delta = -1;
cell_dst.src = -1;
cache.used -= 1;
}
}
if (tail_src.tail >= 0) {
llama_kv_cell & cell_src = cache.cells[tail_src.tail];
cell_src.seq_id.insert(seq_id_dst);
tail_dst.tail = tail_src.tail;
}
}
return;
}
// otherwise, this is the KV cache of a Transformer-like model
cache.head = 0;
for (uint32_t i = 0; i < cache.size; ++i) {
if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
cache.cells[i].seq_id.insert(seq_id_dst);
}
}
}
void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
uint32_t new_head = cache.size;
for (uint32_t i = 0; i < cache.size; ++i) {
if (cache.recurrent && (llama_seq_id) i != seq_id) {
cache.cells[i].tail = -1;
}
if (!cache.cells[i].has_seq_id(seq_id)) {
if (cache.cells[i].pos >= 0) cache.used--;
cache.cells[i].pos = -1;
cache.cells[i].src = -1;
cache.cells[i].seq_id.clear();
if (new_head == cache.size) new_head = i;
} else {
cache.cells[i].seq_id.clear();
cache.cells[i].seq_id.insert(seq_id);
}
}
// If we freed up a slot, set head to it so searching can start there.
if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
}
void llama_kv_cache_seq_add(
struct llama_kv_cache & cache,
llama_seq_id seq_id,
llama_pos p0,
llama_pos p1,
llama_pos delta) {
uint32_t new_head = cache.size;
if (p0 < 0) p0 = 0;
if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
// If there is no range then return early to avoid looping over the cache.
if (p0 == p1) return;
if (cache.recurrent) {
// for Mamba-like or RWKV models, only the pos needs to be shifted
if (0 <= seq_id && seq_id < (int64_t) cache.size) {
const int32_t tail_id = cache.cells[seq_id].tail;
if (tail_id >= 0) {
llama_kv_cell & cell = cache.cells[tail_id];
if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
cell.pos += delta;
}
}
}
return;
}
for (uint32_t i = 0; i < cache.size; ++i) {
if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
cache.has_shift = true;
cache.cells[i].pos += delta;
cache.cells[i].delta += delta;
if (cache.cells[i].pos < 0) {
if (!cache.cells[i].is_empty()) {
cache.used--;
}
cache.cells[i].pos = -1;
cache.cells[i].seq_id.clear();
if (new_head == cache.size) {
new_head = i;
}
}
}
}
// If we freed up a slot, set head to it so searching can start there.
// Otherwise we just start the next search from the beginning.
cache.head = new_head != cache.size ? new_head : 0;
}
void llama_kv_cache_seq_div(
struct llama_kv_cache & cache,
llama_seq_id seq_id,
llama_pos p0,
llama_pos p1,
int d) {
if (p0 < 0) p0 = 0;
if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
// If there is no range then return early to avoid looping over the cache.
if (p0 == p1) return;
if (cache.recurrent) {
// for Mamba-like or RWKV models, only the pos needs to be changed
if (0 <= seq_id && seq_id < (int64_t) cache.size) {
const int32_t tail_id = cache.cells[seq_id].tail;
if (tail_id >= 0) {
llama_kv_cell & cell = cache.cells[tail_id];
if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
cell.pos /= d;
}
}
}
return;
}
for (uint32_t i = 0; i < cache.size; ++i) {
if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
cache.has_shift = true;
{
llama_pos p_old = cache.cells[i].pos;
cache.cells[i].pos /= d;
cache.cells[i].delta += cache.cells[i].pos - p_old;
}
}
}
}
llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) {
llama_pos result = 0;
for (uint32_t i = 0; i < cache.size; ++i) {
if (cache.cells[i].has_seq_id(seq_id)) {
result = std::max(result, cache.cells[i].pos);
}
}
return result;
}
void llama_kv_cache_defrag(struct llama_kv_cache & cache) {
if (!cache.recurrent) {
cache.do_defrag = true;
}
}
int32_t llama_get_kv_cache_token_count(const struct llama_kv_cache & kv) {
int result = 0;
for (uint32_t i = 0; i < kv.size; i++) {
result += kv.cells[i].seq_id.size();
}
return result;
}
int32_t llama_get_kv_cache_used_cells(const struct llama_kv_cache & kv) {
return kv.used;
}
bool llama_kv_cache_can_shift(const struct llama_kv_cache & kv) {
return kv.can_shift;
}
//
// kv cache view
//
struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_kv_cache & kv, int32_t n_seq_max) {
struct llama_kv_cache_view result = {
/*.n_cells = */ 0,
/*.n_seq_max = */ n_seq_max,
/*.token_count = */ 0,
/*.used_cells = */ llama_get_kv_cache_used_cells(kv),
/*.max_contiguous = */ 0,
/*.max_contiguous_idx = */ -1,
/*.cells = */ nullptr,
/*.cells_sequences = */ nullptr,
};
return result;
}
void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
if (view->cells != nullptr) {
free(view->cells);
view->cells = nullptr;
}
if (view->cells_sequences != nullptr) {
free(view->cells_sequences);
view->cells_sequences = nullptr;
}
}
void llama_kv_cache_view_update(struct llama_kv_cache_view * view, const struct llama_kv_cache & kv) {
if (uint32_t(view->n_cells) < kv.size || view->cells == nullptr) {
view->n_cells = int32_t(kv.size);
void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
view->cells = (struct llama_kv_cache_view_cell *)p;
p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
view->cells_sequences = (llama_seq_id *)p;
}
const std::vector<llama_kv_cell> & kv_cells = kv.cells;
llama_kv_cache_view_cell * c_curr = view->cells;
llama_seq_id * cs_curr = view->cells_sequences;
int32_t used_cells = 0;
int32_t token_count = 0;
int32_t curr_contig_idx = -1;
uint32_t max_contig = 0;
int32_t max_contig_idx = -1;
for (int32_t i = 0; i < int32_t(kv.size); i++, c_curr++, cs_curr += view->n_seq_max) {
const size_t curr_size = kv_cells[i].seq_id.size();
token_count += curr_size;
c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
if (curr_size > 0) {
if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
max_contig = i - curr_contig_idx;
max_contig_idx = curr_contig_idx;
}
curr_contig_idx = -1;
} else if (curr_contig_idx < 0) {
curr_contig_idx = i;
}
int seq_idx = 0;
for (const llama_seq_id it : kv_cells[i].seq_id) {
if (seq_idx >= view->n_seq_max) {
break;
}
cs_curr[seq_idx] = it;
seq_idx++;
}
if (seq_idx != 0) {
used_cells++;
}
for (; seq_idx < view->n_seq_max; seq_idx++) {
cs_curr[seq_idx] = -1;
}
}
if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
max_contig_idx = curr_contig_idx;
max_contig = kv_cells.size() - curr_contig_idx;
}
view->max_contiguous = max_contig;
view->max_contiguous_idx = max_contig_idx;
view->token_count = token_count;
view->used_cells = used_cells;
if (uint32_t(used_cells) != kv.used) {
LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
__func__, kv.used, used_cells);
}
}

