mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-26 19:34:35 +00:00
Compare commits
13 Commits
716f66a332
...
9a8b96b2c0
Author | SHA1 | Date | |
---|---|---|---|
|
9a8b96b2c0 | ||
|
60cfa728e2 | ||
|
3327bb0f8d | ||
|
32d6ee6385 | ||
|
14b699ecde | ||
|
485dc01214 | ||
|
86bf31cfe6 | ||
|
b92a14a841 | ||
|
6f0c9e034b | ||
|
dab76c92cc | ||
|
7024d59e6a | ||
|
7c0e285858 | ||
|
7ae33a616f |
81
.devops/cpu.Dockerfile
Normal file
81
.devops/cpu.Dockerfile
Normal file
@ -0,0 +1,81 @@
|
|||||||
|
ARG UBUNTU_VERSION=22.04
|
||||||
|
|
||||||
|
FROM ubuntu:$UBUNTU_VERSION AS build
|
||||||
|
|
||||||
|
RUN apt-get update && \
|
||||||
|
apt-get install -y build-essential git cmake libcurl4-openssl-dev
|
||||||
|
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
COPY . .
|
||||||
|
|
||||||
|
RUN cmake -S . -B build -DGGML_BACKEND_DL=ON -DGGML_NATIVE=OFF -DGGML_CPU_ALL_VARIANTS=ON -DLLAMA_CURL=ON -DCMAKE_BUILD_TYPE=Release && \
|
||||||
|
cmake --build build -j $(nproc)
|
||||||
|
|
||||||
|
RUN mkdir -p /app/lib && \
|
||||||
|
find build -name "*.so" -exec cp {} /app/lib \;
|
||||||
|
|
||||||
|
RUN mkdir -p /app/full \
|
||||||
|
&& cp build/bin/* /app/full \
|
||||||
|
&& cp *.py /app/full \
|
||||||
|
&& cp -r gguf-py /app/full \
|
||||||
|
&& cp -r requirements /app/full \
|
||||||
|
&& cp requirements.txt /app/full \
|
||||||
|
&& cp .devops/tools.sh /app/full/tools.sh
|
||||||
|
|
||||||
|
## Base image
|
||||||
|
FROM ubuntu:$UBUNTU_VERSION AS base
|
||||||
|
|
||||||
|
RUN apt-get update \
|
||||||
|
&& apt-get install -y libgomp1 curl\
|
||||||
|
&& apt autoremove -y \
|
||||||
|
&& apt clean -y \
|
||||||
|
&& rm -rf /tmp/* /var/tmp/* \
|
||||||
|
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
|
||||||
|
&& find /var/cache -type f -delete
|
||||||
|
|
||||||
|
COPY --from=build /app/lib/ /app
|
||||||
|
|
||||||
|
### Full
|
||||||
|
FROM base AS full
|
||||||
|
|
||||||
|
COPY --from=build /app/full /app
|
||||||
|
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
RUN apt-get update \
|
||||||
|
&& apt-get install -y \
|
||||||
|
git \
|
||||||
|
python3 \
|
||||||
|
python3-pip \
|
||||||
|
&& pip install --upgrade pip setuptools wheel \
|
||||||
|
&& pip install -r requirements.txt \
|
||||||
|
&& apt autoremove -y \
|
||||||
|
&& apt clean -y \
|
||||||
|
&& rm -rf /tmp/* /var/tmp/* \
|
||||||
|
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
|
||||||
|
&& find /var/cache -type f -delete
|
||||||
|
|
||||||
|
ENTRYPOINT ["/app/tools.sh"]
|
||||||
|
|
||||||
|
### Light, CLI only
|
||||||
|
FROM base AS light
|
||||||
|
|
||||||
|
COPY --from=build /app/full/llama-cli /app
|
||||||
|
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
ENTRYPOINT [ "/app/llama-cli" ]
|
||||||
|
|
||||||
|
### Server, Server only
|
||||||
|
FROM base AS server
|
||||||
|
|
||||||
|
ENV LLAMA_ARG_HOST=0.0.0.0
|
||||||
|
|
||||||
|
COPY --from=build /app/full/llama-server /app
|
||||||
|
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
|
||||||
|
|
||||||
|
ENTRYPOINT [ "/app/llama-server" ]
|
94
.devops/cuda.Dockerfile
Normal file
94
.devops/cuda.Dockerfile
Normal file
@ -0,0 +1,94 @@
|
|||||||
|
ARG UBUNTU_VERSION=22.04
|
||||||
|
# This needs to generally match the container host's environment.
|
||||||
|
ARG CUDA_VERSION=12.6.0
|
||||||
|
# Target the CUDA build image
|
||||||
|
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
|
||||||
|
|
||||||
|
ARG BASE_CUDA_RUN_CONTAINER=nvidia/cuda:${CUDA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}
|
||||||
|
|
||||||
|
FROM ${BASE_CUDA_DEV_CONTAINER} AS build
|
||||||
|
|
||||||
|
# CUDA architecture to build for (defaults to all supported archs)
|
||||||
|
ARG CUDA_DOCKER_ARCH=default
|
||||||
|
|
||||||
|
RUN apt-get update && \
|
||||||
|
apt-get install -y build-essential cmake python3 python3-pip git libcurl4-openssl-dev libgomp1
|
||||||
|
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
COPY . .
|
||||||
|
|
||||||
|
RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \
|
||||||
|
export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \
|
||||||
|
fi && \
|
||||||
|
cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||||
|
cmake --build build --config Release -j$(nproc)
|
||||||
|
|
||||||
|
RUN mkdir -p /app/lib && \
|
||||||
|
find build -name "*.so" -exec cp {} /app/lib \;
|
||||||
|
|
||||||
|
RUN mkdir -p /app/full \
|
||||||
|
&& cp build/bin/* /app/full \
|
||||||
|
&& cp *.py /app/full \
|
||||||
|
&& cp -r gguf-py /app/full \
|
||||||
|
&& cp -r requirements /app/full \
|
||||||
|
&& cp requirements.txt /app/full \
|
||||||
|
&& cp .devops/tools.sh /app/full/tools.sh
|
||||||
|
|
||||||
|
## Base image
|
||||||
|
FROM ${BASE_CUDA_RUN_CONTAINER} AS base
|
||||||
|
|
||||||
|
RUN apt-get update \
|
||||||
|
&& apt-get install -y libgomp1 curl\
|
||||||
|
&& apt autoremove -y \
|
||||||
|
&& apt clean -y \
|
||||||
|
&& rm -rf /tmp/* /var/tmp/* \
|
||||||
|
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
|
||||||
|
&& find /var/cache -type f -delete
|
||||||
|
|
||||||
|
COPY --from=build /app/lib/ /app
|
||||||
|
|
||||||
|
### Full
|
||||||
|
FROM base AS full
|
||||||
|
|
||||||
|
COPY --from=build /app/full /app
|
||||||
|
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
RUN apt-get update \
|
||||||
|
&& apt-get install -y \
|
||||||
|
git \
|
||||||
|
python3 \
|
||||||
|
python3-pip \
|
||||||
|
&& pip install --upgrade pip setuptools wheel \
|
||||||
|
&& pip install -r requirements.txt \
|
||||||
|
&& apt autoremove -y \
|
||||||
|
&& apt clean -y \
|
||||||
|
&& rm -rf /tmp/* /var/tmp/* \
|
||||||
|
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
|
||||||
|
&& find /var/cache -type f -delete
|
||||||
|
|
||||||
|
|
||||||
|
ENTRYPOINT ["/app/tools.sh"]
|
||||||
|
|
||||||
|
### Light, CLI only
|
||||||
|
FROM base AS light
|
||||||
|
|
||||||
|
COPY --from=build /app/full/llama-cli /app
|
||||||
|
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
ENTRYPOINT [ "/app/llama-cli" ]
|
||||||
|
|
||||||
|
### Server, Server only
|
||||||
|
FROM base AS server
|
||||||
|
|
||||||
|
ENV LLAMA_ARG_HOST=0.0.0.0
|
||||||
|
|
||||||
|
COPY --from=build /app/full/llama-server /app
|
||||||
|
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
|
||||||
|
|
||||||
|
ENTRYPOINT [ "/app/llama-server" ]
