mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 19:50:17 +00:00
Compare commits
13 Commits
59cc695a8c
...
133fe809f7
Author | SHA1 | Date | |
---|---|---|---|
|
133fe809f7 | ||
|
924518e2e5 | ||
|
a97b3621cf | ||
|
afd40ea206 | ||
|
36803b1902 | ||
|
a59ee7c4eb | ||
|
10eb87409e | ||
|
f65e3d324d | ||
|
439e68c1e5 | ||
|
34889bf810 | ||
|
9a483999a6 | ||
|
e159e7751c | ||
|
9a735ae6d8 |
@ -13,7 +13,15 @@ function(llama_add_compile_flags)
|
||||
list(APPEND C_FLAGS -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes
|
||||
-Werror=implicit-int -Werror=implicit-function-declaration)
|
||||
|
||||
list(APPEND CXX_FLAGS -Wshadow -Wmissing-declarations -Wmissing-noreturn)
|
||||
list(APPEND CXX_FLAGS -Wmissing-declarations -Wmissing-noreturn)
|
||||
|
||||
if (CMAKE_CXX_COMPILER_ID MATCHES "GNU" OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")
|
||||
list(APPEND CXX_FLAGS -Wshadow)
|
||||
|
||||
if (CMAKE_CXX_COMPILER_ID MATCHES "Clang")
|
||||
list(APPEND CXX_FLAGS -Wshadow-field-in-constructor)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
list(APPEND WARNING_FLAGS -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function)
|
||||
|
||||
|
962
common/arg.cpp
962
common/arg.cpp
File diff suppressed because it is too large
Load Diff
46
common/arg.h
46
common/arg.h
@ -25,43 +25,43 @@ struct common_arg {
|
||||
void (*handler_int) (common_params & params, int) = nullptr;
|
||||
|
||||
common_arg(
|
||||
const std::initializer_list<const char *> & args,
|
||||
const char * value_hint,
|
||||
const std::string & help,
|
||||
const std::initializer_list<const char *> & args_,
|
||||
const char * value_hint_,
|
||||
const std::string & help_,
|
||||
void (*handler)(common_params & params, const std::string &)
|
||||
) : args(args), value_hint(value_hint), help(help), handler_string(handler) {}
|
||||
) : args(args_), value_hint(value_hint_), help(help_), handler_string(handler) {}
|
||||
|
||||
common_arg(
|
||||
const std::initializer_list<const char *> & args,
|
||||
const char * value_hint,
|
||||
const std::string & help,
|
||||
const std::initializer_list<const char *> & args_,
|
||||
const char * value_hint_,
|
||||
const std::string & help_,
|
||||
void (*handler)(common_params & params, int)
|
||||
) : args(args), value_hint(value_hint), help(help), handler_int(handler) {}
|
||||
) : args(args_), value_hint(value_hint_), help(help_), handler_int(handler) {}
|
||||
|
||||
common_arg(
|
||||
const std::initializer_list<const char *> & args,
|
||||
const std::string & help,
|
||||
const std::initializer_list<const char *> & args_,
|
||||
const std::string & help_,
|
||||
void (*handler)(common_params & params)
|
||||
) : args(args), help(help), handler_void(handler) {}
|
||||
) : args(args_), help(help_), handler_void(handler) {}
|
||||
|
||||
// support 2 values for arg
|
||||
common_arg(
|
||||
const std::initializer_list<const char *> & args,
|
||||
const char * value_hint,
|
||||
const char * value_hint_2,
|
||||
const std::string & help,
|
||||
const std::initializer_list<const char *> & args_,
|
||||
const char * value_hint_,
|
||||
const char * value_hint_2_,
|
||||
const std::string & help_,
|
||||
void (*handler)(common_params & params, const std::string &, const std::string &)
|
||||
) : args(args), value_hint(value_hint), value_hint_2(value_hint_2), help(help), handler_str_str(handler) {}
|
||||
) : args(args_), value_hint(value_hint_), value_hint_2(value_hint_2_), help(help_), handler_str_str(handler) {}
|
||||
|
||||
common_arg & set_examples(std::initializer_list<enum llama_example> examples);
|
||||
common_arg & set_excludes(std::initializer_list<enum llama_example> excludes);
|
||||
common_arg & set_env(const char * env);
|
||||
common_arg & set_examples(std::initializer_list<enum llama_example> vals);
|
||||
common_arg & set_excludes(std::initializer_list<enum llama_example> vals);
|
||||
common_arg & set_env(const char * val);
|
||||
common_arg & set_sparam();
|
||||
bool in_example(enum llama_example ex);
|
||||
bool is_exclude(enum llama_example ex);
|
||||
bool get_value_from_env(std::string & output);
|
||||
bool has_value_from_env();
|
||||
std::string to_string();
|
||||
bool get_value_from_env(std::string & output) const;
|
||||
bool has_value_from_env() const;
|
||||
std::string to_string() const;
|
||||
};
|
||||
|
||||
struct common_params_context {
|
||||
@ -69,7 +69,7 @@ struct common_params_context {
|
||||
common_params & params;
|
||||
std::vector<common_arg> options;
|
||||
void(*print_usage)(int, char **) = nullptr;
|
||||
common_params_context(common_params & params) : params(params) {}
|
||||
common_params_context(common_params & params_) : params(params_) {}
|
||||
};
|
||||
|
||||
// parse input arguments from CLI
|
||||
|
@ -763,9 +763,11 @@ bool fs_create_directory_with_parents(const std::string & path) {
|
||||
return true;
|
||||
#else
|
||||
// if the path already exists, check whether it's a directory
|
||||
struct stat info;
|
||||
if (stat(path.c_str(), &info) == 0) {
|
||||
return S_ISDIR(info.st_mode);
|
||||
{
|
||||
struct stat info;
|
||||
if (stat(path.c_str(), &info) == 0) {
|
||||
return S_ISDIR(info.st_mode);
|
||||
}
|
||||
}
|
||||
|
||||
size_t pos_slash = 1; // skip leading slashes for directory creation
|
||||
@ -796,7 +798,7 @@ bool fs_create_directory_with_parents(const std::string & path) {
|
||||
}
|
||||
|
||||
std::string fs_get_cache_directory() {
|
||||
std::string cache_directory = "";
|
||||
std::string cache_directory;
|
||||
auto ensure_trailing_slash = [](std::string p) {
|
||||
// Make sure to add trailing slash
|
||||
if (p.back() != DIRECTORY_SEPARATOR) {
|
||||
@ -1206,7 +1208,7 @@ static bool common_download_file(const std::string & url, const std::string & pa
|
||||
{
|
||||
typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
|
||||
auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
|
||||
common_load_model_from_url_headers * headers = (common_load_model_from_url_headers *) userdata;
|
||||
common_load_model_from_url_headers * cur = (common_load_model_from_url_headers *) userdata;
|
||||
|
||||
static std::regex header_regex("([^:]+): (.*)\r\n");
|
||||
static std::regex etag_regex("ETag", std::regex_constants::icase);
|
||||
@ -1218,9 +1220,9 @@ static bool common_download_file(const std::string & url, const std::string & pa
|
||||
const std::string & key = match[1];
|
||||
const std::string & value = match[2];
|
||||
if (std::regex_match(key, match, etag_regex)) {
|
||||
headers->etag = value;
|
||||
cur->etag = value;
|
||||
} else if (std::regex_match(key, match, last_modified_regex)) {
|
||||
headers->last_modified = value;
|
||||
cur->last_modified = value;
|
||||
}
|
||||
}
|
||||
return n_items;
|
||||
@ -1292,18 +1294,18 @@ static bool common_download_file(const std::string & url, const std::string & pa
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 0L);
|
||||
|
||||
// helper function to hide password in URL
|
||||
auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string {
|
||||
std::size_t protocol_pos = url.find("://");
|
||||
auto llama_download_hide_password_in_url = [](const std::string & url_full) -> std::string {
|
||||
std::size_t protocol_pos = url_full.find("://");
|
||||
if (protocol_pos == std::string::npos) {
|
||||
return url; // Malformed URL
|
||||
return url_full; // Malformed URL
|
||||
}
|
||||
|
||||
std::size_t at_pos = url.find('@', protocol_pos + 3);
|
||||
std::size_t at_pos = url_full.find('@', protocol_pos + 3);
|
||||
if (at_pos == std::string::npos) {
|
||||
return url; // No password in URL
|
||||
return url_full; // No password in URL
|
||||
}
|
||||
|
||||
return url.substr(0, protocol_pos + 3) + "********" + url.substr(at_pos);
|
||||
return url_full.substr(0, protocol_pos + 3) + "********" + url_full.substr(at_pos);
|
||||
};
|
||||
|
||||
// start the download
|
||||
@ -1636,15 +1638,8 @@ std::string common_detokenize(const struct llama_vocab * vocab, const std::vecto
|
||||
//
|
||||
|
||||
std::string common_get_builtin_chat_template(const struct llama_model * model) {
|
||||
static const char * template_key = "tokenizer.chat_template";
|
||||
// call with NULL buffer to get the total size of the string
|
||||
int32_t res = llama_model_meta_val_str(model, template_key, NULL, 0);
|
||||
if (res > 0) {
|
||||
std::vector<char> model_template(res + 1, 0);
|
||||
llama_model_meta_val_str(model, template_key, model_template.data(), model_template.size());