218
src/llama-kv-cache.h Normal file
View File

@ -0,0 +1,218 @@
#pragma once
#include "llama.h"
#include "ggml-cpp.h"
#include <set>
#include <vector>
struct llama_kv_cell {
llama_pos pos = -1;
llama_pos delta = 0;
int32_t src = -1; // used by recurrent state models to copy states
int32_t tail = -1;
std::set<llama_seq_id> seq_id;
bool has_seq_id(const llama_seq_id & id) const {
return seq_id.find(id) != seq_id.end();
}
bool is_empty() const {
return seq_id.empty();
}
bool is_same_seq(const llama_kv_cell & other) const {
return seq_id == other.seq_id;
}
};
// ring-buffer of cached KV data
struct llama_kv_cache {
bool has_shift = false;
bool do_defrag = false;
bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token
bool v_trans = true; // the value tensor is transposed
bool can_shift = false;
// Note: The value of head isn't only used to optimize searching
// for a free KV slot. llama_decode_internal also uses it, so it
// cannot be freely changed after a slot has been allocated.
uint32_t head = 0;
uint32_t size = 0;
uint32_t used = 0; // used cells (i.e. at least one seq_id)
// computed before each graph build
uint32_t n = 0;
ggml_type type_k = GGML_TYPE_F16;
ggml_type type_v = GGML_TYPE_F16;
std::vector<llama_kv_cell> cells;
std::vector<struct ggml_tensor *> k_l; // per layer
std::vector<struct ggml_tensor *> v_l;
std::vector<ggml_context_ptr> ctxs;
std::vector<ggml_backend_buffer_ptr> bufs;
size_t total_size() const {
size_t size = 0;
for (const auto & buf : bufs) {
size += ggml_backend_buffer_get_size(buf.get());
}
return size;
}
// TODO: better data structures to reduce the cost of this operation
llama_pos max_pos() const {
llama_pos max_pos = -1;
for (const auto & cell : cells) {
max_pos = std::max(max_pos, cell.pos);
}
return max_pos;
}
};
// a structure holds information about the slot found in llama_kv_cache_find_slot
struct llama_kv_cache_slot_info {
std::pair<uint32_t, uint32_t> boundaries; // slot boundaries [begin, end)
bool found = false; // the slot was found
explicit llama_kv_cache_slot_info(bool found_) : found{found_} {}
llama_kv_cache_slot_info(uint32_t begin, uint32_t end) : boundaries{begin, end}, found{true} {}
operator bool() const { return found; }
};
// TODO: maybe not needed
uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams);
bool llama_kv_cache_init(
struct llama_kv_cache & cache,
const llama_model & model,
const llama_cparams & cparams,
ggml_type type_k,
ggml_type type_v,
uint32_t kv_size,
bool offload);
// find an empty slot of size "n_tokens" in the cache
// updates the cache head
// returns a structure holding information about the slot found
// Note: On success, it's important that cache.head points
// to the first cell of the slot.
struct llama_kv_cache_slot_info llama_kv_cache_find_slot(
struct llama_kv_cache & cache,
const struct llama_ubatch & batch);
// find how many cells are currently in use
uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache);
void llama_kv_cache_clear(struct llama_kv_cache & cache);
bool llama_kv_cache_seq_rm(
struct llama_kv_cache & cache,
llama_seq_id seq_id,
llama_pos p0,
llama_pos p1);
void llama_kv_cache_seq_cp(
struct llama_kv_cache & cache,
llama_seq_id seq_id_src,
llama_seq_id seq_id_dst,
llama_pos p0,
llama_pos p1);
void llama_kv_cache_seq_keep(
struct llama_kv_cache & cache,
llama_seq_id seq_id);
void llama_kv_cache_seq_add(
struct llama_kv_cache & cache,
llama_seq_id seq_id,
llama_pos p0,
llama_pos p1,
llama_pos delta);
void llama_kv_cache_seq_div(
struct llama_kv_cache & cache,
llama_seq_id seq_id,
llama_pos p0,
llama_pos p1,
int d);
llama_pos llama_kv_cache_seq_pos_max(
struct llama_kv_cache & cache,
llama_seq_id seq_id);
void llama_kv_cache_defrag(struct llama_kv_cache & cache);
int32_t llama_get_kv_cache_token_count(const struct llama_kv_cache & kv);
int32_t llama_get_kv_cache_used_cells(const struct llama_kv_cache & kv);
bool llama_kv_cache_can_shift(const struct llama_kv_cache & kv);
//
// kv cache view
//
struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_kv_cache & kv, int32_t n_seq_max);
void llama_kv_cache_view_update(struct llama_kv_cache_view * view, const struct llama_kv_cache & kv);
//
// kv cache restore
//
// saves the kv_cache state for future recovery.
// used to rollback llama_kv_cache_find_slot changes.
struct llama_kv_slot_restorer {
struct llama_kv_cache_state {
uint32_t head = 0;
uint32_t n = 0;
} old_state;
// for non-recurrent models only
// list of slots to restore
std::vector<std::pair<uint32_t, uint32_t>> slot_boundaries;
bool do_restore = false;
explicit llama_kv_slot_restorer(const struct llama_kv_cache & cache) {
old_state.head = cache.head;
old_state.n = cache.n;
}
// saves a slot information for future restoration
void save(const struct llama_kv_cache_slot_info & slot) {
if (slot) {
do_restore = true;
if (slot.boundaries.first != slot.boundaries.second) {
slot_boundaries.push_back(slot.boundaries);
}
}
}
// must be explicitly called to restore the kv_cache state
// and rollback changes from all llama_kv_cache_find_slot calls
void restore(struct llama_kv_cache & cache) {
if (do_restore) {
cache.head = old_state.head;
cache.n = old_state.n;
if (cache.recurrent) { // recurrent models like Mamba or RWKV can't have a state partially erased
llama_kv_cache_seq_rm(cache, -1, -1, -1);
} else {
for (auto & slot : slot_boundaries) {
llama_kv_cache_seq_rm(cache, -1, slot.first, slot.second);
}
}
}
}
};