|
@ -1,33 +0,0 @@
|
|||||||
ARG UBUNTU_VERSION=22.04
|
|
||||||
# This needs to generally match the container host's environment.
|
|
||||||
ARG CUDA_VERSION=12.6.0
|
|
||||||
# Target the CUDA build image
|
|
||||||
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
|
|
||||||
|
|
||||||
FROM ${BASE_CUDA_DEV_CONTAINER} AS build
|
|
||||||
|
|
||||||
# CUDA architecture to build for (defaults to all supported archs)
|
|
||||||
ARG CUDA_DOCKER_ARCH=default
|
|
||||||
|
|
||||||
RUN apt-get update && \
|
|
||||||
apt-get install -y build-essential cmake python3 python3-pip git libcurl4-openssl-dev libgomp1
|
|
||||||
|
|
||||||
COPY requirements.txt requirements.txt
|
|
||||||
COPY requirements requirements
|
|
||||||
|
|
||||||
RUN pip install --upgrade pip setuptools wheel \
|
|
||||||
&& pip install -r requirements.txt
|
|
||||||
|
|
||||||
WORKDIR /app
|
|
||||||
|
|
||||||
COPY . .
|
|
||||||
|
|
||||||
# Use the default CUDA archs if not specified
|
|
||||||
RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \
|
|
||||||
export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \
|
|
||||||
fi && \
|
|
||||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
|
||||||
cmake --build build --config Release -j$(nproc) && \
|
|
||||||
cp build/bin/* .
|
|
||||||
|
|
||||||
ENTRYPOINT ["/app/.devops/tools.sh"]
|
|
@ -1,33 +0,0 @@
|
|||||||
ARG UBUNTU_VERSION=22.04
|
|
||||||
# This needs to generally match the container host's environment.
|
|
||||||
ARG MUSA_VERSION=rc3.1.0
|
|
||||||
# Target the MUSA build image
|
|
||||||
ARG BASE_MUSA_DEV_CONTAINER=mthreads/musa:${MUSA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
|
|
||||||
|
|
||||||
FROM ${BASE_MUSA_DEV_CONTAINER} AS build
|
|
||||||
|
|
||||||
# MUSA architecture to build for (defaults to all supported archs)
|
|
||||||
ARG MUSA_DOCKER_ARCH=default
|
|
||||||
|
|
||||||
RUN apt-get update && \
|
|
||||||
apt-get install -y build-essential cmake python3 python3-pip git libcurl4-openssl-dev libgomp1
|
|
||||||
|
|
||||||
COPY requirements.txt requirements.txt
|
|
||||||
COPY requirements requirements
|
|
||||||
|
|
||||||
RUN pip install --upgrade pip setuptools wheel \
|
|
||||||
&& pip install -r requirements.txt
|
|
||||||
|
|
||||||
WORKDIR /app
|
|
||||||
|
|
||||||
COPY . .
|
|
||||||
|
|
||||||
# Use the default MUSA archs if not specified
|
|
||||||
RUN if [ "${MUSA_DOCKER_ARCH}" != "default" ]; then \
|
|
||||||
export CMAKE_ARGS="-DMUSA_ARCHITECTURES=${MUSA_DOCKER_ARCH}"; \
|
|
||||||
fi && \
|
|
||||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
|
||||||
cmake --build build --config Release -j$(nproc) && \
|
|
||||||
cp build/bin/* .
|
|
||||||
|
|
||||||
ENTRYPOINT ["/app/.devops/tools.sh"]
|
|
@ -1,50 +0,0 @@
|
|||||||
ARG UBUNTU_VERSION=22.04
|
|
||||||
|
|
||||||
# This needs to generally match the container host's environment.
|
|
||||||
ARG ROCM_VERSION=5.6
|
|
||||||
|
|
||||||
# Target the CUDA build image
|
|
||||||
ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete
|
|
||||||
|
|
||||||
FROM ${BASE_ROCM_DEV_CONTAINER} AS build
|
|
||||||
|
|
||||||
# Unless otherwise specified, we make a fat build.
|
|
||||||
# List from https://github.com/ggerganov/llama.cpp/pull/1087#issuecomment-1682807878
|
|
||||||
# This is mostly tied to rocBLAS supported archs.
|
|
||||||
ARG ROCM_DOCKER_ARCH="\
|
|
||||||
gfx803 \
|
|
||||||
gfx900 \
|
|
||||||
gfx906 \
|
|
||||||
gfx908 \
|
|
||||||
gfx90a \
|
|
||||||
gfx1010 \
|
|
||||||
gfx1030 \
|
|
||||||
gfx1100 \
|
|
||||||
gfx1101 \
|
|
||||||
gfx1102"
|
|
||||||
|
|
||||||
COPY requirements.txt requirements.txt
|
|
||||||
COPY requirements requirements
|
|
||||||
|
|
||||||
RUN pip install --upgrade pip setuptools wheel \
|
|
||||||
&& pip install -r requirements.txt
|
|
||||||
|
|
||||||
WORKDIR /app
|
|
||||||
|
|
||||||
COPY . .
|
|
||||||
|
|
||||||
# Set nvcc architecture
|
|
||||||
ENV AMDGPU_TARGETS=${ROCM_DOCKER_ARCH}
|
|
||||||
# Enable ROCm
|
|
||||||
ENV GGML_HIPBLAS=1
|
|
||||||
ENV CC=/opt/rocm/llvm/bin/clang
|
|
||||||
ENV CXX=/opt/rocm/llvm/bin/clang++
|
|
||||||
|
|
||||||
# Enable cURL
|
|
||||||
ENV LLAMA_CURL=1
|
|
||||||
RUN apt-get update && \
|
|
||||||
apt-get install -y libcurl4-openssl-dev
|
|
||||||
|
|
||||||
RUN make -j$(nproc)
|
|
||||||
|
|
||||||
ENTRYPOINT ["/app/.devops/tools.sh"]
|
|
@ -1,38 +0,0 @@
|
|||||||
ARG UBUNTU_VERSION=22.04
|
|
||||||
|
|
||||||
FROM ubuntu:$UBUNTU_VERSION AS build
|
|
||||||
|
|
||||||
RUN apt-get update && \
|
|
||||||
apt-get install -y build-essential git cmake libcurl4-openssl-dev
|
|
||||||
|
|
||||||
WORKDIR /app
|
|
||||||
|
|
||||||
COPY . .