|
||||
return std::string(model_template.data(), model_template.size() - 1);
|
||||
}
|
||||
return "";
|
||||
const char * ptr_tmpl = llama_model_chat_template(model);
|
||||
return ptr_tmpl == nullptr ? "" : ptr_tmpl;
|
||||
}
|
||||
|
||||
bool common_chat_verify_template(const std::string & tmpl) {
|
||||
|
@ -43,7 +43,7 @@ namespace console {
|
||||
static bool simple_io = true;
|
||||
static display_t current_display = reset;
|
||||
|
||||
static FILE* out = stdout;
|
||||
static FILE* fout = stdout;
|
||||
|
||||
#if defined (_WIN32)
|
||||
static void* hConsole;
|
||||
@ -110,7 +110,7 @@ namespace console {
|
||||
|
||||
tty = fopen("/dev/tty", "w+");
|
||||
if (tty != nullptr) {
|
||||
out = tty;
|
||||
fout = tty;
|
||||
}
|
||||
}
|
||||
|
||||
@ -126,7 +126,7 @@ namespace console {
|
||||
// Restore settings on POSIX systems
|
||||
if (!simple_io) {
|
||||
if (tty != nullptr) {
|
||||
out = stdout;
|
||||
fout = stdout;
|
||||
fclose(tty);
|
||||
tty = nullptr;
|
||||
}
|
||||
@ -145,19 +145,19 @@ namespace console {
|
||||
fflush(stdout);
|
||||
switch(display) {
|
||||
case reset:
|
||||
fprintf(out, ANSI_COLOR_RESET);
|
||||
fprintf(fout, ANSI_COLOR_RESET);
|
||||
break;
|
||||
case prompt:
|
||||
fprintf(out, ANSI_COLOR_YELLOW);
|
||||
fprintf(fout, ANSI_COLOR_YELLOW);
|
||||
break;
|
||||
case user_input:
|
||||
fprintf(out, ANSI_BOLD ANSI_COLOR_GREEN);
|
||||
fprintf(fout, ANSI_BOLD ANSI_COLOR_GREEN);
|
||||
break;
|
||||
case error:
|
||||
fprintf(out, ANSI_BOLD ANSI_COLOR_RED);
|
||||
fprintf(fout, ANSI_BOLD ANSI_COLOR_RED);
|
||||
}
|
||||
current_display = display;
|
||||
fflush(out);
|
||||
fflush(fout);
|
||||
}
|
||||
}
|
||||
|
||||
@ -233,7 +233,7 @@ namespace console {
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
putc('\b', out);
|
||||
putc('\b', fout);
|
||||
}
|
||||
|
||||
static int estimateWidth(char32_t codepoint) {
|
||||
@ -274,7 +274,7 @@ namespace console {
|
||||
#else
|
||||
// We can trust expectedWidth if we've got one
|
||||
if (expectedWidth >= 0 || tty == nullptr) {
|
||||
fwrite(utf8_codepoint, length, 1, out);
|
||||
fwrite(utf8_codepoint, length, 1, fout);
|
||||
return expectedWidth;
|
||||
}
|
||||
|
||||
@ -311,7 +311,7 @@ namespace console {
|
||||
pop_cursor();
|
||||
put_codepoint(&ch, 1, 1);
|
||||
#else
|
||||
fprintf(out, "\b%c", ch);
|
||||
fprintf(fout, "\b%c", ch);
|
||||
#endif
|
||||
}
|
||||
|
||||
@ -353,7 +353,7 @@ namespace console {
|
||||
}
|
||||
|
||||
static bool readline_advanced(std::string & line, bool multiline_input) {
|
||||
if (out != stdout) {
|
||||
if (fout != stdout) {
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
@ -364,7 +364,7 @@ namespace console {
|
||||
|
||||
char32_t input_char;
|
||||
while (true) {
|
||||
fflush(out); // Ensure all output is displayed before waiting for input
|
||||
fflush(fout); // Ensure all output is displayed before waiting for input
|
||||
input_char = getchar32();
|
||||
|
||||
if (input_char == '\r' || input_char == '\n') {
|
||||
@ -432,7 +432,7 @@ namespace console {
|
||||
line.pop_back();
|
||||
if (last == '\\') {
|
||||
line += '\n';
|
||||
fputc('\n', out);
|
||||
fputc('\n', fout);
|
||||
has_more = !has_more;
|
||||
} else {
|
||||
// llama will just eat the single space, it won't act as a space
|
||||
@ -447,11 +447,11 @@ namespace console {
|
||||
has_more = false;
|
||||
} else {
|
||||
line += '\n';
|
||||
fputc('\n', out);
|
||||
fputc('\n', fout);
|
||||
}
|
||||
}
|
||||
|
||||
fflush(out);
|
||||
fflush(fout);
|
||||
return has_more;
|
||||
}
|
||||
|
||||
|
@ -579,8 +579,8 @@ private:
|
||||
seq.back().second = false;
|
||||
} else {
|
||||
std::string literal;
|
||||
auto is_non_literal = [&](char c) {
|
||||
return NON_LITERAL_SET.find(c) != NON_LITERAL_SET.end();
|
||||
auto is_non_literal = [&](char ch) {
|
||||
return NON_LITERAL_SET.find(ch) != NON_LITERAL_SET.end();
|
||||
};
|
||||
while (i < length) {
|
||||
if (sub_pattern[i] == '\\' && i < length - 1) {
|
||||
|
@ -255,8 +255,8 @@ public:
|
||||
thrd = std::thread([this]() {
|
||||
while (true) {
|
||||
{
|
||||
std::unique_lock<std::mutex> lock(mtx);
|
||||
cv.wait(lock, [this]() { return head != tail; });
|
||||
std::unique_lock<std::mutex> lock_thrd(mtx);
|
||||
cv.wait(lock_thrd, [this]() { return head != tail; });
|
||||
|
||||
cur = entries[head];
|
||||
|
||||
@ -338,16 +338,16 @@ public:
|
||||
resume();
|
||||
}
|
||||
|
||||
void set_prefix(bool prefix) {
|
||||
void set_prefix(bool val) {
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
|
||||
this->prefix = prefix;
|
||||
prefix = val;
|
||||
}
|
||||
|
||||
void set_timestamps(bool timestamps) {
|
||||
void set_timestamps(bool val) {
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
|
||||
this->timestamps = timestamps;
|
||||
timestamps = val;
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -62,7 +62,7 @@ int main(int argc, char ** argv) {
|
||||
llama_batch batch = llama_batch_init(n_kv_max, 0, 1);
|
||||
|
||||
// decode in batches of ctx_params.n_batch tokens
|
||||
auto decode_helper = [](llama_context * ctx, llama_batch & batch, int32_t n_batch) {
|
||||
auto decode_helper = [&ctx, &batch](int32_t n_batch) {
|
||||
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
|
||||
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
|
||||
|
||||
@ -94,7 +94,7 @@ int main(int argc, char ** argv) {
|
||||
common_batch_add(batch, 0, i, { 0 }, false);
|
||||
}
|
||||
|
||||
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
|
||||
if (!decode_helper(ctx_params.n_batch)) {
|
||||
LOG_ERR("%s: llama_decode() failed\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
@ -134,7 +134,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_kv_cache_clear(ctx);
|
||||
|
||||
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
|
||||
if (!decode_helper(ctx_params.n_batch)) {
|
||||
LOG_ERR("%s: llama_decode() failed\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
@ -156,7 +156,7 @@ int main(int argc, char ** argv) {
|
||||
common_batch_add(batch, 0, pp + i, { j }, true);
|
||||
}
|
||||
|
||||
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
|
||||
if (!decode_helper(ctx_params.n_batch)) {
|
||||
LOG_ERR("%s: llama_decode() failed\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
@ -471,12 +471,12 @@ struct my_llama_file {
|
||||
GGML_ASSERT(ret == 0); // same
|
||||
}
|
||||
|
||||
void read_raw(void * ptr, size_t size) {
|
||||
if (size == 0) {
|
||||
void read_raw(void * raw_addr, size_t raw_size) {
|
||||
if (raw_size == 0) {
|
||||
return;
|
||||
}
|
||||
errno = 0;
|
||||
std::size_t ret = std::fread(ptr, size, 1, fp);
|
||||
std::size_t ret = std::fread(raw_addr, raw_size, 1, fp);
|
||||
if (ferror(fp)) {
|
||||
die_fmt("fread failed: %s", strerror(errno));
|
||||
}
|
||||
|
@ -66,7 +66,7 @@ struct file_input {
|
||||
float alpha;
|
||||
float scale;
|
||||
|
||||
file_input(std::string & fname, float scale): f_in(fname, std::ios::binary), scale(scale) {
|
||||
file_input(std::string & fname, float scale_): f_in(fname, std::ios::binary), scale(scale_) {
|
||||
if (!f_in.is_open()) {
|
||||
throw std::runtime_error("failed to open input gguf from " + fname);
|
||||
}
|
||||
@ -131,7 +131,7 @@ struct lora_merge_ctx {
|
||||
std::string & base_fname,
|
||||
std::vector<common_adapter_lora_info> & lora_files,
|
||||
std::string & outfile,
|
||||
int n_threads) : base_model(base_fname, 0), n_threads(n_threads), fout(outfile, std::ios::binary) {
|
||||
int n_threads_) : base_model(base_fname, 0), n_threads(n_threads_), fout(outfile, std::ios::binary) {
|
||||
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
|
||||
|
||||
if (gguf_find_key(base_model.ctx_gguf, LLM_KV_SPLIT_COUNT) >= 0) {
|
||||
@ -157,7 +157,7 @@ struct lora_merge_ctx {
|
||||
allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend));
|
||||
}
|
||||
|
||||
void check_metadata_lora(file_input * adapter) {
|
||||
void check_metadata_lora(const file_input * adapter) const {
|
||||
auto general_type = get_kv_str(adapter->ctx_gguf, "general.type");
|
||||
if (general_type != "adapter") {
|
||||
throw std::runtime_error("expect general.type to be 'adapter', but got: " + general_type);
|
||||
@ -175,7 +175,7 @@ struct lora_merge_ctx {
|
||||
}
|
||||
}
|
||||
|
||||
ggml_type get_out_tensor_type(struct ggml_tensor * t) {
|
||||
static ggml_type get_out_tensor_type(struct ggml_tensor * t) {
|
||||