585
src/llama-mmap.cpp Normal file
View File

@ -0,0 +1,585 @@
#include "llama-mmap.h"
#include "llama-impl.h"
#include "ggml.h"
#include <cstring>
#include <climits>
#include <stdexcept>
#ifdef __has_include
#if __has_include(<unistd.h>)
#include <unistd.h>
#if defined(_POSIX_MAPPED_FILES)
#include <sys/mman.h>
#include <fcntl.h>
#endif
#if defined(_POSIX_MEMLOCK_RANGE)
#include <sys/resource.h>
#endif
#endif
#endif
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#ifndef PATH_MAX
#define PATH_MAX MAX_PATH
#endif
#include <io.h>
#endif
// TODO: consider moving to llama-impl.h if needed in more places
#if defined(_WIN32)
std::string llama_format_win_err(DWORD err) {
LPSTR buf;
size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
if (!size) {
return "FormatMessageA failed";
}
std::string ret(buf, size);
LocalFree(buf);
return ret;
}
#endif
// llama_file
struct llama_file::impl {
#if defined(_WIN32)
HANDLE fp_win32;
std::string GetErrorMessageWin32(DWORD error_code) const {
std::string ret;
LPSTR lpMsgBuf = NULL;
DWORD bufLen = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, error_code, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&lpMsgBuf, 0, NULL);
if (!bufLen) {
ret = format("Win32 error code: %lx", error_code);
} else {
ret = lpMsgBuf;
LocalFree(lpMsgBuf);
}
return ret;
}
impl(const char * fname, const char * mode) {
fp = ggml_fopen(fname, mode);
if (fp == NULL) {
throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
}
fp_win32 = (HANDLE) _get_osfhandle(_fileno(fp));
seek(0, SEEK_END);
size = tell();
seek(0, SEEK_SET);
}
size_t tell() const {
LARGE_INTEGER li;
li.QuadPart = 0;
BOOL ret = SetFilePointerEx(fp_win32, li, &li, FILE_CURRENT);
if (!ret) {
throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
}
return li.QuadPart;
}
void seek(size_t offset, int whence) const {
static_assert(SEEK_SET == FILE_BEGIN, "SEEK_SET != FILE_BEGIN");
static_assert(SEEK_CUR == FILE_CURRENT, "SEEK_CUR != FILE_CURRENT");
static_assert(SEEK_END == FILE_END, "SEEK_END != FILE_END");
LARGE_INTEGER li;
li.QuadPart = offset;
BOOL ret = SetFilePointerEx(fp_win32, li, NULL, whence);
if (!ret) {
throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
}
}
void read_raw(void * ptr, size_t len) const {
size_t bytes_read = 0;
while (bytes_read < len) {
size_t chunk_size = std::min<size_t>(len - bytes_read, 64*1024*1024);
DWORD chunk_read = 0;
BOOL result = ReadFile(fp_win32, reinterpret_cast<char*>(ptr) + bytes_read, chunk_size, &chunk_read, NULL);
if (!result) {
throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
}
if (chunk_read < chunk_size || chunk_read == 0) {
throw std::runtime_error("unexpectedly reached end of file");
}
bytes_read += chunk_read;
}
}
uint32_t read_u32() const {
uint32_t val;
read_raw(&val, sizeof(val));
return val;
}
void write_raw(const void * ptr, size_t len) const {
size_t bytes_written = 0;
while (bytes_written < len) {
size_t chunk_size = std::min<size_t>(len - bytes_written, 64*1024*1024);
DWORD chunk_written = 0;
BOOL result = WriteFile(fp_win32, reinterpret_cast<char const*>(ptr) + bytes_written, chunk_size, &chunk_written, NULL);
if (!result) {
throw std::runtime_error(format("write error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
}
if (chunk_written < chunk_size || chunk_written == 0) {
throw std::runtime_error("unexpectedly failed to write bytes");
}
bytes_written += chunk_written;
}
}
void write_u32(uint32_t val) const {
write_raw(&val, sizeof(val));
}
~impl() {
if (fp) {
std::fclose(fp);
}
}
#else
impl(const char * fname, const char * mode) {
fp = ggml_fopen(fname, mode);
if (fp == NULL) {
throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
}
seek(0, SEEK_END);
size = tell();
seek(0, SEEK_SET);
}
size_t tell() const {
// TODO: this ifdef is never true?
#ifdef _WIN32
__int64 ret = _ftelli64(fp);
#else
long ret = std::ftell(fp);
#endif
if (ret == -1) {
throw std::runtime_error(format("ftell error: %s", strerror(errno)));
}
return (size_t) ret;
}
void seek(size_t offset, int whence) const {
// TODO: this ifdef is never true?
#ifdef _WIN32
int ret = _fseeki64(fp, (__int64) offset, whence);
#else
int ret = std::fseek(fp, (long) offset, whence);
#endif
if (ret != 0) {
throw std::runtime_error(format("seek error: %s", strerror(errno)));
}
}
void read_raw(void * ptr, size_t len) const {
if (len == 0) {
return;
}
errno = 0;
std::size_t ret = std::fread(ptr, len, 1, fp);
if (ferror(fp)) {
throw std::runtime_error(format("read error: %s", strerror(errno)));
}
if (ret != 1) {
throw std::runtime_error("unexpectedly reached end of file");
}
}
uint32_t read_u32() const {
uint32_t ret;
read_raw(&ret, sizeof(ret));
return ret;
}
void write_raw(const void * ptr, size_t len) const {
if (len == 0) {
return;
}
errno = 0;
size_t ret = std::fwrite(ptr, len, 1, fp);
if (ret != 1) {
throw std::runtime_error(format("write error: %s", strerror(errno)));
}
}
void write_u32(uint32_t val) const {
write_raw(&val, sizeof(val));
}
~impl() {
if (fp) {
std::fclose(fp);
}
}
#endif
FILE * fp;
size_t size;
};
llama_file::llama_file(const char * fname, const char * mode) : pimpl(std::make_unique<impl>(fname, mode)) {}
llama_file::~llama_file() = default;
size_t llama_file::tell() const { return pimpl->tell(); }
size_t llama_file::size() const { return pimpl->size; }
int llama_file::fileno() const {
#ifdef _WIN32
return _fileno(pimpl->fp);
#else
return ::fileno(pimpl->fp);
#endif
}
void llama_file::seek(size_t offset, int whence) const { pimpl->seek(offset, whence); }
void llama_file::read_raw(void * ptr, size_t len) const { pimpl->read_raw(ptr, len); }
uint32_t llama_file::read_u32() const { return pimpl->read_u32(); }
void llama_file::write_raw(const void * ptr, size_t len) const { pimpl->write_raw(ptr, len); }
void llama_file::write_u32(uint32_t val) const { pimpl->write_u32(val); }
// llama_mmap
struct llama_mmap::impl {
#ifdef _POSIX_MAPPED_FILES
std::vector<std::pair<size_t, size_t>> mapped_fragments;
impl(struct llama_file * file, size_t prefetch, bool numa) {
size = file->size();
int fd = file->fileno();
int flags = MAP_SHARED;
if (numa) { prefetch = 0; }
#ifdef __linux__
if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
strerror(errno));
}
if (prefetch) { flags |= MAP_POPULATE; }
#endif
addr = mmap(NULL, file->size(), PROT_READ, flags, fd, 0);
if (addr == MAP_FAILED) {
throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
}
if (prefetch > 0) {
if (posix_madvise(addr, std::min(file->size(), prefetch), POSIX_MADV_WILLNEED)) {
LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
strerror(errno));
}
}
if (numa) {
if (posix_madvise(addr, file->size(), POSIX_MADV_RANDOM)) {
LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
strerror(errno));
}
}
mapped_fragments.emplace_back(0, file->size());
}
static void align_range(size_t * first, size_t * last, size_t page_size) {
size_t offset_in_page = *first & (page_size - 1);
size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
*first += offset_to_page;
*last = *last & ~(page_size - 1);
if (*last <= *first) {
*last = *first;
}
}
void unmap_fragment(size_t first, size_t last) {
int page_size = sysconf(_SC_PAGESIZE);
align_range(&first, &last, page_size);
size_t len = last - first;
if (len == 0) {
return;
}
GGML_ASSERT(first % page_size == 0);
GGML_ASSERT(last % page_size == 0);
GGML_ASSERT(last > first);
void * next_page_start = (uint8_t *) addr + first;
if (munmap(next_page_start, len)) {
LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
}
std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
for (const auto & frag : mapped_fragments) {
if (frag.first < first && frag.second > last) {
new_mapped_fragments.emplace_back(frag.first, first);
new_mapped_fragments.emplace_back(last, frag.second);
} else if (frag.first < first && frag.second > first) {
new_mapped_fragments.emplace_back(frag.first, first);
} else if (frag.first < last && frag.second > last) {
new_mapped_fragments.emplace_back(last, frag.second);
} else if (frag.first >= first && frag.second <= last) {
} else {
new_mapped_fragments.push_back(frag);
}
}
mapped_fragments = std::move(new_mapped_fragments);
}
~impl() {
for (const auto & frag : mapped_fragments) {
if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
}
}
}
#elif defined(_WIN32)
impl(struct llama_file * file, size_t prefetch, bool numa) {
GGML_UNUSED(numa);
size = file->size();
HANDLE hFile = (HANDLE) _get_osfhandle(file->fileno());
HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
if (hMapping == NULL) {
DWORD error = GetLastError();
throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
}
addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
DWORD error = GetLastError();
CloseHandle(hMapping);
if (addr == NULL) {
throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
}
if (prefetch > 0) {
#if _WIN32_WINNT >= 0x602
BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
pPrefetchVirtualMemory = (decltype(pPrefetchVirtualMemory))(void *) GetProcAddress(hKernel32, "PrefetchVirtualMemory");
if (pPrefetchVirtualMemory) {
WIN32_MEMORY_RANGE_ENTRY range;
range.VirtualAddress = addr;
range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
#else
throw std::runtime_error("PrefetchVirtualMemory unavailable");
#endif
}
}
void unmap_fragment(size_t first, size_t last) {
GGML_UNUSED(first);
GGML_UNUSED(last);
}
~impl() {
if (!UnmapViewOfFile(addr)) {
LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
#else
impl(struct llama_file * file, size_t prefetch, bool numa) {
GGML_UNUSED(file);
GGML_UNUSED(prefetch);
GGML_UNUSED(numa);
throw std::runtime_error("mmap not supported");
}
void unmap_fragment(size_t first, size_t last) {
GGML_UNUSED(first);
GGML_UNUSED(last);
throw std::runtime_error("mmap not supported");
}
#endif
void * addr;
size_t size;
};
llama_mmap::llama_mmap(struct llama_file * file, size_t prefetch, bool numa) : pimpl(std::make_unique<impl>(file, prefetch, numa)) {}
llama_mmap::~llama_mmap() = default;
size_t llama_mmap::size() const { return pimpl->size; }
void * llama_mmap::addr() const { return pimpl->addr; }
void llama_mmap::unmap_fragment(size_t first, size_t last) { pimpl->unmap_fragment(first, last); }
#if defined(_POSIX_MEMLOCK_RANGE) || defined(_WIN32)
const bool llama_mmap::SUPPORTED = true;
#else
const bool llama_mmap::SUPPORTED = false;
#endif
// llama_mlock
struct llama_mlock::impl {
#ifdef _POSIX_MEMLOCK_RANGE
static size_t lock_granularity() {
return (size_t) sysconf(_SC_PAGESIZE);
}
bool raw_lock(const void * addr, size_t size) const {
if (!mlock(addr, size)) {
return true;
}
#ifdef __APPLE__
#define MLOCK_SUGGESTION \
"Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
"decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
#else
#define MLOCK_SUGGESTION \
"Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
#endif
char* errmsg = std::strerror(errno);
bool suggest = (errno == ENOMEM);
struct rlimit lock_limit;
if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
suggest = false;
}
if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
suggest = false;
}
LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
return false;
}
static void raw_unlock(void * addr, size_t size) {
if (munlock(addr, size)) {
LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
}
}
#elif defined(_WIN32)
static size_t lock_granularity() {
SYSTEM_INFO si;
GetSystemInfo(&si);
return (size_t) si.dwPageSize;
}
bool raw_lock(void * ptr, size_t len) const {
for (int tries = 1; ; tries++) {
if (VirtualLock(ptr, len)) {
return true;
}
if (tries == 2) {
LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
len, size, llama_format_win_err(GetLastError()).c_str());
return false;
}
SIZE_T min_ws_size, max_ws_size;
if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
return false;
}
size_t increment = len + 1048576;
min_ws_size += increment;
max_ws_size += increment;
if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
return false;
}
}
}
static void raw_unlock(void * ptr, size_t len) {
if (!VirtualUnlock(ptr, len)) {
LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
#else
static size_t lock_granularity() {
return (size_t) 65536;
}
bool raw_lock(const void * addr, size_t len) const {
LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
return false;
}
static void raw_unlock(const void * addr, size_t len) {}
#endif
impl() : addr(NULL), size(0), failed_already(false) {}
void init(void * ptr) {
GGML_ASSERT(addr == NULL && size == 0);
addr = ptr;
}
void grow_to(size_t target_size) {
GGML_ASSERT(addr);
if (failed_already) {
return;
}
size_t granularity = lock_granularity();
target_size = (target_size + granularity - 1) & ~(granularity - 1);
if (target_size > size) {
if (raw_lock((uint8_t *) addr + size, target_size - size)) {
size = target_size;
} else {
failed_already = true;
}
}
}
void * addr;
size_t size;
bool failed_already;
};
llama_mlock::llama_mlock() : pimpl(std::make_unique<impl>()) {}
llama_mlock::~llama_mlock() = default;
void llama_mlock::init(void * ptr) { pimpl->init(ptr); }
void llama_mlock::grow_to(size_t target_size) { pimpl->grow_to(target_size); }
#if defined(_POSIX_MEMLOCK_RANGE) || defined(_WIN32)
const bool llama_mlock::SUPPORTED = true;
#else
const bool llama_mlock::SUPPORTED = false;
#endif
size_t llama_path_max() {
return PATH_MAX;
}