|
|
||||||
|
|
||||||
RUN cmake -S . -B build -DGGML_BACKEND_DL=ON -DGGML_NATIVE=OFF -DGGML_CPU_ALL_VARIANTS=ON -DLLAMA_CURL=ON -DCMAKE_BUILD_TYPE=Release && \
|
|
||||||
cmake --build build -j $(nproc) && \
|
|
||||||
mkdir -p /app/lib && \
|
|
||||||
find build -name "*.so" -exec cp {} /app/lib/ \;
|
|
||||||
|
|
||||||
FROM ubuntu:$UBUNTU_VERSION as runtime
|
|
||||||
|
|
||||||
WORKDIR /app
|
|
||||||
|
|
||||||
RUN apt-get update && \
|
|
||||||
apt-get install -y build-essential python3 python3-pip git libcurl4-openssl-dev libgomp1
|
|
||||||
|
|
||||||
COPY requirements.txt /app/requirements.txt
|
|
||||||
COPY requirements /app/requirements
|
|
||||||
COPY .devops/tools.sh /app/tools.sh
|
|
||||||
|
|
||||||
RUN pip install --upgrade pip setuptools wheel && \
|
|
||||||
pip install -r /app/requirements.txt
|
|
||||||
|
|
||||||
COPY --from=build /app/build/bin/ /app/
|
|
||||||
COPY --from=build /app/lib/ /app/
|
|
||||||
COPY --from=build /app/convert_hf_to_gguf.py /app/
|
|
||||||
COPY --from=build /app/gguf-py /app/gguf-py
|
|
||||||
|
|
||||||
ENV LC_ALL=C.utf8
|
|
||||||
|
|
||||||
ENTRYPOINT ["/app/tools.sh"]
|
|
91
.devops/intel.Dockerfile
Normal file
91
.devops/intel.Dockerfile
Normal file
@ -0,0 +1,91 @@
|
|||||||
|
ARG ONEAPI_VERSION=2025.0.0-0-devel-ubuntu22.04
|
||||||
|
|
||||||
|
## Build Image
|
||||||
|
|
||||||
|
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS build
|
||||||
|
|
||||||
|
ARG GGML_SYCL_F16=OFF
|
||||||
|
RUN apt-get update && \
|
||||||
|
apt-get install -y git libcurl4-openssl-dev
|
||||||
|
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
COPY . .
|
||||||
|
|
||||||
|
RUN if [ "${GGML_SYCL_F16}" = "ON" ]; then \
|
||||||
|
echo "GGML_SYCL_F16 is set" \
|
||||||
|
&& export OPT_SYCL_F16="-DGGML_SYCL_F16=ON"; \
|
||||||
|
fi && \
|
||||||
|
echo "Building with dynamic libs" && \
|
||||||
|
cmake -B build -DGGML_NATIVE=OFF -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON ${OPT_SYCL_F16} && \
|
||||||
|
cmake --build build --config Release -j$(nproc)
|
||||||
|
|
||||||
|
RUN mkdir -p /app/lib && \
|
||||||
|
find build -name "*.so" -exec cp {} /app/lib \;
|
||||||
|
|
||||||
|
RUN mkdir -p /app/full \
|
||||||
|
&& cp build/bin/* /app/full \
|
||||||
|
&& cp *.py /app/full \
|
||||||
|
&& cp -r gguf-py /app/full \
|
||||||
|
&& cp -r requirements /app/full \
|
||||||
|
&& cp requirements.txt /app/full \
|
||||||
|
&& cp .devops/tools.sh /app/full/tools.sh
|
||||||
|
|
||||||
|
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS base
|
||||||
|
|
||||||
|
RUN apt-get update \
|
||||||
|
&& apt-get install -y libgomp1 curl\
|
||||||
|
&& apt autoremove -y \
|
||||||
|
&& apt clean -y \
|
||||||
|
&& rm -rf /tmp/* /var/tmp/* \
|
||||||
|
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
|
||||||
|
&& find /var/cache -type f -delete
|
||||||
|
|
||||||
|
### Full
|
||||||
|
FROM base AS full
|
||||||
|
|
||||||
|
COPY --from=build /app/lib/ /app
|
||||||
|
COPY --from=build /app/full /app
|
||||||
|
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
RUN apt-get update \
|
||||||
|
&& apt-get install -y \
|
||||||
|
git \
|
||||||
|
python3 \
|
||||||
|
python3-pip \
|
||||||
|
&& pip install --upgrade pip setuptools wheel \
|
||||||
|
&& pip install -r requirements.txt \
|
||||||
|
&& apt autoremove -y \
|
||||||
|
&& apt clean -y \
|
||||||
|
&& rm -rf /tmp/* /var/tmp/* \
|
||||||
|
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
|
||||||
|
&& find /var/cache -type f -delete
|
||||||
|
|
||||||
|
|
||||||
|
ENTRYPOINT ["/app/tools.sh"]
|
||||||
|
|
||||||
|
### Light, CLI only
|
||||||
|
FROM base AS light
|
||||||
|
|
||||||
|
COPY --from=build /app/lib/ /app
|
||||||
|
COPY --from=build /app/full/llama-cli /app
|
||||||
|
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
ENTRYPOINT [ "/app/llama-cli" ]
|
||||||
|
|
||||||
|
### Server, Server only
|
||||||
|
FROM base AS server
|
||||||
|
|
||||||
|
ENV LLAMA_ARG_HOST=0.0.0.0
|
||||||
|
|
||||||
|
COPY --from=build /app/lib/ /app
|
||||||
|
COPY --from=build /app/full/llama-server /app
|
||||||
|
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
|
||||||
|
|
||||||
|
ENTRYPOINT [ "/app/llama-server" ]
|
||||||
|
|
@ -1,38 +0,0 @@
|
|||||||
ARG UBUNTU_VERSION=22.04
|
|
||||||
# This needs to generally match the container host's environment.
|
|
||||||
ARG CUDA_VERSION=12.6.0
|
|
||||||
# Target the CUDA build image
|
|
||||||
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
|
|
||||||
# Target the CUDA runtime image
|
|
||||||
ARG BASE_CUDA_RUN_CONTAINER=nvidia/cuda:${CUDA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}
|
|
||||||
|
|
||||||
FROM ${BASE_CUDA_DEV_CONTAINER} AS build
|
|
||||||
|
|
||||||
# CUDA architecture to build for (defaults to all supported archs)
|
|
||||||
ARG CUDA_DOCKER_ARCH=default
|
|
||||||
|
|
||||||
RUN apt-get update && \
|
|
||||||
apt-get install -y build-essential git cmake
|
|
||||||
|
|
||||||
WORKDIR /app
|
|
||||||
|
|
||||||
COPY . .
|
|
||||||
|
|
||||||
# Use the default CUDA archs if not specified
|
|
||||||
RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \
|
|
||||||
export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \
|
|
||||||
fi && \
|
|
||||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
|
||||||
cmake --build build --config Release --target llama-cli -j$(nproc) && \
|
|
||||||
mkdir -p /app/lib && \
|
|
||||||
find build -name "*.so" -exec cp {} /app/lib \;
|
|
||||||
|
|
||||||
FROM ${BASE_CUDA_RUN_CONTAINER} AS runtime
|
|
||||||
|
|
||||||
RUN apt-get update && \
|
|
||||||
apt-get install -y libgomp1
|
|
||||||
|
|
||||||
COPY --from=build /app/lib/ /
|
|
||||||
COPY --from=build /app/build/bin/llama-cli /
|
|
||||||
|
|
||||||
ENTRYPOINT [ "/llama-cli" ]
|
|
@ -1,28 +0,0 @@
|
|||||||
ARG ONEAPI_VERSION=2025.0.0-0-devel-ubuntu22.04
|
|
||||||
|
|
||||||
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS build
|
|
||||||
|
|
||||||
ARG GGML_SYCL_F16=OFF
|
|
||||||
RUN apt-get update && \
|
|
||||||
apt-get install -y git
|
|
||||||
|
|
||||||
WORKDIR /app
|
|
||||||
|
|
||||||
COPY . .