if (t->type == GGML_TYPE_F32) {
|
||||
return GGML_TYPE_F32;
|
||||
} else {
|
||||
|
@ -60,13 +60,6 @@ int main(int argc, char** argv) {
|
||||
const std::string grammar_filename = argv[1];
|
||||
const std::string input_filename = argv[2];
|
||||
|
||||
// Read the GBNF grammar file
|
||||
FILE* grammar_file = fopen(grammar_filename.c_str(), "r");
|
||||
if (!grammar_file) {
|
||||
fprintf(stdout, "Failed to open grammar file: %s\n", grammar_filename.c_str());
|
||||
return 1;
|
||||
}
|
||||
|
||||
std::string grammar_str;
|
||||
{
|
||||
std::ifstream grammar_file(grammar_filename);
|
||||
|
@ -204,14 +204,14 @@ struct split_strategy {
|
||||
// temporary buffer for reading in tensor data
|
||||
std::vector<uint8_t> read_buf;
|
||||
|
||||
split_strategy(const split_params & params,
|
||||
std::ifstream & f_input,
|
||||
struct gguf_context * ctx_gguf,
|
||||
struct ggml_context * ctx_meta) :
|
||||
params(params),
|
||||
f_input(f_input),
|
||||
ctx_gguf(ctx_gguf),
|
||||
ctx_meta(ctx_meta),
|
||||
split_strategy(const split_params & params_,
|
||||
std::ifstream & f_input_,
|
||||
struct gguf_context * ctx_gguf_,
|
||||
struct ggml_context * ctx_meta_) :
|
||||
params(params_),
|
||||
f_input(f_input_),
|
||||
ctx_gguf(ctx_gguf_),
|
||||
ctx_meta(ctx_meta_),
|
||||
n_tensors(gguf_get_n_tensors(ctx_gguf)) {
|
||||
|
||||
// because we need to know list of tensors for each file in advance, we will build all the ctx_out for all output splits
|
||||
|
@ -294,7 +294,7 @@ void IMatrixCollector::save_imatrix(int ncall) const {
|
||||
bool IMatrixCollector::load_imatrix(const char * fname) {
|
||||
std::ifstream in(fname, std::ios::binary);
|
||||
if (!in) {
|
||||
LOG_ERR("%s: failed to open %s\n",__func__, fname);
|
||||
LOG_ERR("%s: failed to open %s\n", __func__, fname);
|
||||
return false;
|
||||
}
|
||||
int n_entries;
|
||||
@ -308,7 +308,7 @@ bool IMatrixCollector::load_imatrix(const char * fname) {
|
||||
std::vector<char> name_as_vec(len+1);
|
||||
in.read((char *)name_as_vec.data(), len);
|
||||
if (in.fail()) {
|
||||
LOG_ERR("%s: failed reading name for entry %d from %s\n",__func__,i+1, fname);
|
||||
LOG_ERR("%s: failed reading name for entry %d from %s\n", __func__, i + 1, fname);
|
||||
return false;
|
||||
}
|
||||
name_as_vec[len] = 0;
|
||||
@ -319,7 +319,7 @@ bool IMatrixCollector::load_imatrix(const char * fname) {
|
||||
int nval;
|
||||
in.read((char *)&nval, sizeof(nval));
|
||||
if (in.fail() || nval < 1) {
|
||||
LOG_ERR("%s: failed reading number of values for entry %d\n",__func__,i);
|
||||
LOG_ERR("%s: failed reading number of values for entry %d\n", __func__, i);
|
||||
m_stats = {};
|
||||
return false;
|
||||
}
|
||||
@ -332,15 +332,15 @@ bool IMatrixCollector::load_imatrix(const char * fname) {
|
||||
std::vector<float> tmp(nval);
|
||||
in.read((char*)tmp.data(), nval*sizeof(float));
|
||||
if (in.fail()) {
|
||||
LOG_ERR("%s: failed reading data for entry %d\n",__func__,i);
|
||||
LOG_ERR("%s: failed reading data for entry %d\n", __func__, i);
|
||||
m_stats = {};
|
||||
return false;
|
||||
}
|
||||
|
||||
// Recreate the state as expected by save_imatrix(), and corerct for weighted sum.
|
||||
for (int i = 0; i < nval; i++) {
|
||||
e.values[i] += tmp[i];
|
||||
e.counts[i] += ncall;
|
||||
for (int j = 0; j < nval; j++) {
|
||||
e.values[j] += tmp[j];
|
||||
e.counts[j] += ncall;
|
||||
}
|
||||
e.ncall += ncall;
|
||||
|
||||
@ -488,12 +488,10 @@ static bool compute_imatrix(llama_context * ctx, const common_params & params) {
|
||||
logits.reserve((size_t)n_ctx * n_vocab);
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_chunk; ++i) {
|
||||
const int start = i * n_ctx;
|
||||
for (int ich = 0; ich < n_chunk; ++ich) {
|
||||
const int start = ich * n_ctx;
|
||||
const int end = start + n_ctx;
|
||||
|
||||
std::vector<float> logits;
|
||||
|
||||
const auto t_start = std::chrono::high_resolution_clock::now();
|
||||
|
||||
// clear the KV cache
|
||||
@ -537,7 +535,7 @@ static bool compute_imatrix(llama_context * ctx, const common_params & params) {
|
||||
|
||||
const auto t_end = std::chrono::high_resolution_clock::now();
|
||||
|
||||
if (i == 0) {
|
||||
if (ich == 0) {
|
||||
const float t_total = std::chrono::duration<float>(t_end - t_start).count();
|
||||
LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total);
|
||||
int total_seconds = (int)(t_total * n_chunk);
|
||||
@ -555,7 +553,7 @@ static bool compute_imatrix(llama_context * ctx, const common_params & params) {
|
||||
workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first);
|
||||
count += n_ctx - first - 1;
|
||||
|
||||
LOG("[%d]%.4lf,", i + 1, std::exp(nll / count));
|
||||
LOG("[%d]%.4lf,", ich + 1, std::exp(nll / count));
|
||||
fflush(stdout);
|
||||
|
||||
logits.clear();
|
||||
|
@ -462,14 +462,14 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// tokenize new prefix and suffix
|
||||
std::vector<llama_token> inp_pfx = common_tokenize(ctx, params.input_prefix, false);
|
||||
std::vector<llama_token> inp_sfx = common_tokenize(ctx, params.input_suffix, false);
|
||||
std::vector<llama_token> inp_pfx_cur = common_tokenize(ctx, params.input_prefix, false);
|
||||
std::vector<llama_token> inp_sfx_cur = common_tokenize(ctx, params.input_suffix, false);
|
||||
|
||||
inp_pfx.insert(inp_pfx.begin(), llama_vocab_fim_pre(vocab));
|
||||
inp_sfx.insert(inp_sfx.begin(), llama_vocab_fim_suf(vocab));
|
||||
inp_pfx_cur.insert(inp_pfx_cur.begin(), llama_vocab_fim_pre(vocab));
|
||||
inp_sfx_cur.insert(inp_sfx_cur.begin(), llama_vocab_fim_suf(vocab));
|
||||
|
||||
embd_inp = params.spm_infill ? inp_sfx : inp_pfx;
|
||||
embd_end = params.spm_infill ? inp_pfx : inp_sfx;
|
||||
embd_inp = params.spm_infill ? inp_sfx_cur : inp_pfx_cur;
|
||||
embd_end = params.spm_infill ? inp_pfx_cur : inp_sfx_cur;
|
||||
if (add_bos) {
|
||||
embd_inp.insert(embd_inp.begin(), llama_vocab_bos(vocab));
|
||||
}
|
||||
|
@ -548,11 +548,11 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
||||
GGML_ASSERT(split_arg.size() <= llama_max_devices());
|
||||
|
||||
std::vector<float> tensor_split(llama_max_devices());
|
||||
for (size_t i = 0; i < llama_max_devices(); ++i) {
|
||||
if (i < split_arg.size()) {
|
||||
tensor_split[i] = std::stof(split_arg[i]);
|
||||
for (size_t is = 0; is < llama_max_devices(); ++is) {
|
||||
if (is < split_arg.size()) {
|
||||
tensor_split[is] = std::stof(split_arg[is]);
|
||||
} else {
|
||||
tensor_split[i] = 0.0f;
|
||||
tensor_split[is] = 0.0f;
|
||||
}
|
||||
}
|
||||
params.tensor_split.push_back(tensor_split);
|
||||
|
@ -1039,41 +1039,40 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
}
|
||||
|
||||
{ // attention
|
||||
int hidden_size = 4096;
|
||||
const int d_head = 128;
|
||||
int n_head = hidden_size/d_head;
|
||||
int hidden_size_cur = 4096;
|
||||
int num_query = 96;
|
||||
if (ctx->minicpmv_version == 2) {
|
||||
hidden_size = 4096;
|
||||
n_head = hidden_size/d_head;
|
||||
hidden_size_cur = 4096;
|
||||
num_query = 96;
|
||||
}
|
||||
else if (ctx->minicpmv_version == 3) {
|
||||
hidden_size = 3584;
|
||||
n_head = hidden_size/d_head;
|
||||
hidden_size_cur = 3584;
|
||||
num_query = 64;
|
||||
}
|
||||
|
||||
const int d_head_cur = 128;
|
||||
const int n_head_cur = hidden_size_cur/d_head_cur;
|
||||
|
||||
struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q), model.mm_model_attn_q_b);
|
||||
Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
|
||||
Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head_cur));
|
||||
struct ggml_tensor * K = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k), model.mm_model_attn_k_b);
|
||||
struct ggml_tensor * V = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v), model.mm_model_attn_v_b);
|
||||
// permute
|
||||
Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_query, batch_size);
|
||||
Q = ggml_reshape_4d(ctx0, Q, d_head_cur, n_head_cur, num_query, batch_size);
|
||||
Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
|
||||
Q = ggml_reshape_3d(ctx0, Q, d_head, num_query, n_head * batch_size);
|
||||
K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
|
||||
Q = ggml_reshape_3d(ctx0, Q, d_head_cur, num_query, n_head_cur * batch_size);
|
||||
K = ggml_reshape_4d(ctx0, K, d_head_cur, n_head_cur, num_positions, batch_size);
|
||||
K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
|
||||
K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
|
||||
V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