67
src/llama-mmap.h Normal file
View File

@ -0,0 +1,67 @@
#pragma once
#include <memory>
#include <vector>
struct llama_file;
struct llama_mmap;
struct llama_mlock;
using llama_files = std::vector<std::unique_ptr<llama_file>>;
using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
struct llama_file {
llama_file(const char * fname, const char * mode);
~llama_file();
size_t tell() const;
size_t size() const;
int fileno() const;
void seek(size_t offset, int whence) const;
void read_raw(void * ptr, size_t len) const;
uint32_t read_u32() const;
void write_raw(const void * ptr, size_t len) const;
void write_u32(uint32_t val) const;
private:
struct impl;
std::unique_ptr<impl> pimpl;
};
struct llama_mmap {
llama_mmap(const llama_mmap &) = delete;
llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false);
~llama_mmap();
size_t size() const;
void * addr() const;
void unmap_fragment(size_t first, size_t last);
static const bool SUPPORTED;
private:
struct impl;
std::unique_ptr<impl> pimpl;
};
struct llama_mlock {
llama_mlock();
~llama_mlock();
void init(void * ptr);
void grow_to(size_t target_size);
static const bool SUPPORTED;
private:
struct impl;
std::unique_ptr<impl> pimpl;
};
size_t llama_path_max();