|
|
||||||
|
|
||||||
RUN if [ "${GGML_SYCL_F16}" = "ON" ]; then \
|
|
||||||
echo "GGML_SYCL_F16 is set" && \
|
|
||||||
export OPT_SYCL_F16="-DGGML_SYCL_F16=ON"; \
|
|
||||||
fi && \
|
|
||||||
echo "Building with static libs" && \
|
|
||||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx \
|
|
||||||
${OPT_SYCL_F16} -DBUILD_SHARED_LIBS=OFF && \
|
|
||||||
cmake --build build --config Release --target llama-cli
|
|
||||||
|
|
||||||
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS runtime
|
|
||||||
|
|
||||||
COPY --from=build /app/build/bin/llama-cli /llama-cli
|
|
||||||
|
|
||||||
ENV LC_ALL=C.utf8
|
|
||||||
|
|
||||||
ENTRYPOINT [ "/llama-cli" ]
|
|
@ -1,38 +0,0 @@
|
|||||||
ARG UBUNTU_VERSION=22.04
|
|
||||||
# This needs to generally match the container host's environment.
|
|
||||||
ARG MUSA_VERSION=rc3.1.0
|
|
||||||
# Target the MUSA build image
|
|
||||||
ARG BASE_MUSA_DEV_CONTAINER=mthreads/musa:${MUSA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
|
|
||||||
# Target the MUSA runtime image
|
|
||||||
ARG BASE_MUSA_RUN_CONTAINER=mthreads/musa:${MUSA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}
|
|
||||||
|
|
||||||
FROM ${BASE_MUSA_DEV_CONTAINER} AS build
|
|
||||||
|
|
||||||
# MUSA architecture to build for (defaults to all supported archs)
|
|
||||||
ARG MUSA_DOCKER_ARCH=default
|
|
||||||
|
|
||||||
RUN apt-get update && \
|
|
||||||
apt-get install -y build-essential git cmake
|
|
||||||
|
|
||||||
WORKDIR /app
|
|
||||||
|
|
||||||
COPY . .
|
|
||||||
|
|
||||||
# Use the default MUSA archs if not specified
|
|
||||||
RUN if [ "${MUSA_DOCKER_ARCH}" != "default" ]; then \
|
|
||||||
export CMAKE_ARGS="-DMUSA_ARCHITECTURES=${MUSA_DOCKER_ARCH}"; \
|
|
||||||
fi && \
|
|
||||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
|
||||||
cmake --build build --config Release --target llama-cli -j$(nproc) && \
|
|
||||||
mkdir -p /app/lib && \
|
|
||||||
find build -name "*.so" -exec cp {} /app/lib \;
|
|
||||||
|
|
||||||
FROM ${BASE_MUSA_RUN_CONTAINER} AS runtime
|
|
||||||
|
|
||||||
RUN apt-get update && \
|
|
||||||
apt-get install -y libgomp1
|
|
||||||
|
|
||||||
COPY --from=build /app/lib/ /
|
|
||||||
COPY --from=build /app/build/bin/llama-cli /llama-cli
|
|
||||||
|
|
||||||
ENTRYPOINT [ "/llama-cli" ]
|
|
@ -1,45 +0,0 @@
|
|||||||
ARG UBUNTU_VERSION=22.04
|
|
||||||
|
|
||||||
# This needs to generally match the container host's environment.
|
|
||||||
ARG ROCM_VERSION=5.6
|
|
||||||
|
|
||||||
# Target the CUDA build image
|
|
||||||
ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete
|
|
||||||
|
|
||||||
FROM ${BASE_ROCM_DEV_CONTAINER} AS build
|
|
||||||
|
|
||||||
# Unless otherwise specified, we make a fat build.
|
|
||||||
# List from https://github.com/ggerganov/llama.cpp/pull/1087#issuecomment-1682807878
|
|
||||||
# This is mostly tied to rocBLAS supported archs.
|
|
||||||
ARG ROCM_DOCKER_ARCH="\
|
|
||||||
gfx803 \
|
|
||||||
gfx900 \
|
|
||||||
gfx906 \
|
|
||||||
gfx908 \
|
|
||||||
gfx90a \
|
|
||||||
gfx1010 \
|
|
||||||
gfx1030 \
|
|
||||||
gfx1100 \
|
|
||||||
gfx1101 \
|
|
||||||
gfx1102"
|
|
||||||
|
|
||||||
COPY requirements.txt requirements.txt
|
|
||||||
COPY requirements requirements
|
|
||||||
|
|
||||||
RUN pip install --upgrade pip setuptools wheel \
|
|
||||||
&& pip install -r requirements.txt
|
|
||||||
|
|
||||||
WORKDIR /app
|
|
||||||
|
|
||||||
COPY . .
|
|
||||||
|
|
||||||
# Set nvcc architecture
|
|
||||||
ENV AMDGPU_TARGETS=${ROCM_DOCKER_ARCH}
|
|
||||||
# Enable ROCm
|
|
||||||
ENV GGML_HIPBLAS=1
|
|
||||||
ENV CC=/opt/rocm/llvm/bin/clang
|
|
||||||
ENV CXX=/opt/rocm/llvm/bin/clang++
|
|
||||||
|
|
||||||
RUN make -j$(nproc) llama-cli
|
|
||||||
|
|
||||||
ENTRYPOINT [ "/app/llama-cli" ]
|
|
@ -1,27 +0,0 @@
|
|||||||
ARG UBUNTU_VERSION=jammy
|
|
||||||
|
|
||||||
FROM ubuntu:$UBUNTU_VERSION AS build
|
|
||||||
|
|
||||||
# Install build tools
|
|
||||||
RUN apt update && apt install -y git build-essential cmake wget libgomp1
|
|
||||||
|
|
||||||
# Install Vulkan SDK
|
|
||||||
RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add - && \
|
|
||||||
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list && \
|
|
||||||
apt update -y && \
|
|
||||||
apt-get install -y vulkan-sdk
|
|
||||||
|
|
||||||
# Build it
|
|
||||||
WORKDIR /app
|
|
||||||
COPY . .
|
|
||||||
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_VULKAN=1 && \
|
|
||||||
cmake --build build --config Release --target llama-cli
|
|
||||||
|
|
||||||
# Clean up
|
|
||||||
WORKDIR /
|
|
||||||
RUN cp /app/build/bin/llama-cli /llama-cli && \
|
|
||||||
rm -rf /app
|
|
||||||
|
|
||||||
ENV LC_ALL=C.utf8
|
|
||||||
|
|
||||||
ENTRYPOINT [ "/llama-cli" ]
|
|
@ -1,29 +0,0 @@
|
|||||||
ARG UBUNTU_VERSION=22.04
|
|
||||||
|
|
||||||
FROM ubuntu:$UBUNTU_VERSION AS build
|
|
||||||
|
|
||||||
RUN apt-get update && \
|
|
||||||
apt-get install -y build-essential git cmake libcurl4-openssl-dev
|
|
||||||
|
|
||||||
WORKDIR /app
|
|
||||||
|
|
||||||
COPY . .