|
||||
K = ggml_reshape_3d(ctx0, K, d_head_cur, num_positions, n_head_cur * batch_size);
|
||||
V = ggml_reshape_4d(ctx0, V, d_head_cur, n_head_cur, num_positions, batch_size);
|
||||
V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
|
||||
V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
|
||||
V = ggml_reshape_3d(ctx0, V, num_positions, d_head_cur, n_head_cur * batch_size);
|
||||
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
|
||||
KQ = ggml_soft_max_inplace(ctx0, KQ);
|
||||
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
|
||||
KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_query, n_head, batch_size);
|
||||
KQV = ggml_reshape_4d(ctx0, KQV, d_head_cur, num_query, n_head_cur, batch_size);
|
||||
KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
||||
KQV = ggml_cont_3d(ctx0, KQV, hidden_size, num_query, batch_size);
|
||||
KQV = ggml_cont_3d(ctx0, KQV, hidden_size_cur, num_query, batch_size);
|
||||
|
||||
embeddings = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_o_w, KQV), model.mm_model_attn_o_b);
|
||||
}
|
||||
@ -1113,12 +1112,12 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
struct ggml_context * meta = NULL;
|
||||
|
||||
struct gguf_init_params params = {
|
||||
struct gguf_init_params params_meta = {
|
||||
/*.no_alloc = */ true,
|
||||
/*.ctx = */ &meta,
|
||||
};
|
||||
|
||||
struct gguf_context * ctx = gguf_init_from_file(fname, params);
|
||||
struct gguf_context * ctx = gguf_init_from_file(fname, params_meta);
|
||||
if (!ctx) {
|
||||
throw std::runtime_error(format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
|
||||
}
|
||||
@ -1310,13 +1309,13 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
// load tensors
|
||||
{
|
||||
std::vector<uint8_t> read_buf;
|
||||
struct ggml_init_params params = {
|
||||
struct ggml_init_params params_data = {
|
||||
/*.mem_size =*/ (n_tensors + 1) * ggml_tensor_overhead(),
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ true,
|
||||
};
|
||||
|
||||
new_clip->ctx_data = ggml_init(params);
|
||||
new_clip->ctx_data = ggml_init(params_data);
|
||||
if (!new_clip->ctx_data) {
|
||||
LOG_ERR("%s: ggml_init() failed\n", __func__);
|
||||
clip_free(new_clip);
|
||||
@ -2083,7 +2082,7 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
|
||||
}
|
||||
else if (ctx->has_qwen2vl_merger) {
|
||||
clip_image_u8 * resized = clip_image_u8_init();
|
||||
auto patch_size = clip_patch_size(ctx) * 2;
|
||||
auto patch_size = clip_get_patch_size(ctx) * 2;
|
||||
int nx = ceil((float)img->nx / patch_size) * patch_size;
|
||||
int ny = ceil((float)img->ny / patch_size) * patch_size;
|
||||
bicubic_resize(*img, *resized, nx, ny);
|
||||
@ -2294,15 +2293,15 @@ size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_h, int img_w
|
||||
return clip_n_patches_by_img(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
|
||||
}
|
||||
|
||||
int32_t clip_image_size(const struct clip_ctx * ctx) {
|
||||
int32_t clip_get_image_size(const struct clip_ctx * ctx) {
|
||||
return ctx->vision_model.hparams.image_size;
|
||||
}
|
||||
|
||||
int32_t clip_patch_size(const struct clip_ctx * ctx) {
|
||||
int32_t clip_get_patch_size(const struct clip_ctx * ctx) {
|
||||
return ctx->vision_model.hparams.patch_size;
|
||||
}
|
||||
|
||||
int32_t clip_hidden_size(const struct clip_ctx * ctx) {
|
||||
int32_t clip_get_hidden_size(const struct clip_ctx * ctx) {
|
||||
return ctx->vision_model.hparams.hidden_size;
|
||||
}
|
||||
|
||||
|
@ -47,9 +47,9 @@ CLIP_API void clip_free(struct clip_ctx * ctx);
|
||||
CLIP_API size_t clip_embd_nbytes(const struct clip_ctx * ctx);
|
||||
CLIP_API size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_h, int img_w);
|
||||
|
||||
CLIP_API int32_t clip_image_size (const struct clip_ctx * ctx);
|
||||
CLIP_API int32_t clip_patch_size (const struct clip_ctx * ctx);
|
||||
CLIP_API int32_t clip_hidden_size(const struct clip_ctx * ctx);
|
||||
CLIP_API int32_t clip_get_image_size (const struct clip_ctx * ctx);
|
||||
CLIP_API int32_t clip_get_patch_size (const struct clip_ctx * ctx);
|
||||
CLIP_API int32_t clip_get_hidden_size(const struct clip_ctx * ctx);
|
||||
|
||||
// TODO: should be enum, not string
|
||||
CLIP_API const char * clip_patch_merge_type(const struct clip_ctx * ctx);
|
||||
|
@ -105,8 +105,8 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *>
|
||||
struct ggml_context * ctx;
|
||||
} model;
|
||||
|
||||
const int32_t image_size = clip_image_size(ctx_clip);
|
||||
const int32_t patch_size = clip_patch_size(ctx_clip);
|
||||
const int32_t image_size = clip_get_image_size(ctx_clip);
|
||||
const int32_t patch_size = clip_get_patch_size(ctx_clip);
|
||||
|
||||
int32_t num_patches_per_side = image_size / patch_size; // 336 / 14 = 24 - used for embedding-patching boxes (24*24 = 576 patches)
|
||||
|
||||
@ -353,7 +353,7 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
|
||||
img_res_v.size = 0;
|
||||
img_res_v.data = nullptr;
|
||||
|
||||
const int32_t image_size = clip_image_size(ctx_clip);
|
||||
const int32_t image_size = clip_get_image_size(ctx_clip);
|
||||
|
||||
struct clip_image_grid_shape grid_shape = get_anyres_image_grid_shape({img->nx,img->ny}, grid_pinpoints, image_size);
|
||||
|
||||
|
@ -348,8 +348,8 @@ static results_perplexity perplexity_v2(llama_context * ctx, const common_params
|
||||
|
||||
LOG_INF("%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
|
||||
|
||||
for (int i = 0; i < n_chunk; ++i) {
|
||||
const int start = i * params.ppl_stride;
|
||||
for (int ich = 0; ich < n_chunk; ++ich) {
|
||||
const int start = ich * params.ppl_stride;
|
||||
const int end = start + calc_chunk;
|
||||
|
||||
const int num_batches = (calc_chunk + n_batch - 1) / n_batch;
|
||||
@ -400,7 +400,7 @@ static results_perplexity perplexity_v2(llama_context * ctx, const common_params
|
||||
|
||||
const auto t_end = std::chrono::high_resolution_clock::now();
|
||||
|
||||
if (i == 0) {
|
||||
if (ich == 0) {
|
||||
const float t_total = std::chrono::duration<float>(t_end - t_start).count();
|
||||
LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total);
|
||||
int total_seconds = (int)(t_total * n_chunk);
|
||||
@ -427,9 +427,9 @@ static results_perplexity perplexity_v2(llama_context * ctx, const common_params
|
||||
}
|
||||
// perplexity is e^(average negative log-likelihood)
|
||||
if (params.ppl_output_type == 0) {
|
||||
LOG("[%d]%.4lf,", i + 1, std::exp(nll / count));
|
||||
LOG("[%d]%.4lf,", ich + 1, std::exp(nll / count));
|
||||
} else {
|
||||
LOG("%8d %.4lf\n", i*params.ppl_stride, std::exp(nll / count));
|
||||
LOG("%8d %.4lf\n", ich*params.ppl_stride, std::exp(nll / count));
|
||||
}
|
||||
}
|
||||
LOG("\n");
|
||||
@ -659,7 +659,7 @@ static results_perplexity perplexity(llama_context * ctx, const common_params &
|
||||
|
||||
static bool decode_helper(llama_context * ctx, llama_batch & batch, std::vector<float> & batch_logits, int n_batch, int n_vocab) {
|
||||
int prev_outputs = 0;
|
||||
for (int i = 0; i < (int) batch.n_tokens; i += n_batch) {
|
||||
for (int i = 0; i < batch.n_tokens; i += n_batch) {
|
||||
const int n_tokens = std::min<int>(n_batch, batch.n_tokens - i);
|
||||
|
||||
llama_batch batch_view = {
|
||||
@ -679,8 +679,8 @@ static bool decode_helper(llama_context * ctx, llama_batch & batch, std::vector<
|
||||
}
|
||||
|
||||
int n_outputs = 0;
|
||||
for (int i = 0; i < n_tokens; ++i) {
|
||||
n_outputs += batch_view.logits[i] != 0;
|
||||
for (int iv = 0; iv < n_tokens; ++iv) {
|
||||
n_outputs += batch_view.logits[iv] != 0;
|
||||
}
|
||||
|
||||
memcpy(batch_logits.data() + size_t(prev_outputs)*n_vocab, llama_get_logits(ctx), size_t(n_outputs)*n_vocab*sizeof(float));
|
||||
@ -1752,14 +1752,14 @@ static void kl_divergence(llama_context * ctx, const common_params & params) {
|
||||
auto kld_ptr = kld_values.data();
|
||||
auto p_diff_ptr = p_diff_values.data();
|
||||
|
||||
for (int i = 0; i < n_chunk; ++i) {
|
||||
const int start = i * n_ctx;
|
||||
for (int ich = 0; ich < n_chunk; ++ich) {
|
||||
const int start = ich * n_ctx;
|
||||
const int end = start + n_ctx;
|
||||
|
||||
const auto t_start = std::chrono::high_resolution_clock::now();
|
||||
|
||||
if (in.read((char *)log_probs_uint16.data(), log_probs_uint16.size()*sizeof(uint16_t)).fail()) {
|
||||
LOG_ERR("%s: failed reading log-probs for chunk %d\n", __func__, i);
|
||||
LOG_ERR("%s: failed reading log-probs for chunk %d\n", __func__, ich);