413
src/llama-model.cpp Normal file
View File

@ -0,0 +1,413 @@
#include "llama-model.h"
#include "llama-impl.h"
#include <algorithm>
#include <cassert>
#include <stdexcept>
const char * llm_type_name(llm_type type) {
switch (type) {
case MODEL_14M: return "14M";
case MODEL_17M: return "17M";
case MODEL_22M: return "22M";
case MODEL_33M: return "33M";
case MODEL_60M: return "60M";
case MODEL_70M: return "70M";
case MODEL_80M: return "80M";
case MODEL_109M: return "109M";
case MODEL_137M: return "137M";
case MODEL_160M: return "160M";
case MODEL_220M: return "220M";
case MODEL_250M: return "250M";
case MODEL_270M: return "270M";
case MODEL_335M: return "335M";
case MODEL_410M: return "410M";
case MODEL_450M: return "450M";
case MODEL_770M: return "770M";
case MODEL_780M: return "780M";
case MODEL_0_5B: return "0.5B";
case MODEL_1B: return "1B";
case MODEL_1_3B: return "1.3B";
case MODEL_1_4B: return "1.4B";
case MODEL_1_5B: return "1.5B";
case MODEL_1_6B: return "1.6B";
case MODEL_2B: return "2B";
case MODEL_2_8B: return "2.8B";
case MODEL_3B: return "3B";
case MODEL_4B: return "4B";
case MODEL_6B: return "6B";
case MODEL_6_9B: return "6.9B";
case MODEL_7B: return "7B";
case MODEL_8B: return "8B";
case MODEL_9B: return "9B";
case MODEL_11B: return "11B";
case MODEL_12B: return "12B";
case MODEL_13B: return "13B";
case MODEL_14B: return "14B";
case MODEL_15B: return "15B";
case MODEL_16B: return "16B";
case MODEL_20B: return "20B";
case MODEL_30B: return "30B";
case MODEL_32B: return "32B";
case MODEL_34B: return "34B";
case MODEL_35B: return "35B";
case MODEL_40B: return "40B";
case MODEL_65B: return "65B";
case MODEL_70B: return "70B";
case MODEL_236B: return "236B";
case MODEL_314B: return "314B";
case MODEL_SMALL: return "0.1B";
case MODEL_MEDIUM: return "0.4B";
case MODEL_LARGE: return "0.8B";
case MODEL_XL: return "1.5B";
case MODEL_A1_7B: return "A1.7B";
case MODEL_A2_7B: return "A2.7B";
case MODEL_8x7B: return "8x7B";
case MODEL_8x22B: return "8x22B";
case MODEL_16x12B: return "16x12B";
case MODEL_10B_128x3_66B: return "10B+128x3.66B";
case MODEL_57B_A14B: return "57B.A14B";
case MODEL_27B: return "27B";
default: return "?B";
}
}
static std::string llama_model_ftype_name(llama_ftype ftype) {
if (ftype & LLAMA_FTYPE_GUESSED) {
return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
}
switch (ftype) {
case LLAMA_FTYPE_ALL_F32: return "all F32";
case LLAMA_FTYPE_MOSTLY_F16: return "F16";
case LLAMA_FTYPE_MOSTLY_BF16: return "BF16";
case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
case LLAMA_FTYPE_MOSTLY_TQ1_0: return "TQ1_0 - 1.69 bpw ternary";
case LLAMA_FTYPE_MOSTLY_TQ2_0: return "TQ2_0 - 2.06 bpw ternary";
case LLAMA_FTYPE_MOSTLY_IQ2_XXS: return "IQ2_XXS - 2.0625 bpw";
case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
case LLAMA_FTYPE_MOSTLY_IQ3_XXS: return "IQ3_XXS - 3.0625 bpw";
case LLAMA_FTYPE_MOSTLY_IQ1_S: return "IQ1_S - 1.5625 bpw";
case LLAMA_FTYPE_MOSTLY_IQ1_M: return "IQ1_M - 1.75 bpw";
case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
default: return "unknown, may not work";
}
}
std::string llama_model_arch_name (const llama_model & model) {
return llm_arch_name(model.arch);
}
std::string llama_model_type_name (const llama_model & model) {
return llm_type_name(model.type);
}
std::string llama_model_ftype_name(const llama_model & model) {
return llama_model_ftype_name(model.ftype);
}
template<typename F>
static bool buft_supported(ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev, F & fn) {
ggml_init_params params = {
/*.mem_size =*/ ggml_tensor_overhead()*8,
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
ggml_context_ptr ctx { ggml_init(params) };
if (!ctx) {
throw std::runtime_error(format("failed to create ggml context"));
}
ggml_backend_buffer_ptr buf { ggml_backend_buft_alloc_buffer(buft, 0) };
ggml_tensor * op_tensor = fn(ctx.get());
for (int i = 0; i < GGML_MAX_SRC; i++) {
if (op_tensor->src[i] != nullptr) {
assert(op_tensor->src[i]->buffer == nullptr);
op_tensor->src[i]->buffer = buf.get();
}
}
bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
return op_supported;
}
template<typename F>
static ggml_backend_buffer_type_t select_buft(const llama_model::buft_list_t & buft_list, const F & fn) {
for (const auto & cur : buft_list) {
ggml_backend_dev_t cur_dev = cur.first;
ggml_backend_buffer_type_t cur_buft = cur.second;
if (buft_supported(cur_buft, cur_dev, fn)) {
return cur_buft;
}
}
throw std::runtime_error(format("no suitable buffer type found"));
}
ggml_backend_buffer_type_t llama_model_select_buft(const llama_model & model, int il) {
return select_buft(
*model.dev_layer.at(il).buft_list,
[&](ggml_context * ctx) {
ggml_tensor * cur = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
ggml_tensor * layer_dir = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
return ggml_add(ctx, cur, layer_dir);
});
}
struct ggml_tensor * llama_model_get_tensor(const struct llama_model & model, const char * name) {
auto it = std::find_if(model.tensors_by_name.begin(), model.tensors_by_name.end(),
[name](const std::pair<std::string, struct ggml_tensor *> & it) {
return it.first == name;
});
if (it == model.tensors_by_name.end()) {
return nullptr;
}
return it->second;
}
size_t llama_model_max_nodes(const llama_model & model) {
return std::max<size_t>(8192, model.tensors_by_name.size()*5);
}
//
// interface implementation
//
struct llama_model_params llama_model_default_params() {
struct llama_model_params result = {
/*.devices =*/ nullptr,
/*.n_gpu_layers =*/ 0,
/*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
/*.main_gpu =*/ 0,
/*.tensor_split =*/ nullptr,
/*.rpc_servers =*/ nullptr,
/*.progress_callback =*/ nullptr,
/*.progress_callback_user_data =*/ nullptr,
/*.kv_overrides =*/ nullptr,
/*.vocab_only =*/ false,
/*.use_mmap =*/ true,
/*.use_mlock =*/ false,
/*.check_tensors =*/ false,
};
#ifdef GGML_USE_METAL
// note: we usually have plenty of VRAM, so by default offload all layers to the GPU
result.n_gpu_layers = 999;
#endif
return result;
}
void llama_free_model(struct llama_model * model) {
delete model;
}
enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
return model->vocab.type;
}
int32_t llama_n_vocab(const struct llama_model * model) {
return model->hparams.n_vocab;
}
int32_t llama_n_ctx_train(const struct llama_model * model) {
return model->hparams.n_ctx_train;
}
int32_t llama_n_embd(const struct llama_model * model) {
return model->hparams.n_embd;
}
int32_t llama_n_layer(const struct llama_model * model) {
return model->hparams.n_layer;
}
int32_t llama_n_head(const struct llama_model * model) {
return model->hparams.n_head();
}
enum llama_rope_type llama_rope_type(const struct llama_model * model) {
switch (model->arch) {
// these models do not use RoPE
case LLM_ARCH_GPT2:
case LLM_ARCH_GPTJ:
case LLM_ARCH_MPT:
case LLM_ARCH_REFACT:
case LLM_ARCH_BLOOM:
case LLM_ARCH_MAMBA:
case LLM_ARCH_JINA_BERT_V2:
case LLM_ARCH_T5:
case LLM_ARCH_T5ENCODER:
case LLM_ARCH_JAIS:
case LLM_ARCH_RWKV6:
case LLM_ARCH_WAVTOKENIZER_DEC:
return LLAMA_ROPE_TYPE_NONE;
// use what we call a normal RoPE, operating on pairs of consecutive head values
case LLM_ARCH_LLAMA:
case LLM_ARCH_DECI:
case LLM_ARCH_BAICHUAN:
case LLM_ARCH_STARCODER:
case LLM_ARCH_PLAMO:
case LLM_ARCH_ORION:
case LLM_ARCH_INTERNLM2:
case LLM_ARCH_MINICPM:
case LLM_ARCH_XVERSE:
case LLM_ARCH_COMMAND_R:
case LLM_ARCH_OLMO:
case LLM_ARCH_ARCTIC:
case LLM_ARCH_DEEPSEEK:
case LLM_ARCH_DEEPSEEK2:
case LLM_ARCH_CHATGLM:
case LLM_ARCH_GRANITE:
case LLM_ARCH_GRANITE_MOE:
case LLM_ARCH_CHAMELEON:
return LLAMA_ROPE_TYPE_NORM;
// the pairs of head values are offset by n_rot/2
case LLM_ARCH_FALCON:
case LLM_ARCH_GROK:
case LLM_ARCH_DBRX:
case LLM_ARCH_BERT:
case LLM_ARCH_NOMIC_BERT:
case LLM_ARCH_STABLELM:
case LLM_ARCH_BITNET:
case LLM_ARCH_QWEN:
case LLM_ARCH_QWEN2:
case LLM_ARCH_QWEN2MOE:
case LLM_ARCH_OLMO2:
case LLM_ARCH_OLMOE:
case LLM_ARCH_PHI2:
case LLM_ARCH_PHI3:
case LLM_ARCH_GEMMA:
case LLM_ARCH_GEMMA2:
case LLM_ARCH_STARCODER2:
case LLM_ARCH_OPENELM:
case LLM_ARCH_GPTNEOX:
case LLM_ARCH_CODESHELL:
case LLM_ARCH_NEMOTRON:
case LLM_ARCH_EXAONE:
case LLM_ARCH_MINICPM3:
return LLAMA_ROPE_TYPE_NEOX;
case LLM_ARCH_QWEN2VL:
return LLAMA_ROPE_TYPE_MROPE;
// all model arches should be listed explicitly here
case LLM_ARCH_UNKNOWN:
GGML_ABORT("unknown architecture");
}
return LLAMA_ROPE_TYPE_NONE;
}
float llama_rope_freq_scale_train(const struct llama_model * model) {
return model->hparams.rope_freq_scale_train;
}
int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
const auto & it = model->gguf_kv.find(key);
if (it == model->gguf_kv.end()) {
if (buf_size > 0) {
buf[0] = '\0';
}
return -1;
}
return snprintf(buf, buf_size, "%s", it->second.c_str());
}
int32_t llama_model_meta_count(const struct llama_model * model) {
return (int)model->gguf_kv.size();
}
int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
if (i < 0 || i >= (int)model->gguf_kv.size()) {
if (buf_size > 0) {
buf[0] = '\0';
}
return -1;
}
auto it = model->gguf_kv.begin();
std::advance(it, i);
return snprintf(buf, buf_size, "%s", it->first.c_str());
}
int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
if (i < 0 || i >= (int)model->gguf_kv.size()) {
if (buf_size > 0) {
buf[0] = '\0';
}
return -1;
}
auto it = model->gguf_kv.begin();
std::advance(it, i);
return snprintf(buf, buf_size, "%s", it->second.c_str());
}
int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
return snprintf(buf, buf_size, "%s %s %s",
llama_model_arch_name (*model).c_str(),
llama_model_type_name (*model).c_str(),
llama_model_ftype_name(*model).c_str());
}
uint64_t llama_model_size(const struct llama_model * model) {
return model->n_bytes;
}
uint64_t llama_model_n_params(const struct llama_model * model) {
return model->n_elements;
}
bool llama_model_has_encoder(const struct llama_model * model) {
switch (model->arch) {
case LLM_ARCH_T5: return true;
case LLM_ARCH_T5ENCODER: return true;
default: return false;
}
}
bool llama_model_has_decoder(const struct llama_model * model) {
switch (model->arch) {
case LLM_ARCH_T5ENCODER: return false;
default: return true;
}
}
llama_token llama_model_decoder_start_token(const struct llama_model * model) {
return model->hparams.dec_start_token_id;
}
bool llama_model_is_recurrent(const struct llama_model * model) {
switch (model->arch) {
case LLM_ARCH_MAMBA: return true;
case LLM_ARCH_RWKV6: return true;
default: return false;
}
}