|
|
||||||
|
|
||||||
RUN cmake -S . -B build -DGGML_BACKEND_DL=ON -DGGML_NATIVE=OFF -DGGML_CPU_ALL_VARIANTS=ON -DLLAMA_CURL=ON -DCMAKE_BUILD_TYPE=Release && \
|
|
||||||
cmake --build build -j $(nproc) && \
|
|
||||||
mkdir -p /app/lib && \
|
|
||||||
find build -name "*.so" -exec cp {} /app/lib/ \;
|
|
||||||
|
|
||||||
FROM ubuntu:$UBUNTU_VERSION AS runtime
|
|
||||||
|
|
||||||
WORKDIR /app
|
|
||||||
|
|
||||||
RUN apt-get update && \
|
|
||||||
apt-get install -y libcurl4-openssl-dev libgomp1 curl
|
|
||||||
|
|
||||||
COPY --from=build /app/build/bin/llama-cli /app/
|
|
||||||
COPY --from=build /app/lib/ /app/
|
|
||||||
|
|
||||||
ENV LC_ALL=C.utf8
|
|
||||||
|
|
||||||
ENTRYPOINT [ "/app/llama-cli" ]
|
|
@ -1,43 +0,0 @@
|
|||||||
ARG UBUNTU_VERSION=22.04
|
|
||||||
# This needs to generally match the container host's environment.
|
|
||||||
ARG CUDA_VERSION=12.6.0
|
|
||||||
# Target the CUDA build image
|
|
||||||
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
|
|
||||||
# Target the CUDA runtime image
|
|
||||||
ARG BASE_CUDA_RUN_CONTAINER=nvidia/cuda:${CUDA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}
|
|
||||||
|
|
||||||
FROM ${BASE_CUDA_DEV_CONTAINER} AS build
|
|
||||||
|
|
||||||
# CUDA architecture to build for (defaults to all supported archs)
|
|
||||||
ARG CUDA_DOCKER_ARCH=default
|
|
||||||
|
|
||||||
RUN apt-get update && \
|
|
||||||
apt-get install -y build-essential git cmake libcurl4-openssl-dev
|
|
||||||
|
|
||||||
WORKDIR /app
|
|
||||||
|
|
||||||
COPY . .
|
|
||||||
|
|
||||||
# Use the default CUDA archs if not specified
|
|
||||||
RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \
|
|
||||||
export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \
|
|
||||||
fi && \
|
|
||||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
|
||||||
cmake --build build --config Release --target llama-server -j$(nproc) && \
|
|
||||||
mkdir -p /app/lib && \
|
|
||||||
find build -name "*.so" -exec cp {} /app/lib \;
|
|
||||||
|
|
||||||
FROM ${BASE_CUDA_RUN_CONTAINER} AS runtime
|
|
||||||
|
|
||||||
RUN apt-get update && \
|
|
||||||
apt-get install -y libcurl4-openssl-dev libgomp1 curl
|
|
||||||
|
|
||||||
COPY --from=build /app/lib/ /
|
|
||||||
COPY --from=build /app/build/bin/llama-server /llama-server
|
|
||||||
|
|
||||||
# Must be set to 0.0.0.0 so it can listen to requests from host machine
|
|
||||||
ENV LLAMA_ARG_HOST=0.0.0.0
|
|
||||||
|
|
||||||
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
|
|
||||||
|
|
||||||
ENTRYPOINT [ "/llama-server" ]
|
|
@ -1,34 +0,0 @@
|
|||||||
ARG ONEAPI_VERSION=2025.0.0-0-devel-ubuntu22.04
|
|
||||||
|
|
||||||
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS build
|
|
||||||
|
|
||||||
ARG GGML_SYCL_F16=OFF
|
|
||||||
RUN apt-get update && \
|
|
||||||
apt-get install -y git libcurl4-openssl-dev
|
|
||||||
|
|
||||||
WORKDIR /app
|
|
||||||
|
|
||||||
COPY . .
|
|
||||||
|
|
||||||
RUN if [ "${GGML_SYCL_F16}" = "ON" ]; then \
|
|
||||||
echo "GGML_SYCL_F16 is set" && \
|
|
||||||
export OPT_SYCL_F16="-DGGML_SYCL_F16=ON"; \
|
|
||||||
fi && \
|
|
||||||
echo "Building with dynamic libs" && \
|
|
||||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON ${OPT_SYCL_F16} && \
|
|
||||||
cmake --build build --config Release --target llama-server
|
|
||||||
|
|
||||||
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS runtime
|
|
||||||
|
|
||||||
RUN apt-get update && \
|
|
||||||
apt-get install -y libcurl4-openssl-dev curl
|
|
||||||
|
|
||||||
COPY --from=build /app/build/bin/llama-server /llama-server
|
|
||||||
|
|
||||||
ENV LC_ALL=C.utf8
|
|
||||||
# Must be set to 0.0.0.0 so it can listen to requests from host machine
|
|
||||||
ENV LLAMA_ARG_HOST=0.0.0.0
|
|
||||||
|
|
||||||
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
|
|
||||||
|
|
||||||
ENTRYPOINT [ "/llama-server" ]
|
|
@ -1,43 +0,0 @@
|
|||||||
ARG UBUNTU_VERSION=22.04
|
|
||||||
# This needs to generally match the container host's environment.
|
|
||||||
ARG MUSA_VERSION=rc3.1.0
|
|
||||||
# Target the MUSA build image
|
|
||||||
ARG BASE_MUSA_DEV_CONTAINER=mthreads/musa:${MUSA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
|
|
||||||
# Target the MUSA runtime image
|
|
||||||
ARG BASE_MUSA_RUN_CONTAINER=mthreads/musa:${MUSA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}
|
|
||||||
|
|
||||||
FROM ${BASE_MUSA_DEV_CONTAINER} AS build
|
|
||||||
|
|
||||||
# MUSA architecture to build for (defaults to all supported archs)
|
|
||||||
ARG MUSA_DOCKER_ARCH=default
|
|
||||||
|
|
||||||
RUN apt-get update && \
|
|
||||||
apt-get install -y build-essential git cmake libcurl4-openssl-dev
|
|
||||||
|
|
||||||
WORKDIR /app
|
|
||||||
|
|
||||||
COPY . .
|
|
||||||
|
|
||||||
# Use the default MUSA archs if not specified
|
|
||||||
RUN if [ "${MUSA_DOCKER_ARCH}" != "default" ]; then \
|
|
||||||
export CMAKE_ARGS="-DMUSA_ARCHITECTURES=${MUSA_DOCKER_ARCH}"; \
|
|
||||||
fi && \
|
|
||||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
|
||||||
cmake --build build --config Release --target llama-server -j$(nproc) && \
|
|
||||||
mkdir -p /app/lib && \
|
|
||||||
find build -name "*.so" -exec cp {} /app/lib \;
|
|
||||||
|
|
||||||
FROM ${BASE_MUSA_RUN_CONTAINER} AS runtime
|
|
||||||
|
|
||||||
RUN apt-get update && \
|
|
||||||
apt-get install -y libcurl4-openssl-dev libgomp1 curl
|
|
||||||
|
|
||||||
COPY --from=build /app/lib/ /
|
|
||||||
COPY --from=build /app/build/bin/llama-server /llama-server
|
|
||||||
|
|
||||||
# Must be set to 0.0.0.0 so it can listen to requests from host machine
|
|
||||||
ENV LLAMA_ARG_HOST=0.0.0.0
|
|
||||||
|
|
||||||
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
|
|
||||||
|
|
||||||
ENTRYPOINT [ "/llama-server" ]