|
||||
return;
|
||||
}
|
||||
|
||||
@ -1804,7 +1804,7 @@ static void kl_divergence(llama_context * ctx, const common_params & params) {
|
||||
|
||||
const auto t_end = std::chrono::high_resolution_clock::now();
|
||||
|
||||
if (i == 0) {
|
||||
if (ich == 0) {
|
||||
const float t_total = std::chrono::duration<float>(t_end - t_start).count();
|
||||
LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total);
|
||||
int total_seconds = (int)(t_total * n_chunk);
|
||||
@ -1824,7 +1824,7 @@ static void kl_divergence(llama_context * ctx, const common_params & params) {
|
||||
p_diff_ptr += n_ctx - 1 - first;
|
||||
kld_ptr += n_ctx - 1 - first;
|
||||
|
||||
LOG("%4d", i+1);
|
||||
LOG("%4d", ich + 1);
|
||||
|
||||
auto log_ppl = mean_and_uncertainty(kld.sum_nll, kld.sum_nll2, kld.count);
|
||||
const double ppl_val = exp(log_ppl.first);
|
||||
|
@ -3,3 +3,12 @@ add_executable(${TARGET} run.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_17)
|
||||
|
||||
# TMP
|
||||
if (CMAKE_CXX_COMPILER_ID MATCHES "GNU" OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")
|
||||
target_compile_options(${TARGET} PRIVATE -Wno-shadow)
|
||||
|
||||
if (CMAKE_CXX_COMPILER_ID MATCHES "Clang")
|
||||
target_compile_options(${TARGET} PRIVATE -Wno-shadow-field-in-constructor)
|
||||
endif()
|
||||
endif()
|
||||
|
@ -29,7 +29,7 @@
|
||||
|
||||
#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__)) || defined(_WIN32)
|
||||
[[noreturn]] static void sigint_handler(int) {
|
||||
printf("\n");
|
||||
printf("\n\033[0m");
|
||||
exit(0); // not ideal, but it's the only way to guarantee exit in all cases
|
||||
}
|
||||
#endif
|
||||
|
@ -122,9 +122,9 @@ struct slot_params {
|
||||
samplers.emplace_back(common_sampler_type_to_str(sampler));
|
||||
}
|
||||
|
||||
json lora = json::array();
|
||||
for (size_t i = 0; i < this->lora.size(); ++i) {
|
||||
lora.push_back({{"id", i}, {"scale", this->lora[i].scale}});
|
||||
json json_lora = json::array();
|
||||
for (size_t i = 0; i < lora.size(); ++i) {
|
||||
json_lora.push_back({{"id", i}, {"scale", lora[i].scale}});
|
||||
}
|
||||
|
||||
return json {
|
||||
@ -167,7 +167,7 @@ struct slot_params {
|
||||
{"speculative.p_min", speculative.p_min},
|
||||
{"timings_per_token", timings_per_token},
|
||||
{"post_sampling_probs", post_sampling_probs},
|
||||
{"lora", lora},
|
||||
{"lora", json_lora},
|
||||
};
|
||||
}
|
||||
};
|
||||
@ -200,7 +200,7 @@ struct server_task {
|
||||
// used by SERVER_TASK_TYPE_SET_LORA
|
||||
std::vector<common_adapter_lora_info> set_lora;
|
||||
|
||||
server_task(server_task_type type) : type(type) {}
|
||||
server_task(server_task_type type_) : type(type_) {}
|
||||
|
||||
static slot_params params_from_json_cmpl(
|
||||
const llama_context * ctx,
|
||||
@ -1641,7 +1641,7 @@ struct server_context {
|
||||
|
||||
llama_context_params cparams_dft;
|
||||
|
||||
llama_batch batch = {};
|
||||
llama_batch batch_main = {};
|
||||
|
||||
bool clean_kv_cache = true;
|
||||
bool add_bos_token = true;
|
||||
@ -1676,7 +1676,7 @@ struct server_context {
|
||||
llama_batch_free(slot.batch_spec);
|
||||
}
|
||||
|
||||
llama_batch_free(batch);
|
||||
llama_batch_free(batch_main);
|
||||
}
|
||||
|
||||
bool load_model(const common_params & params) {
|
||||
@ -1797,7 +1797,7 @@ struct server_context {
|
||||
const int32_t n_batch = llama_n_batch(ctx);
|
||||
|
||||
// only a single seq_id per token is needed
|
||||
batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
|
||||
batch_main = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
|
||||
}
|
||||
|
||||
metrics.init();
|
||||
@ -2655,7 +2655,7 @@ struct server_context {
|
||||
}
|
||||
|
||||
// start populating the batch for this iteration
|
||||
common_batch_clear(batch);
|
||||
common_batch_clear(batch_main);
|
||||
|
||||
// track if given slot can be batched with slots already in the batch
|
||||
server_slot * slot_batched = nullptr;
|
||||
@ -2673,9 +2673,9 @@ struct server_context {
|
||||
continue;
|
||||
}
|
||||
|
||||
slot.i_batch = batch.n_tokens;
|
||||
slot.i_batch = batch_main.n_tokens;
|
||||
|
||||
common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true);
|
||||
common_batch_add(batch_main, slot.sampled, slot.n_past, { slot.id }, true);
|
||||
|
||||
slot.n_past += 1;
|
||||
|
||||
@ -2692,7 +2692,7 @@ struct server_context {
|
||||
int32_t n_ubatch = llama_n_ubatch(ctx);
|
||||
|
||||
// next, batch any pending prompts without exceeding n_batch
|
||||
if (params_base.cont_batching || batch.n_tokens == 0) {
|
||||
if (params_base.cont_batching || batch_main.n_tokens == 0) {
|
||||
for (auto & slot : slots) {
|
||||
// check if we can batch this slot with the previous one
|
||||
if (slot.is_processing()) {
|
||||
@ -2858,7 +2858,7 @@ struct server_context {
|
||||
// non-causal tasks require to fit the entire prompt in the physical batch
|
||||
if (slot.is_non_causal()) {
|
||||
// cannot fit the prompt in the current batch - will try next iter
|
||||
if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
|
||||
if (batch_main.n_tokens + slot.n_prompt_tokens > n_batch) {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
@ -2878,11 +2878,11 @@ struct server_context {
|
||||
slot.cache_tokens.resize(slot.n_past);
|
||||
|
||||
// add prompt tokens for processing in the current batch
|
||||
while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
|
||||
while (slot.n_past < slot.n_prompt_tokens && batch_main.n_tokens < n_batch) {
|
||||
// without pooling, we want to output the embeddings for all the tokens in the batch
|
||||
const bool need_embd = slot.task_type == SERVER_TASK_TYPE_EMBEDDING && llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE;
|
||||
|
||||
common_batch_add(batch, prompt_tokens[slot.n_past], slot.n_past, { slot.id }, need_embd);
|
||||
common_batch_add(batch_main, prompt_tokens[slot.n_past], slot.n_past, { slot.id }, need_embd);
|
||||
|
||||
if (slot.params.cache_prompt) {
|
||||
slot.cache_tokens.push_back(prompt_tokens[slot.n_past]);
|
||||
@ -2892,13 +2892,13 @@ struct server_context {
|
||||
slot.n_past++;
|
||||
}
|
||||
|
||||
SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
|
||||
SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch_main.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
|
||||
|
||||
// entire prompt has been processed
|
||||
if (slot.n_past == slot.n_prompt_tokens) {
|
||||
slot.state = SLOT_STATE_DONE_PROMPT;
|
||||
|
||||
GGML_ASSERT(batch.n_tokens > 0);
|
||||
GGML_ASSERT(batch_main.n_tokens > 0);
|
||||
|
||||
common_sampler_reset(slot.smpl);
|
||||
|
||||
@ -2908,27 +2908,27 @@ struct server_context {
|
||||
}
|
||||
|
||||
// extract the logits only for the last token
|
||||
batch.logits[batch.n_tokens - 1] = true;
|
||||
batch_main.logits[batch_main.n_tokens - 1] = true;
|
||||
|
||||
slot.n_decoded = 0;
|
||||
slot.i_batch = batch.n_tokens - 1;
|
||||
slot.i_batch = batch_main.n_tokens - 1;
|
||||
|
||||
SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens);
|
||||
SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch_main.n_tokens);
|
||||
}
|
||||
}
|
||||
|
||||
if (batch.n_tokens >= n_batch) {
|
||||
if (batch_main.n_tokens >= n_batch) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (batch.n_tokens == 0) {
|
||||
if (batch_main.n_tokens == 0) {
|
||||
SRV_WRN("%s", "no tokens to decode\n");
|
||||
return;
|
||||
}
|
||||
|
||||
SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
|
||||
SRV_DBG("decoding batch, n_tokens = %d\n", batch_main.n_tokens);
|
||||
|
||||
if (slot_batched) {
|
||||
// make sure we're in the right embedding mode
|
||||
@ -2938,17 +2938,17 @@ struct server_context {
|
||||
}
|
||||
|
||||
// process the created batch of tokens
|
||||
for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
|
||||
const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
|
||||
for (int32_t i_batch = 0; i_batch < batch_main.n_tokens; i_batch += n_batch) {
|
||||
const int32_t n_tokens = std::min(n_batch, batch_main.n_tokens - i_batch);
|
||||
|
||||
llama_batch batch_view = {
|
||||
n_tokens,
|
||||
batch.token + i,
|
||||
batch_main.token + i_batch,
|
||||
nullptr,
|
||||
batch.pos + i,
|
||||
batch.n_seq_id + i,
|
||||
batch.seq_id + i,
|
||||
batch.logits + i,
|
||||
batch_main.pos + i_batch,
|
||||
batch_main.n_seq_id + i_batch,
|
||||
batch_main.seq_id + i_batch,
|
||||
batch_main.logits + i_batch,
|
||||
};
|
||||
|
||||