380
src/llama-model.h Normal file
View File

@ -0,0 +1,380 @@
#pragma once
#include "llama.h"
#include "llama-arch.h"
#include "llama-hparams.h"
#include "llama-vocab.h"
#include "llama-mmap.h"
#include "ggml-cpp.h"
#include <vector>
// available models
// TODO: this enum does not follow the enum naming convention
enum llm_type {
MODEL_UNKNOWN,
MODEL_14M,
MODEL_17M,
MODEL_22M,
MODEL_33M,
MODEL_60M,
MODEL_70M,
MODEL_80M,
MODEL_109M,
MODEL_137M,
MODEL_160M,
MODEL_220M,
MODEL_250M,
MODEL_270M,
MODEL_335M,
MODEL_410M,
MODEL_450M,
MODEL_770M,
MODEL_780M,
MODEL_0_5B,
MODEL_1B,
MODEL_1_3B,
MODEL_1_4B,
MODEL_1_5B,
MODEL_1_6B,
MODEL_2B,
MODEL_2_8B,
MODEL_3B,
MODEL_4B,
MODEL_6B,
MODEL_6_9B,
MODEL_7B,
MODEL_8B,
MODEL_9B,
MODEL_11B,
MODEL_12B,
MODEL_13B,
MODEL_14B,
MODEL_15B,
MODEL_16B,
MODEL_20B,
MODEL_30B,
MODEL_32B,
MODEL_34B,
MODEL_35B,
MODEL_40B,
MODEL_65B,
MODEL_70B,
MODEL_236B,
MODEL_314B,
MODEL_SMALL,
MODEL_MEDIUM,
MODEL_LARGE,
MODEL_XL,
MODEL_A1_7B,
MODEL_A2_7B,
MODEL_8x7B,
MODEL_8x22B,
MODEL_16x12B,
MODEL_10B_128x3_66B,
MODEL_57B_A14B,
MODEL_27B,
};
struct llama_layer_posnet {
// resnet
struct ggml_tensor * norm1 = nullptr;
struct ggml_tensor * norm1_b = nullptr;
struct ggml_tensor * conv1 = nullptr;
struct ggml_tensor * conv1_b = nullptr;
struct ggml_tensor * norm2 = nullptr;
struct ggml_tensor * norm2_b = nullptr;
struct ggml_tensor * conv2 = nullptr;
struct ggml_tensor * conv2_b = nullptr;
// attention
struct ggml_tensor * attn_norm = nullptr;
struct ggml_tensor * attn_norm_b = nullptr;
struct ggml_tensor * attn_q = nullptr;
struct ggml_tensor * attn_q_b = nullptr;
struct ggml_tensor * attn_k = nullptr;
struct ggml_tensor * attn_k_b = nullptr;
struct ggml_tensor * attn_v = nullptr;
struct ggml_tensor * attn_v_b = nullptr;
struct ggml_tensor * attn_o = nullptr;
struct ggml_tensor * attn_o_b = nullptr;
// normalize
struct ggml_tensor * norm = nullptr;
struct ggml_tensor * norm_b = nullptr;
};
struct llama_layer_convnext {
struct ggml_tensor * dw = nullptr;
struct ggml_tensor * dw_b = nullptr;
struct ggml_tensor * norm = nullptr;
struct ggml_tensor * norm_b = nullptr;
struct ggml_tensor * pw1 = nullptr;
struct ggml_tensor * pw1_b = nullptr;
struct ggml_tensor * pw2 = nullptr;
struct ggml_tensor * pw2_b = nullptr;
struct ggml_tensor * gamma = nullptr;
};
struct llama_layer {
// normalization
struct ggml_tensor * attn_norm = nullptr;
struct ggml_tensor * attn_norm_b = nullptr;
struct ggml_tensor * attn_norm_2 = nullptr;
struct ggml_tensor * attn_norm_2_b = nullptr;
struct ggml_tensor * attn_q_norm = nullptr;
struct ggml_tensor * attn_q_norm_b = nullptr;
struct ggml_tensor * attn_k_norm = nullptr;
struct ggml_tensor * attn_k_norm_b = nullptr;
struct ggml_tensor * attn_out_norm = nullptr;
struct ggml_tensor * attn_out_norm_b = nullptr;
struct ggml_tensor * attn_q_a_norm = nullptr;
struct ggml_tensor * attn_kv_a_norm = nullptr;
struct ggml_tensor * attn_sub_norm = nullptr;
struct ggml_tensor * attn_post_norm = nullptr;
struct ggml_tensor * ffn_sub_norm = nullptr;
struct ggml_tensor * attn_norm_cross = nullptr;
struct ggml_tensor * attn_norm_enc = nullptr;
// attention
struct ggml_tensor * wq = nullptr;
struct ggml_tensor * wk = nullptr;
struct ggml_tensor * wv = nullptr;
struct ggml_tensor * wo = nullptr;
struct ggml_tensor * wqkv = nullptr;
struct ggml_tensor * wq_a = nullptr;
struct ggml_tensor * wq_b = nullptr;
struct ggml_tensor * wkv_a_mqa = nullptr;
struct ggml_tensor * wkv_b = nullptr;
struct ggml_tensor * wq_cross = nullptr;
struct ggml_tensor * wk_cross = nullptr;
struct ggml_tensor * wv_cross = nullptr;
struct ggml_tensor * wo_cross = nullptr;
struct ggml_tensor * wq_enc = nullptr;
struct ggml_tensor * wk_enc = nullptr;
struct ggml_tensor * wv_enc = nullptr;
struct ggml_tensor * wo_enc = nullptr;
// attention bias
struct ggml_tensor * bq = nullptr;
struct ggml_tensor * bk = nullptr;
struct ggml_tensor * bv = nullptr;
struct ggml_tensor * bo = nullptr;
struct ggml_tensor * bqkv = nullptr;
// relative position bias
struct ggml_tensor * attn_rel_b = nullptr;
struct ggml_tensor * attn_rel_b_enc = nullptr;
struct ggml_tensor * attn_rel_b_cross = nullptr;
// normalization
struct ggml_tensor * ffn_norm = nullptr;
struct ggml_tensor * ffn_norm_b = nullptr;
struct ggml_tensor * ffn_post_norm = nullptr;
struct ggml_tensor * layer_out_norm = nullptr;
struct ggml_tensor * layer_out_norm_b = nullptr;
struct ggml_tensor * ffn_norm_exps = nullptr;
struct ggml_tensor * ffn_norm_enc = nullptr;
// ff
struct ggml_tensor * ffn_gate = nullptr; // w1
struct ggml_tensor * ffn_down = nullptr; // w2
struct ggml_tensor * ffn_up = nullptr; // w3
struct ggml_tensor * ffn_gate_enc = nullptr;
struct ggml_tensor * ffn_down_enc = nullptr;
struct ggml_tensor * ffn_up_enc = nullptr;
// ff MoE
struct ggml_tensor * ffn_gate_inp = nullptr;
struct ggml_tensor * ffn_gate_exps = nullptr;
struct ggml_tensor * ffn_down_exps = nullptr;
struct ggml_tensor * ffn_up_exps = nullptr;
// ff shared expert (shexp)
struct ggml_tensor * ffn_gate_inp_shexp = nullptr;
struct ggml_tensor * ffn_gate_shexp = nullptr;
struct ggml_tensor * ffn_down_shexp = nullptr;
struct ggml_tensor * ffn_up_shexp = nullptr;
// ff bias
struct ggml_tensor * ffn_gate_b = nullptr;
struct ggml_tensor * ffn_down_b = nullptr; // b2
struct ggml_tensor * ffn_up_b = nullptr; // b3
struct ggml_tensor * ffn_act = nullptr;
// mamba proj
struct ggml_tensor * ssm_in = nullptr;
struct ggml_tensor * ssm_x = nullptr;
struct ggml_tensor * ssm_dt = nullptr;
struct ggml_tensor * ssm_out = nullptr;
// mamba
struct ggml_tensor * ssm_conv1d = nullptr;
struct ggml_tensor * ssm_a = nullptr;
struct ggml_tensor * ssm_d = nullptr;
// mamba bias
struct ggml_tensor * ssm_conv1d_b = nullptr;
struct ggml_tensor * ssm_dt_b = nullptr;
// rwkv
struct ggml_tensor * time_mix_w1 = nullptr;
struct ggml_tensor * time_mix_w2 = nullptr;
struct ggml_tensor * time_mix_lerp_x = nullptr;
struct ggml_tensor * time_mix_lerp_w = nullptr;
struct ggml_tensor * time_mix_lerp_k = nullptr;
struct ggml_tensor * time_mix_lerp_v = nullptr;
struct ggml_tensor * time_mix_lerp_r = nullptr;
struct ggml_tensor * time_mix_lerp_g = nullptr;
struct ggml_tensor * time_mix_first = nullptr;
struct ggml_tensor * time_mix_decay = nullptr;
struct ggml_tensor * time_mix_decay_w1 = nullptr;
struct ggml_tensor * time_mix_decay_w2 = nullptr;
struct ggml_tensor * time_mix_key = nullptr;
struct ggml_tensor * time_mix_value = nullptr;
struct ggml_tensor * time_mix_receptance = nullptr;
struct ggml_tensor * time_mix_gate = nullptr;
struct ggml_tensor * time_mix_ln = nullptr;
struct ggml_tensor * time_mix_ln_b = nullptr;
struct ggml_tensor * time_mix_output = nullptr;
struct ggml_tensor * channel_mix_lerp_k = nullptr;
struct ggml_tensor * channel_mix_lerp_r = nullptr;
struct ggml_tensor * channel_mix_key = nullptr;
struct ggml_tensor * channel_mix_receptance = nullptr;
struct ggml_tensor * channel_mix_value = nullptr;
// long rope factors
struct ggml_tensor * rope_long = nullptr;
struct ggml_tensor * rope_short = nullptr;
struct ggml_tensor * rope_freqs = nullptr;
// bitnet scale
struct ggml_tensor * wq_scale = nullptr;
struct ggml_tensor * wk_scale = nullptr;
struct ggml_tensor * wv_scale = nullptr;
struct ggml_tensor * wo_scale = nullptr;
struct ggml_tensor * ffn_gate_scale = nullptr;
struct ggml_tensor * ffn_up_scale = nullptr;
struct ggml_tensor * ffn_down_scale = nullptr;
struct llama_layer_posnet posnet;
struct llama_layer_convnext convnext;
};
struct llama_model {
llm_type type = MODEL_UNKNOWN;
llm_arch arch = LLM_ARCH_UNKNOWN;
llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
std::string name = "n/a";
llama_hparams hparams = {};
llama_vocab vocab;
struct ggml_tensor * tok_embd = nullptr;
struct ggml_tensor * type_embd = nullptr;
struct ggml_tensor * pos_embd = nullptr;
struct ggml_tensor * tok_norm = nullptr;
struct ggml_tensor * tok_norm_b = nullptr;
struct ggml_tensor * output_norm = nullptr;
struct ggml_tensor * output_norm_b = nullptr;
struct ggml_tensor * output = nullptr;
struct ggml_tensor * output_b = nullptr;
struct ggml_tensor * output_norm_enc = nullptr;
// classifier
struct ggml_tensor * cls = nullptr;
struct ggml_tensor * cls_b = nullptr;
struct ggml_tensor * cls_out = nullptr;
struct ggml_tensor * cls_out_b = nullptr;
struct ggml_tensor * conv1d = nullptr;
struct ggml_tensor * conv1d_b = nullptr;
std::vector<llama_layer> layers;
// gguf metadata
std::unordered_map<std::string, std::string> gguf_kv;
llama_split_mode split_mode;
int main_gpu;
int n_gpu_layers;
std::vector<std::string> rpc_servers;
// list of devices used in this model
std::vector<ggml_backend_dev_t> devices;
// lists of buffer types used for each layer
using buft_list_t = std::vector<std::pair<ggml_backend_dev_t, ggml_backend_buffer_type_t>>;
buft_list_t cpu_buft_list;
std::map<ggml_backend_dev_t, buft_list_t> gpu_buft_list;
struct layer_dev {
ggml_backend_dev_t dev;
buft_list_t * buft_list;
};
layer_dev dev_input = {};
layer_dev dev_output = {};
std::vector<layer_dev> dev_layer;
// contexts where the model tensors metadata is stored
std::vector<ggml_context_ptr> ctxs;
// the model memory buffers for the tensor data
std::vector<ggml_backend_buffer_ptr> bufs;
// model memory mapped files
llama_mmaps mappings;
// objects representing data potentially being locked in memory
llama_mlocks mlock_bufs;
llama_mlocks mlock_mmaps;
// for quantize-stats only
std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
int64_t t_load_us = 0;
int64_t t_start_us = 0;
// total number of parameters in the model
uint64_t n_elements = 0;
// total size of all the tensors in the model in bytes
size_t n_bytes = 0;
};
const char * llm_type_name(llm_type type);
std::string llama_model_arch_name (const llama_model & model);
std::string llama_model_type_name (const llama_model & model);
std::string llama_model_ftype_name(const llama_model & model);
// used by llama_adapter_cvec
ggml_backend_buffer_type_t llama_model_select_buft(const llama_model & model, int il);
// used by llama_adapter_lora
struct ggml_tensor * llama_model_get_tensor(const struct llama_model & model, const char * name);
size_t llama_model_max_nodes(const llama_model & model);