|
|
@ -1,54 +0,0 @@
|
|||||||
ARG UBUNTU_VERSION=22.04
|
|
||||||
|
|
||||||
# This needs to generally match the container host's environment.
|
|
||||||
ARG ROCM_VERSION=5.6
|
|
||||||
|
|
||||||
# Target the CUDA build image
|
|
||||||
ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete
|
|
||||||
|
|
||||||
FROM ${BASE_ROCM_DEV_CONTAINER} AS build
|
|
||||||
|
|
||||||
# Unless otherwise specified, we make a fat build.
|
|
||||||
# List from https://github.com/ggerganov/llama.cpp/pull/1087#issuecomment-1682807878
|
|
||||||
# This is mostly tied to rocBLAS supported archs.
|
|
||||||
ARG ROCM_DOCKER_ARCH="\
|
|
||||||
gfx803 \
|
|
||||||
gfx900 \
|
|
||||||
gfx906 \
|
|
||||||
gfx908 \
|
|
||||||
gfx90a \
|
|
||||||
gfx1010 \
|
|
||||||
gfx1030 \
|
|
||||||
gfx1100 \
|
|
||||||
gfx1101 \
|
|
||||||
gfx1102"
|
|
||||||
|
|
||||||
COPY requirements.txt requirements.txt
|
|
||||||
COPY requirements requirements
|
|
||||||
|
|
||||||
RUN pip install --upgrade pip setuptools wheel \
|
|
||||||
&& pip install -r requirements.txt
|
|
||||||
|
|
||||||
WORKDIR /app
|
|
||||||
|
|
||||||
COPY . .
|
|
||||||
|
|
||||||
# Set nvcc architecture
|
|
||||||
ENV AMDGPU_TARGETS=${ROCM_DOCKER_ARCH}
|
|
||||||
# Enable ROCm
|
|
||||||
ENV GGML_HIPBLAS=1
|
|
||||||
ENV CC=/opt/rocm/llvm/bin/clang
|
|
||||||
ENV CXX=/opt/rocm/llvm/bin/clang++
|
|
||||||
# Must be set to 0.0.0.0 so it can listen to requests from host machine
|
|
||||||
ENV LLAMA_ARG_HOST=0.0.0.0
|
|
||||||
|
|
||||||
# Enable cURL
|
|
||||||
ENV LLAMA_CURL=1
|
|
||||||
RUN apt-get update && \
|
|
||||||
apt-get install -y libcurl4-openssl-dev curl
|
|
||||||
|
|
||||||
RUN make -j$(nproc) llama-server
|
|
||||||
|
|
||||||
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
|
|
||||||
|
|
||||||
ENTRYPOINT [ "/app/llama-server" ]
|
|
@ -1,31 +0,0 @@
|
|||||||
ARG UBUNTU_VERSION=jammy
|
|
||||||
|
|
||||||
FROM ubuntu:$UBUNTU_VERSION AS build
|
|
||||||
|
|
||||||
# Install build tools
|
|
||||||
RUN apt update && apt install -y git build-essential cmake wget
|
|
||||||
|
|
||||||
# Install Vulkan SDK and cURL
|
|
||||||
RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add - && \
|
|
||||||
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list && \
|
|
||||||
apt update -y && \
|
|
||||||
apt-get install -y vulkan-sdk libcurl4-openssl-dev curl
|
|
||||||
|
|
||||||
# Build it
|
|
||||||
WORKDIR /app
|
|
||||||
COPY . .
|
|
||||||
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_VULKAN=1 -DLLAMA_CURL=1 && \
|
|
||||||
cmake --build build --config Release --target llama-server
|
|
||||||
|
|
||||||
# Clean up
|
|
||||||
WORKDIR /
|
|
||||||
RUN cp /app/build/bin/llama-server /llama-server && \
|
|
||||||
rm -rf /app
|
|
||||||
|
|
||||||
ENV LC_ALL=C.utf8
|
|
||||||
# Must be set to 0.0.0.0 so it can listen to requests from host machine
|
|
||||||
ENV LLAMA_ARG_HOST=0.0.0.0
|
|
||||||
|
|
||||||
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
|
|
||||||
|
|
||||||
ENTRYPOINT [ "/llama-server" ]
|
|
@ -1,33 +0,0 @@
|
|||||||
ARG UBUNTU_VERSION=22.04
|
|
||||||
|
|
||||||
FROM ubuntu:$UBUNTU_VERSION AS build
|
|
||||||
|
|
||||||
RUN apt-get update && \
|
|
||||||
apt-get install -y build-essential git cmake libcurl4-openssl-dev
|
|
||||||
|
|
||||||
WORKDIR /app
|
|
||||||
|
|
||||||
COPY . .
|
|
||||||
|
|
||||||
RUN cmake -S . -B build -DGGML_BACKEND_DL=ON -DGGML_NATIVE=OFF -DGGML_CPU_ALL_VARIANTS=ON -DLLAMA_CURL=ON -DCMAKE_BUILD_TYPE=Release && \
|
|
||||||
cmake --build build -j $(nproc) && \
|
|
||||||
mkdir -p /app/lib && \
|
|
||||||
find build -name "*.so" -exec cp {} /app/lib/ \;
|
|
||||||
|
|
||||||
FROM ubuntu:$UBUNTU_VERSION AS runtime
|
|
||||||
|
|
||||||
WORKDIR /app
|
|
||||||
|
|
||||||
RUN apt-get update && \
|
|
||||||
apt-get install -y libcurl4-openssl-dev libgomp1 curl
|
|
||||||
|
|
||||||
COPY --from=build /app/build/bin/llama-server /app/
|
|
||||||
COPY --from=build /app/lib/ /app/
|
|
||||||
|
|
||||||
ENV LC_ALL=C.utf8
|
|
||||||
# Must be set to 0.0.0.0 so it can listen to requests from host machine
|
|
||||||
ENV LLAMA_ARG_HOST=0.0.0.0
|
|
||||||
|
|
||||||
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
|
|
||||||
|
|
||||||
ENTRYPOINT [ "/app/llama-server" ]
|
|
108
.devops/musa.Dockerfile
Normal file
108
.devops/musa.Dockerfile
Normal file
@ -0,0 +1,108 @@
|
|||||||
|
ARG UBUNTU_VERSION=22.04
|
||||||
|
# This needs to generally match the container host's environment.
|
||||||
|
ARG MUSA_VERSION=rc3.1.0
|
||||||
|
# Target the MUSA build image
|
||||||
|
ARG BASE_MUSA_DEV_CONTAINER=mthreads/musa:${MUSA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
|
||||||
|
|
||||||
|
ARG BASE_MUSA_RUN_CONTAINER=mthreads/musa:${MUSA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}
|
||||||
|
|
||||||
|
FROM ${BASE_MUSA_DEV_CONTAINER} AS build
|
||||||
|
|
||||||
|
# MUSA architecture to build for (defaults to all supported archs)
|
||||||
|
ARG MUSA_DOCKER_ARCH=default
|
||||||
|
|
||||||
|
RUN apt-get update && \
|
||||||
|
apt-get install -y \
|
||||||
|
build-essential \
|
||||||
|
cmake \
|
||||||
|
python3 \
|
||||||
|
python3-pip \
|
||||||
|
git \
|
||||||
|
libcurl4-openssl-dev \
|
||||||
|
libgomp1
|
||||||
|
|
||||||
|
COPY requirements.txt requirements.txt
|
||||||
|
COPY requirements requirements
|
||||||
|
|
||||||
|
RUN pip install --upgrade pip setuptools wheel \
|
||||||
|
&& pip install -r requirements.txt
|
||||||
|
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
COPY . .