const int ret = llama_decode(ctx, batch_view);
|
||||
@ -2957,7 +2957,7 @@ struct server_context {
|
||||
if (ret != 0) {
|
||||
if (n_batch == 1 || ret < 0) {
|
||||
// if you get here, it means the KV cache is full - try increasing it via the context size
|
||||
SRV_ERR("failed to decode the batch: KV cache is full - try increasing it via the context size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
|
||||
SRV_ERR("failed to decode the batch: KV cache is full - try increasing it via the context size, i_batch = %d, n_batch = %d, ret = %d\n", i_batch, n_batch, ret);
|
||||
for (auto & slot : slots) {
|
||||
slot.release();
|
||||
send_error(slot, "Input prompt is too big compared to KV size. Please try increasing KV size.");
|
||||
@ -2967,15 +2967,15 @@ struct server_context {
|
||||
|
||||
// retry with half the batch size to try to find a free slot in the KV cache
|
||||
n_batch /= 2;
|
||||
i -= n_batch;
|
||||
i_batch -= n_batch;
|
||||
|
||||
SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
|
||||
SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation, i_batch = %d, n_batch = %d, ret = %d\n", i_batch, n_batch, ret);
|
||||
|
||||
continue; // continue loop of n_batch
|
||||
}
|
||||
|
||||
for (auto & slot : slots) {
|
||||
if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
|
||||
if (slot.i_batch < (int) i_batch || slot.i_batch >= (int) (i_batch + n_tokens)) {
|
||||
continue; // continue loop of slots
|
||||
}
|
||||
|
||||
@ -3001,7 +3001,7 @@ struct server_context {
|
||||
continue; // continue loop of slots
|
||||
}
|
||||
|
||||
const int tok_idx = slot.i_batch - i;
|
||||
const int tok_idx = slot.i_batch - i_batch;
|
||||
|
||||
llama_token id = common_sampler_sample(slot.smpl, ctx, tok_idx);
|
||||
|
||||
@ -3687,8 +3687,8 @@ int main(int argc, char ** argv) {
|
||||
} else {
|
||||
// multiple results (multitask)
|
||||
json arr = json::array();
|
||||
for (auto & res : results) {
|
||||
arr.push_back(res->to_json());
|
||||
for (auto & result : results) {
|
||||
arr.push_back(result->to_json());
|
||||
}
|
||||
res_ok(res, arr);
|
||||
}
|
||||
@ -3702,8 +3702,8 @@ int main(int argc, char ** argv) {
|
||||
ctx_server.receive_cmpl_results_stream(task_ids, [&](server_task_result_ptr & result) -> bool {
|
||||
json res_json = result->to_json();
|
||||
if (res_json.is_array()) {
|
||||
for (const auto & res : res_json) {
|
||||
if (!server_sent_event(sink, "data", res)) {
|
||||
for (const auto & item : res_json) {
|
||||
if (!server_sent_event(sink, "data", item)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
@ -3973,9 +3973,9 @@ int main(int argc, char ** argv) {
|
||||
std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
|
||||
|
||||
ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
|
||||
for (auto & res : results) {
|
||||
GGML_ASSERT(dynamic_cast<server_task_result_embd*>(res.get()) != nullptr);
|
||||
responses.push_back(res->to_json());
|
||||
for (auto & result : results) {
|
||||
GGML_ASSERT(dynamic_cast<server_task_result_embd*>(result.get()) != nullptr);
|
||||
responses.push_back(result->to_json());
|
||||
}
|
||||
}, [&](const json & error_data) {
|
||||
res_error(res, error_data);
|
||||
@ -4063,9 +4063,9 @@ int main(int argc, char ** argv) {
|
||||
std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
|
||||
|
||||
ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
|
||||
for (auto & res : results) {
|
||||
GGML_ASSERT(dynamic_cast<server_task_result_rerank*>(res.get()) != nullptr);
|
||||
responses.push_back(res->to_json());
|
||||
for (auto & result : results) {
|
||||
GGML_ASSERT(dynamic_cast<server_task_result_rerank*>(result.get()) != nullptr);
|
||||
responses.push_back(result->to_json());
|
||||
}
|
||||
}, [&](const json & error_data) {
|
||||
res_error(res, error_data);
|
||||
|
@ -129,15 +129,15 @@ static llama_tokens tokenize_mixed(const llama_vocab * vocab, const json & json_
|
||||
if (p.is_string()) {
|
||||
auto s = p.template get<std::string>();
|
||||
|
||||
llama_tokens p;
|
||||
llama_tokens ids;
|
||||
if (first) {
|
||||
p = common_tokenize(vocab, s, add_special, parse_special);
|
||||
ids = common_tokenize(vocab, s, add_special, parse_special);
|
||||
first = false;
|
||||
} else {
|
||||
p = common_tokenize(vocab, s, false, parse_special);
|
||||
ids = common_tokenize(vocab, s, false, parse_special);
|
||||
}
|
||||
|
||||
prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
|
||||
prompt_tokens.insert(prompt_tokens.end(), ids.begin(), ids.end());
|
||||
} else {
|
||||
if (first) {
|
||||
first = false;
|
||||
|
@ -110,9 +110,8 @@ int main(int argc, char ** argv) {
|
||||
llama_token new_token_id;
|
||||
while (true) {
|
||||
// check if we have enough space in the context to evaluate this batch
|
||||
int n_ctx = llama_n_ctx(ctx);
|
||||
int n_ctx_used = llama_get_kv_cache_used_cells(ctx);
|
||||
if (n_ctx_used + batch.n_tokens > n_ctx) {
|
||||
if (n_ctx_used + batch.n_tokens > (int) llama_n_ctx(ctx)) {
|
||||
printf("\033[0m\n");
|
||||
fprintf(stderr, "context size exceeded\n");
|
||||
exit(0);
|
||||
|
@ -544,26 +544,26 @@ int main(int argc, char ** argv) {
|
||||
for (int is = 0; is < (int) sa.size(); ++is) {
|
||||
const llama_token id = cur_p->data[is].id;
|
||||
|
||||
const int s = sa[is];
|
||||
const int sd = sa[is];
|
||||
|
||||
common_sampler_accept(drafts[s].smpl, id, true);
|
||||
common_sampler_accept(drafts[sd].smpl, id, true);
|
||||
|
||||
drafts[s].tokens.push_back(id);
|
||||
// save cur_p.data into drafts[s].dists
|
||||
drafts[s].dists.push_back({cur_p->data, cur_p->data + cur_p->size});
|
||||
drafts[sd].tokens.push_back(id);
|
||||
// save cur_p.data into drafts[sd].dists
|
||||
drafts[sd].dists.push_back({cur_p->data, cur_p->data + cur_p->size});
|
||||
|
||||
// add unique drafted tokens to the target batch
|
||||
drafts[s].i_batch_tgt.push_back(batch_tgt.n_tokens);
|
||||
drafts[sd].i_batch_tgt.push_back(batch_tgt.n_tokens);
|
||||
|
||||
common_batch_add(batch_tgt, id, n_past_tgt + i + 1, { s }, true);
|
||||
common_batch_add(batch_tgt, id, n_past_tgt + i + 1, { sd }, true);
|
||||
|
||||
// add the token to the batch for batched decoding with the draft model
|
||||
drafts[s].i_batch_dft = batch_dft.n_tokens;
|
||||
drafts[sd].i_batch_dft = batch_dft.n_tokens;
|
||||
|
||||
common_batch_add(batch_dft, id, n_past_cur, { s }, true);
|
||||
common_batch_add(batch_dft, id, n_past_cur, { sd }, true);
|
||||
|
||||
if (batch_tgt.n_tokens > n_draft) {
|
||||
drafts[s].drafting = false;
|
||||
drafts[sd].drafting = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -323,7 +323,7 @@ extern "C" {
|
||||
// Utils
|
||||
//
|
||||
|
||||
struct ggml_backend_graph_copy {
|
||||
struct ggml_backend_graph_copy_state {
|
||||
ggml_backend_buffer_t buffer;
|
||||
struct ggml_context * ctx_allocated;
|
||||
struct ggml_context * ctx_unallocated;
|
||||
@ -331,8 +331,8 @@ extern "C" {
|
||||
};
|
||||
|
||||
// Copy a graph to a different backend
|
||||
GGML_API struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph);
|
||||
GGML_API void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy);
|
||||
GGML_API struct ggml_backend_graph_copy_state ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph);
|
||||
GGML_API void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy_state copy);
|
||||
|
||||
typedef bool (*ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data);
|
||||
|
||||
|
@ -1724,7 +1724,7 @@ static void graph_copy_init_tensor(struct ggml_hash_set * hash_set, struct ggml_
|
||||
}
|
||||
}
|
||||
|
||||
struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
|
||||
struct ggml_backend_graph_copy_state ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
|
||||
struct ggml_hash_set hash_set = ggml_hash_set_new(graph->visited_hash_set.size);
|
||||
struct ggml_tensor ** node_copies = (ggml_tensor **) calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT
|
||||
bool * node_init = (bool *) calloc(hash_set.size, sizeof(node_init[0]));
|
||||
@ -1805,14 +1805,14 @@ struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, s
|
||||
};
|
||||
}
|
||||
|
||||
void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
|
||||
void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy_state copy) {
|
||||
ggml_backend_buffer_free(copy.buffer);
|
||||
ggml_free(copy.ctx_allocated);
|
||||
ggml_free(copy.ctx_unallocated);
|
||||
}
|
||||
|
||||
bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
|
||||
struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
|
||||
struct ggml_backend_graph_copy_state copy = ggml_backend_graph_copy(backend2, graph);
|
||||
if (copy.buffer == NULL) {
|
||||
return false;
|
||||
}
|
||||
|
@ -55,7 +55,7 @@ struct llama_adapter_lora_weight {
|
||||
}
|
||||
|
||||
llama_adapter_lora_weight() = default;
|
||||
llama_adapter_lora_weight(struct ggml_tensor * a, struct ggml_tensor * b) : a(a), b(b) {}
|
||||
llama_adapter_lora_weight(struct ggml_tensor * a_, struct ggml_tensor * b_) : a(a_), b(b_) {}
|
||||
};
|
||||
|
||||
struct llama_adapter_lora {
|
||||
|
@ -178,7 +178,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
||||
{ LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP, "tokenizer.ggml.precompiled_charsmap" },
|
||||
{ LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
|
||||
{ LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
|
||||
{ LLM_KV_TOKENIZER_CHAT_TEMPLATE, "tokenizer.chat.template" },
|
||||
{ LLM_KV_TOKENIZER_CHAT_TEMPLATE, "tokenizer.chat_template" },
|
||||
{ LLM_KV_TOKENIZER_FIM_PRE_ID, "tokenizer.ggml.fim_pre_token_id" },
|
||||
{ LLM_KV_TOKENIZER_FIM_SUF_ID, "tokenizer.ggml.fim_suf_token_id" },
|
||||
{ LLM_KV_TOKENIZER_FIM_MID_ID, "tokenizer.ggml.fim_mid_token_id" },
|
||||
@ -1443,7 +1443,7 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
|
||||
{LLM_TENSOR_CONVNEXT_GAMMA, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
||||
};
|
||||
|
||||
LLM_KV::LLM_KV(llm_arch arch) : arch(arch) {}
|
||||
LLM_KV::LLM_KV(llm_arch arch_) : arch(arch_) {}
|
||||
|
||||
std::string LLM_KV::operator()(llm_kv kv) const {
|
||||
return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
|
||||
|
@ -374,7 +374,7 @@ struct LLM_TN_IMPL {
|
||||
};
|
||||
|
||||
struct LLM_TN {
|
||||
LLM_TN(llm_arch arch) : arch(arch) {}
|
||||
LLM_TN(llm_arch arch_) : arch(arch_) {}
|
||||
|
||||
llm_arch arch;
|
||||
|
||||
|
@ -15,8 +15,8 @@
|
||||
#include <set>
|
||||
|
||||
struct llama_context {
|
||||
llama_context(const llama_model & model)
|
||||
: model(model)
|
||||
llama_context(const llama_model & model_)
|
||||
: model(model_)
|
||||
, t_start_us(model.t_start_us)
|
||||
, t_load_us(model.t_load_us) {}
|
||||
|
||||
|
@ -17,7 +17,7 @@ struct llama_logger_state {
|
||||
|
||||
static llama_logger_state g_logger_state;
|
||||
|
||||
time_meas::time_meas(int64_t & t_acc, bool disable) : t_start_us(disable ? -1 : ggml_time_us()), t_acc(t_acc) {}
|
||||
time_meas::time_meas(int64_t & t_acc_, bool disable) : t_start_us(disable ? -1 : ggml_time_us()), t_acc(t_acc_) {}
|
||||
|
||||
time_meas::~time_meas() {
|
||||
if (t_start_us >= 0) {
|
||||
|
@ -454,8 +454,8 @@ struct llama_mlock::impl {
|
||||
return (size_t) sysconf(_SC_PAGESIZE);
|
||||
}
|
||||
|
||||
bool raw_lock(const void * addr_cur, size_t size_cur) const {
|
||||
if (!mlock(addr_cur, size_cur)) {
|
||||
bool raw_lock(const void * lock_addr, size_t lock_len) const {
|
||||
if (!mlock(lock_addr, lock_len)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -475,12 +475,12 @@ struct llama_mlock::impl {
|
||||
if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
|
||||
suggest = false;
|
||||
}
|
||||
if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size_cur)) {
|
||||
if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + lock_len)) {
|
||||
suggest = false;
|
||||
}
|
||||
|
||||
LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
|
||||
size_cur, size, errmsg, suggest ? MLOCK_SUGGESTION : "");
|
||||
lock_len, size, errmsg, suggest ? MLOCK_SUGGESTION : "");
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -535,7 +535,7 @@ struct llama_mlock::impl {
|
||||
return (size_t) 65536;
|
||||
}
|
||||
|
||||
bool raw_lock(const void * addr_cur, size_t size_cur) const {
|
||||
bool raw_lock(const void * lock_addr, size_t lock_len) const {
|
||||
LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
|
||||
return false;
|
||||
}
|
||||
|
@ -31,7 +31,7 @@ struct llama_model_loader {
|
||||
|
||||
ggml_tensor * tensor;
|
||||
|
||||
llama_tensor_weight(const llama_file * file, uint16_t idx, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
|
||||
llama_tensor_weight(const llama_file * file, uint16_t idx_, const struct gguf_context * gguf_ctx, ggml_tensor * tensor_) : idx(idx_), tensor(tensor_) {
|
||||
const int tensor_idx = gguf_find_tensor(gguf_ctx, ggml_get_name(tensor));
|
||||
if (tensor_idx < 0) {
|
||||
throw std::runtime_error(format("tensor '%s' not found in the model", ggml_get_name(tensor)));
|
||||
|
@ -311,9 +311,9 @@ static buft_list_t make_gpu_buft_list(ggml_backend_dev_t dev, enum llama_split_m
|
||||
ggml_backend_reg_get_proc_address(reg, "ggml_backend_split_buffer_type");
|
||||
if (ggml_backend_split_buffer_type_fn) {
|
||||
size_t dev_index = [&]() {
|
||||
auto * reg = ggml_backend_dev_backend_reg(dev);
|
||||
for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); ++i) {
|
||||
if (ggml_backend_reg_dev_get(reg, i) == dev) {
|
||||
ggml_backend_reg_t reg_dev = ggml_backend_dev_backend_reg(dev);
|
||||
for (size_t i = 0; i < ggml_backend_reg_dev_count(reg_dev); ++i) {
|
||||
if (ggml_backend_reg_dev_get(reg_dev, i) == dev) {
|
||||
return i;
|
||||
}
|
||||
}
|
||||
@ -369,7 +369,7 @@ struct llama_model::impl {
|
||||
std::vector<layer_dev> dev_layer;
|
||||
};
|
||||
|
||||
llama_model::llama_model(const struct llama_model_params & params) : params(params), pimpl(std::make_unique<impl>()) {
|
||||
llama_model::llama_model(const struct llama_model_params & params_) : params(params_), pimpl(std::make_unique<impl>()) {
|
||||
}
|
||||
|
||||
llama_model::~llama_model() {}
|
||||
@ -1304,7 +1304,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
const int act_gpu_layers = devices.empty() ? 0 : std::min(n_gpu_layers, (int)n_layer + 1);
|
||||
auto get_layer_buft_list = [&](int il) -> llama_model::impl::layer_dev {
|
||||
if (il < i_gpu_start || (il - i_gpu_start) >= act_gpu_layers) {
|
||||
return {cpu_dev, &pimpl->cpu_buft_list};
|
||||
return { cpu_dev, &pimpl->cpu_buft_list };
|
||||
}
|
||||
const int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + n_devices(), float(il - i_gpu_start)/act_gpu_layers) - splits.begin();
|
||||
auto * dev = devices.at(layer_gpu);
|
||||
@ -1453,7 +1453,6 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
// avoid using a host buffer when using mmap
|
||||
auto * buft_dev = ggml_backend_buft_get_device(buft);
|
||||
if (ml.use_mmap && buft_dev && buft == ggml_backend_dev_host_buffer_type(buft_dev)) {
|
||||
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
|
||||
buft = ggml_backend_dev_buffer_type(cpu_dev);
|
||||
}
|
||||
|
||||
@ -3697,8 +3696,8 @@ ggml_backend_buffer_type_t llama_model::select_buft(int il) const {
|
||||
|
||||
const struct ggml_tensor * llama_model::get_tensor(const char * name) const {
|
||||
auto it = std::find_if(tensors_by_name.begin(), tensors_by_name.end(),
|
||||
[name](const std::pair<std::string, struct ggml_tensor *> & it) {
|
||||
return it.first == name;
|
||||
[name](const std::pair<std::string, struct ggml_tensor *> & entry) {
|
||||
return entry.first == name;
|
||||
});
|
||||
if (it == tensors_by_name.end()) {
|
||||
return nullptr;
|
||||
|
@ -41,9 +41,9 @@ struct quantize_state_impl {
|
||||
// used to figure out if a model shares tok_embd with the output weight
|
||||
bool has_output = false;
|
||||
|
||||
quantize_state_impl(const llama_model & model, const llama_model_quantize_params * params)
|
||||
: model(model)
|
||||
, params(params)
|
||||
quantize_state_impl(const llama_model & model_, const llama_model_quantize_params * params_)
|
||||
: model(model_)
|
||||
, params(params_)
|
||||
{}
|
||||
};
|
||||
|
||||
@ -130,17 +130,17 @@ static ggml_type llama_tensor_get_type(quantize_state_impl & qs, ggml_type new_t
|
||||
return i_layer < n_layers/8 || i_layer >= 7*n_layers/8 || (i_layer - n_layers/8)%3 == 2;
|
||||
};
|
||||
const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
|
||||
auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
|
||||
auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name_layer) {
|
||||
if (n_expert > 1) {
|
||||
// Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but occasionally randomly
|
||||
// sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
|
||||
// for getting the current layer as I initially thought, and we need to resort to parsing the
|
||||
// tensor name.