View File

@ -1,5 +1,6 @@
#include "llama-sampling.h" #include "llama-sampling.h"
#include "llama-impl.h"
#include "llama-vocab.h" #include "llama-vocab.h"
#include "llama-grammar.h" #include "llama-grammar.h"
@ -14,6 +15,117 @@
#include <numeric> #include <numeric>
#include <random> #include <random>
#include <unordered_map> #include <unordered_map>
#include <stdexcept>
// the ring buffer works similarly to std::deque, but with a fixed capacity
template<typename T>
struct ring_buffer {
ring_buffer(size_t cap) : capacity(cap), data(cap) {}
T & front() {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
return data[first];
}
const T & front() const {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
return data[first];
}
T & back() {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
return data[pos];
}
const T & back() const {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
return data[pos];
}
void push_back(const T & value) {
if (capacity == 0) {
throw std::runtime_error("ring buffer: capacity is zero");
}
if (sz == capacity) {
// advance the start when buffer is full
first = (first + 1) % capacity;
} else {
sz++;
}
data[pos] = value;
pos = (pos + 1) % capacity;
}
T pop_front() {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
T value = data[first];
first = (first + 1) % capacity;
sz--;
return value;
}
//T & operator[](size_t i) {
// if (i >= sz) {
// throw std::runtime_error("ring buffer: index out of bounds");
// }
// return data[(first + i) % capacity];
//}
//const T & at(size_t i) const {
// if (i >= sz) {
// throw std::runtime_error("ring buffer: index out of bounds");
// }
// return data[(first + i) % capacity];
//}
const T & rat(size_t i) const {
if (i >= sz) {
throw std::runtime_error("ring buffer: index out of bounds");
}
return data[(first + sz - i - 1) % capacity];
}
std::vector<T> to_vector() const {
std::vector<T> result;
result.reserve(sz);
for (size_t i = 0; i < sz; i++) {
result.push_back(data[(first + i) % capacity]);
}
return result;
}
void clear() {
// here only reset the status of the buffer
sz = 0;
first = 0;
pos = 0;
}
bool empty() const {
return sz == 0;
}
size_t size() const {
return sz;
}
size_t capacity = 0;
size_t sz = 0;
size_t first = 0;
size_t pos = 0;
std::vector<T> data;
};
static int llama_sample_dist(llama_token_data_array * cur_p, std::mt19937 & rng) { static int llama_sample_dist(llama_token_data_array * cur_p, std::mt19937 & rng) {
// iterator for the probabilities // iterator for the probabilities

View File

@ -1,5 +1,7 @@
#include "llama-vocab.h" #include "llama-vocab.h"
#include "llama-impl.h"
#include "unicode.h" #include "unicode.h"
#include <algorithm> #include <algorithm>
@ -16,22 +18,6 @@
// helpers // helpers
// //
LLAMA_ATTRIBUTE_FORMAT(1, 2)
static std::string format(const char * fmt, ...) {
va_list ap;
va_list ap2;
va_start(ap, fmt);
va_copy(ap2, ap);
int size = vsnprintf(NULL, 0, fmt, ap);
GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
std::vector<char> buf(size + 1);
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
GGML_ASSERT(size2 == size);
va_end(ap2);
va_end(ap);
return std::string(buf.data(), size);
}
struct naive_trie { struct naive_trie {
naive_trie() : has_value(false), value(0) { naive_trie() : has_value(false), value(0) {
} }

View File

@ -1,6 +1,6 @@
#pragma once #pragma once
#include "llama-impl.h" #include "llama.h"
#include <string> #include <string>
#include <vector> #include <vector>
@ -8,6 +8,18 @@
#include <map> #include <map>
#include <set> #include <set>
static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
switch (type) {
case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
case LLAMA_VOCAB_TYPE_SPM: return "SPM";
case LLAMA_VOCAB_TYPE_BPE: return "BPE";
case LLAMA_VOCAB_TYPE_WPM: return "WPM";
case LLAMA_VOCAB_TYPE_UGM: return "UGM";
case LLAMA_VOCAB_TYPE_RWKV: return "RWKV";
default: return "unknown";
}
}
struct llm_tokenizer; struct llm_tokenizer;
struct llama_vocab { struct llama_vocab {

File diff suppressed because it is too large Load Diff