|
||||||
|
|
||||||
|
# Use the default MUSA archs if not specified
|
||||||
|
RUN if [ "${MUSA_DOCKER_ARCH}" != "default" ]; then \
|
||||||
|
export CMAKE_ARGS="-DMUSA_ARCHITECTURES=${MUSA_DOCKER_ARCH}"; \
|
||||||
|
fi && \
|
||||||
|
cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||||
|
cmake --build build --config Release -j$(nproc)
|
||||||
|
|
||||||
|
RUN mkdir -p /app/lib && \
|
||||||
|
find build -name "*.so" -exec cp {} /app/lib \;
|
||||||
|
|
||||||
|
RUN mkdir -p /app/full \
|
||||||
|
&& cp build/bin/* /app/full \
|
||||||
|
&& cp *.py /app/full \
|
||||||
|
&& cp -r gguf-py /app/full \
|
||||||
|
&& cp -r requirements /app/full \
|
||||||
|
&& cp requirements.txt /app/full \
|
||||||
|
&& cp .devops/tools.sh /app/full/tools.sh
|
||||||
|
|
||||||
|
## Base image
|
||||||
|
FROM ${BASE_MUSA_RUN_CONTAINER} AS base
|
||||||
|
|
||||||
|
RUN apt-get update \
|
||||||
|
&& apt-get install -y libgomp1 curl\
|
||||||
|
&& apt autoremove -y \
|
||||||
|
&& apt clean -y \
|
||||||
|
&& rm -rf /tmp/* /var/tmp/* \
|
||||||
|
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
|
||||||
|
&& find /var/cache -type f -delete
|
||||||
|
|
||||||
|
COPY --from=build /app/lib/ /app
|
||||||
|
|
||||||
|
### Full
|
||||||
|
FROM base AS full
|
||||||
|
|
||||||
|
COPY --from=build /app/full /app
|
||||||
|
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
RUN apt-get update \
|
||||||
|
&& apt-get install -y \
|
||||||
|
git \
|
||||||
|
python3 \
|
||||||
|
python3-pip \
|
||||||
|
&& pip install --upgrade pip setuptools wheel \
|
||||||
|
&& pip install -r requirements.txt \
|
||||||
|
&& apt autoremove -y \
|
||||||
|
&& apt clean -y \
|
||||||
|
&& rm -rf /tmp/* /var/tmp/* \
|
||||||
|
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
|
||||||
|
&& find /var/cache -type f -delete
|
||||||
|
|
||||||
|
|
||||||
|
ENTRYPOINT ["/app/tools.sh"]
|
||||||
|
|
||||||
|
### Light, CLI only
|
||||||
|
FROM base AS light
|
||||||
|
|
||||||
|
COPY --from=build /app/full/llama-cli /app
|
||||||
|
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
ENTRYPOINT [ "/app/llama-cli" ]
|
||||||
|
|
||||||
|
### Server, Server only
|
||||||
|
FROM base AS server
|
||||||
|
|
||||||
|
ENV LLAMA_ARG_HOST=0.0.0.0
|
||||||
|
|
||||||
|
COPY --from=build /app/full/llama-server /app
|
||||||
|
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
|
||||||
|
|
||||||
|
ENTRYPOINT [ "/app/llama-server" ]
|
113
.devops/rocm.Dockerfile
Normal file
113
.devops/rocm.Dockerfile
Normal file
@ -0,0 +1,113 @@
|
|||||||
|
ARG UBUNTU_VERSION=24.04
|
||||||
|
|
||||||
|
# This needs to generally match the container host's environment.
|
||||||
|
ARG ROCM_VERSION=6.3
|
||||||
|
ARG AMDGPU_VERSION=6.3
|
||||||
|
|
||||||
|
# Target the CUDA build image
|
||||||
|
ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete
|
||||||
|
|
||||||
|
### Build image
|
||||||
|
FROM ${BASE_ROCM_DEV_CONTAINER} AS build
|
||||||
|
|
||||||
|
# Unless otherwise specified, we make a fat build.
|
||||||
|
# List from https://github.com/ggerganov/llama.cpp/pull/1087#issuecomment-1682807878
|
||||||
|
# This is mostly tied to rocBLAS supported archs.
|
||||||
|
# gfx803, gfx900, gfx1032, gfx1101, gfx1102,not officialy supported
|
||||||
|
# gfx906 is deprecated
|
||||||
|
#check https://rocm.docs.amd.com/projects/install-on-linux/en/docs-6.2.4/reference/system-requirements.html
|
||||||
|
|
||||||
|
#ARG ROCM_DOCKER_ARCH='gfx803,gfx900,gfx906,gfx908,gfx90a,gfx942,gfx1010,gfx1030,gfx1032,gfx1100,gfx1101,gfx1102'
|
||||||
|
ARG ROCM_DOCKER_ARCH=gfx1100
|
||||||
|
|
||||||
|
# Set nvcc architectured
|
||||||
|
ENV AMDGPU_TARGETS=${ROCM_DOCKER_ARCH}
|
||||||
|
# Enable ROCm
|
||||||
|
# ENV CC=/opt/rocm/llvm/bin/clang
|
||||||
|
# ENV CXX=/opt/rocm/llvm/bin/clang++
|
||||||
|
|
||||||
|
RUN apt-get update \
|
||||||
|
&& apt-get install -y \
|
||||||
|
build-essential \
|
||||||
|
cmake \
|
||||||
|
git \
|
||||||
|
libcurl4-openssl-dev \
|
||||||
|
curl \
|
||||||
|
libgomp1
|
||||||
|
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
COPY . .