|
||||
if (sscanf(name, "blk.%d.", &i_layer) != 1) {
|
||||
throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
|
||||
if (sscanf(name_layer, "blk.%d.", &i_layer) != 1) {
|
||||
throw std::runtime_error(format("Failed to determine layer for tensor %s", name_layer));
|
||||
}
|
||||
if (i_layer < 0 || i_layer >= n_layer) {
|
||||
throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
|
||||
throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name_layer, n_layer));
|
||||
}
|
||||
}
|
||||
return std::make_pair(i_layer, n_layer);
|
||||
|
@ -115,7 +115,7 @@ struct llm_tokenizer_spm : llm_tokenizer {
|
||||
};
|
||||
|
||||
struct llm_tokenizer_spm_session {
|
||||
llm_tokenizer_spm_session(const llama_vocab & vocab) : vocab(vocab) {}
|
||||
llm_tokenizer_spm_session(const llama_vocab & vocab_) : vocab(vocab_) {}
|
||||
|
||||
void tokenize(const std::string & text, std::vector<llama_token> & output) {
|
||||
// split string into utf8 chars
|
||||
@ -415,7 +415,7 @@ struct llm_tokenizer_bpe : llm_tokenizer {
|
||||
};
|
||||
|
||||
struct llm_tokenizer_bpe_session {
|
||||
llm_tokenizer_bpe_session(const llama_vocab & vocab, const llm_tokenizer_bpe & tokenizer) : vocab(vocab), tokenizer(tokenizer) {}
|
||||
llm_tokenizer_bpe_session(const llama_vocab & vocab_, const llm_tokenizer_bpe & tokenizer_) : vocab(vocab_), tokenizer(tokenizer_) {}
|
||||
|
||||
static void append(const llama_token token_id, std::vector<llama_token> & output) {
|
||||
output.push_back(token_id);
|
||||
@ -603,7 +603,7 @@ struct llm_tokenizer_wpm : llm_tokenizer {
|
||||
};
|
||||
|
||||
struct llm_tokenizer_wpm_session {
|
||||
llm_tokenizer_wpm_session(const llama_vocab & vocab) : vocab(vocab) {}
|
||||
llm_tokenizer_wpm_session(const llama_vocab & vocab_) : vocab(vocab_) {}
|
||||
|
||||
void tokenize(const std::string & text, std::vector<llama_token> & output) {
|
||||
// normalize and split by whitespace
|
||||
@ -782,7 +782,7 @@ struct llm_tokenizer_ugm : llm_tokenizer {
|
||||
};
|
||||
|
||||
struct llm_tokenizer_ugm_session {
|
||||
llm_tokenizer_ugm_session(const llama_vocab & vocab, const llm_tokenizer_ugm & tokenizer) : vocab(vocab), tokenizer(tokenizer) {}
|
||||
llm_tokenizer_ugm_session(const llama_vocab & vocab_, const llm_tokenizer_ugm & tokenizer_) : vocab(vocab_), tokenizer(tokenizer_) {}
|
||||
|
||||
/* This implementation is based on SentencePiece optimized Viterbi algorithm for
|
||||
* unigram language models. The general idea is to:
|
||||
@ -949,7 +949,7 @@ private:
|
||||
*/
|
||||
struct xcda_array_view {
|
||||
public:
|
||||
xcda_array_view(const uint32_t * xcda_array, size_t xcda_array_size) : xcda_array(xcda_array), xcda_array_size(xcda_array_size) {
|
||||
xcda_array_view(const uint32_t * xcda_array_, size_t xcda_array_size_) : xcda_array(xcda_array_), xcda_array_size(xcda_array_size_) {
|
||||
}
|
||||
uint32_t get_base(size_t index) {
|
||||
uint32_t packed_node = get_node(index);
|
||||
@ -1135,7 +1135,7 @@ struct llm_tokenizer_rwkv : llm_tokenizer {
|
||||
};
|
||||
|
||||
struct llm_tokenizer_rwkv_session {
|
||||
llm_tokenizer_rwkv_session(const llama_vocab & vocab, const llm_tokenizer_rwkv & tokenizer) : vocab(vocab), tokenizer(tokenizer) {}
|
||||
llm_tokenizer_rwkv_session(const llama_vocab & vocab_, const llm_tokenizer_rwkv & tokenizer_) : vocab(vocab_), tokenizer(tokenizer_) {}
|
||||
|
||||
void tokenize(const std::string & text, std::vector<llama_token> & output) {
|
||||
uint32_t position = 0;
|
||||
@ -1262,7 +1262,7 @@ struct llama_vocab::impl {
|
||||
|
||||
std::vector<char> precompiled_charsmap;
|
||||
|
||||
impl(const llama_vocab & vocab) : vocab(vocab) {
|
||||
impl(const llama_vocab & vocab_) : vocab(vocab_) {
|
||||
}
|
||||
|
||||
~impl() = default;
|
||||
@ -2496,15 +2496,15 @@ int32_t llama_vocab::impl::token_to_piece(llama_token token, char * buf, int32_t
|
||||
|
||||
// copy piece chars to output text buffer
|
||||
// skip up to 'lstrip' leading spaces before copying
|
||||
auto _try_copy = [=] (const char * token, size_t size) -> int32_t {
|
||||
for (int32_t i = 0; i < lstrip && size && *token == ' '; ++i) {
|
||||
token++;
|
||||
auto _try_copy = [=] (const char * text, size_t size) -> int32_t {
|
||||
for (int32_t i = 0; i < lstrip && size && *text == ' '; ++i) {
|
||||
text++;
|
||||
size--;
|
||||
}
|
||||
if (length < (int32_t)size) {
|
||||
return -(int32_t) size;
|
||||
}
|
||||
memcpy(buf, token, size);
|
||||
memcpy(buf, text, size);
|
||||
return (int32_t) size;
|
||||
};
|
||||
|
||||
|
@ -1089,16 +1089,16 @@ struct llm_build_context {
|
||||
|
||||
// TODO: consider making the entire interface noexcept
|
||||
llm_build_context(
|
||||
llama_context & lctx,
|
||||
const llama_ubatch & ubatch,
|
||||
const llm_build_cb & cb,
|
||||
llama_context & lctx_,
|
||||
const llama_ubatch & ubatch_,
|
||||
const llm_build_cb & cb_,
|
||||
bool worst_case) :
|
||||
model (lctx.model),
|
||||
lctx (lctx),
|
||||
model (lctx_.model),
|
||||
lctx (lctx_),
|
||||
hparams (model.hparams),
|
||||
cparams (lctx.cparams),
|
||||
ubatch (ubatch),
|
||||
kv_self (lctx.kv_self),
|
||||
cparams (lctx_.cparams),
|
||||
ubatch (ubatch_),
|
||||
kv_self (lctx_.kv_self),
|
||||
n_embd (hparams.n_embd),
|
||||
n_layer (hparams.n_layer),
|
||||
n_rot (hparams.n_rot),
|
||||
@ -1119,17 +1119,17 @@ struct llm_build_context {
|
||||
beta_slow (cparams.yarn_beta_slow),
|
||||
norm_eps (hparams.f_norm_eps),
|
||||
norm_rms_eps (hparams.f_norm_rms_eps),
|
||||
n_tokens (ubatch.n_tokens),
|
||||
n_tokens (ubatch_.n_tokens),
|
||||
n_kv (worst_case ? kv_self.size : kv_self.n),
|
||||
n_outputs (worst_case ? n_tokens : lctx.n_outputs),
|
||||
n_outputs_enc (worst_case ? n_tokens : lctx.embd_enc.size() / hparams.n_embd),
|
||||
n_outputs (worst_case ? n_tokens : lctx_.n_outputs),
|
||||
n_outputs_enc (worst_case ? n_tokens : lctx_.embd_enc.size() / hparams.n_embd),
|
||||
kv_head (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head),
|
||||
n_ctx_orig (cparams.n_ctx_orig_yarn),
|
||||
flash_attn (cparams.flash_attn),
|
||||
pooling_type (cparams.pooling_type),
|
||||
rope_type (hparams.rope_type),
|
||||
cb (cb),
|
||||
buf_compute_meta (lctx.buf_compute_meta) {
|
||||
cb (cb_),
|
||||
buf_compute_meta (lctx_.buf_compute_meta) {
|
||||
// all initializations should be done in init()
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user