|
||||||
|
|
||||||
|
RUN HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
|
||||||
|
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=$ROCM_DOCKER_ARCH -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON \
|
||||||
|
&& cmake --build build --config Release -j$(nproc)
|
||||||
|
|
||||||
|
RUN mkdir -p /app/lib \
|
||||||
|
&& find build -name "*.so" -exec cp {} /app/lib \;
|
||||||
|
|
||||||
|
RUN mkdir -p /app/full \
|
||||||
|
&& cp build/bin/* /app/full \
|
||||||
|
&& cp *.py /app/full \
|
||||||
|
&& cp -r gguf-py /app/full \
|
||||||
|
&& cp -r requirements /app/full \
|
||||||
|
&& cp requirements.txt /app/full \
|
||||||
|
&& cp .devops/tools.sh /app/full/tools.sh
|
||||||
|
|
||||||
|
## Base image
|
||||||
|
FROM ${BASE_ROCM_DEV_CONTAINER} AS base
|
||||||
|
|
||||||
|
RUN apt-get update \
|
||||||
|
&& apt-get install -y libgomp1 curl\
|
||||||
|
&& apt autoremove -y \
|
||||||
|
&& apt clean -y \
|
||||||
|
&& rm -rf /tmp/* /var/tmp/* \
|
||||||
|
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
|
||||||
|
&& find /var/cache -type f -delete
|
||||||
|
|
||||||
|
COPY --from=build /app/lib/ /app
|
||||||
|
|
||||||
|
### Full
|
||||||
|
FROM base AS full
|
||||||
|
|
||||||
|
COPY --from=build /app/full /app
|
||||||
|
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
RUN apt-get update \
|
||||||
|
&& apt-get install -y \
|
||||||
|
git \
|
||||||
|
python3-pip \
|
||||||
|
python3 \
|
||||||
|
python3-wheel\
|
||||||
|
&& pip install --break-system-packages --upgrade setuptools \
|
||||||
|
&& pip install --break-system-packages -r requirements.txt \
|
||||||
|
&& apt autoremove -y \
|
||||||
|
&& apt clean -y \
|
||||||
|
&& rm -rf /tmp/* /var/tmp/* \
|
||||||
|
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
|
||||||
|
&& find /var/cache -type f -delete
|
||||||
|
|
||||||
|
ENTRYPOINT ["/app/tools.sh"]
|
||||||
|
|
||||||
|
### Light, CLI only
|
||||||
|
FROM base AS light
|
||||||
|
|
||||||
|
COPY --from=build /app/full/llama-cli /app
|
||||||
|
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
ENTRYPOINT [ "/app/llama-cli" ]
|
||||||
|
|
||||||
|
### Server, Server only
|
||||||
|
FROM base AS server
|
||||||
|
|
||||||
|
ENV LLAMA_ARG_HOST=0.0.0.0
|
||||||
|
|
||||||
|
COPY --from=build /app/full/llama-server /app
|
||||||
|
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
|
||||||
|
|
||||||
|
ENTRYPOINT [ "/app/llama-server" ]
|
88
.devops/vulkan.Dockerfile
Normal file
88
.devops/vulkan.Dockerfile
Normal file
@ -0,0 +1,88 @@
|
|||||||
|
ARG UBUNTU_VERSION=jammy
|
||||||
|
|
||||||
|
FROM ubuntu:$UBUNTU_VERSION AS build
|
||||||
|
|
||||||
|
# Install build tools
|
||||||
|
RUN apt update && apt install -y git build-essential cmake wget
|
||||||
|
|
||||||
|
# Install Vulkan SDK and cURL
|
||||||
|
RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add - && \
|
||||||
|
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list && \
|
||||||
|
apt update -y && \
|
||||||
|
apt-get install -y vulkan-sdk libcurl4-openssl-dev curl
|
||||||
|
|
||||||
|
# Build it
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
COPY . .
|
||||||
|
|
||||||
|
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_VULKAN=1 -DLLAMA_CURL=1 && \
|
||||||
|
cmake --build build --config Release -j$(nproc)
|
||||||
|
|
||||||
|
RUN mkdir -p /app/lib && \
|
||||||
|
find build -name "*.so" -exec cp {} /app/lib \;
|
||||||
|
|
||||||
|
RUN mkdir -p /app/full \
|
||||||
|
&& cp build/bin/* /app/full \
|
||||||
|
&& cp *.py /app/full \
|
||||||
|
&& cp -r gguf-py /app/full \
|
||||||
|
&& cp -r requirements /app/full \
|
||||||
|
&& cp requirements.txt /app/full \
|
||||||
|
&& cp .devops/tools.sh /app/full/tools.sh
|
||||||
|
|
||||||
|
## Base image
|
||||||
|
FROM ubuntu:$UBUNTU_VERSION AS base
|
||||||
|
|
||||||
|
RUN apt-get update \
|
||||||
|
&& apt-get install -y libgomp1 curl\
|
||||||
|
&& apt autoremove -y \
|
||||||
|
&& apt clean -y \
|
||||||
|
&& rm -rf /tmp/* /var/tmp/* \
|
||||||
|
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
|
||||||
|
&& find /var/cache -type f -delete
|
||||||
|
|
||||||
|
COPY --from=build /app/lib/ /app
|
||||||
|
|
||||||
|
### Full
|
||||||
|
FROM base AS full
|
||||||
|
|
||||||
|
COPY --from=build /app/full /app
|
||||||
|
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
RUN apt-get update \
|
||||||
|
&& apt-get install -y \
|
||||||
|
git \
|
||||||
|
python3 \
|
||||||
|
python3-pip \
|
||||||
|
&& pip install --upgrade pip setuptools wheel \
|
||||||
|
&& pip install -r requirements.txt \
|
||||||
|
&& apt autoremove -y \
|
||||||
|
&& apt clean -y \
|
||||||
|
&& rm -rf /tmp/* /var/tmp/* \
|
||||||
|
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
|
||||||
|
&& find /var/cache -type f -delete
|
||||||
|
|
||||||
|
ENTRYPOINT ["/app/tools.sh"]
|
||||||
|
|
||||||
|
### Light, CLI only
|
||||||
|
FROM base AS light
|
||||||
|
|
||||||
|
COPY --from=build /app/full/llama-cli /app
|
||||||
|
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
ENTRYPOINT [ "/app/llama-cli" ]
|
||||||
|
|
||||||
|
### Server, Server only
|
||||||
|
FROM base AS server
|
||||||
|
|
||||||
|
ENV LLAMA_ARG_HOST=0.0.0.0
|
||||||
|
|
||||||
|
COPY --from=build /app/full/llama-server /app
|
||||||
|
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
|
||||||
|
|
||||||
|
ENTRYPOINT [ "/app/llama-server" ]
|
104
.github/workflows/docker.yml
vendored
104
.github/workflows/docker.yml
vendored
@ -34,21 +34,14 @@ jobs:
|
|||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
config:
|
config:
|
||||||
- { tag: "light", dockerfile: ".devops/llama-cli.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
# Multi-stage build
|
||||||
- { tag: "server", dockerfile: ".devops/llama-server.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, freediskspace: false}
|
||||||
- { tag: "full", dockerfile: ".devops/full.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
- { tag: "cuda", dockerfile: ".devops/cuda.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
|
||||||
- { tag: "light-cuda", dockerfile: ".devops/llama-cli-cuda.Dockerfile", platforms: "linux/amd64" }
|
- { tag: "musa", dockerfile: ".devops/musa.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
|
||||||
- { tag: "server-cuda", dockerfile: ".devops/llama-server-cuda.Dockerfile", platforms: "linux/amd64" }
|
- { tag: "intel", dockerfile: ".devops/intel.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
|
||||||
- { tag: "full-cuda", dockerfile: ".devops/full-cuda.Dockerfile", platforms: "linux/amd64" }
|
- { tag: "vulkan", dockerfile: ".devops/vulkan.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
|
||||||
- { tag: "light-musa", dockerfile: ".devops/llama-cli-musa.Dockerfile", platforms: "linux/amd64" }
|
|
||||||
- { tag: "server-musa", dockerfile: ".devops/llama-server-musa.Dockerfile", platforms: "linux/amd64" }
|
|
||||||
- { tag: "full-musa", dockerfile: ".devops/full-musa.Dockerfile", platforms: "linux/amd64" }
|
|
||||||
# Note: the rocm images are failing due to a compiler error and are disabled until this is fixed to allow the workflow to complete
|
# Note: the rocm images are failing due to a compiler error and are disabled until this is fixed to allow the workflow to complete
|
||||||
#- { tag: "light-rocm", dockerfile: ".devops/llama-cli-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
#- {tag: "rocm", dockerfile: ".devops/rocm.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, freediskspace: true }
|
||||||
#- { tag: "server-rocm", dockerfile: ".devops/llama-server-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
|
||||||
#- { tag: "full-rocm", dockerfile: ".devops/full-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
|
||||||
- { tag: "light-intel", dockerfile: ".devops/llama-cli-intel.Dockerfile", platforms: "linux/amd64" }
|
|
||||||
- { tag: "server-intel", dockerfile: ".devops/llama-server-intel.Dockerfile", platforms: "linux/amd64" }
|
|
||||||
steps:
|
steps:
|
||||||
- name: Check out the repo
|
- name: Check out the repo
|
||||||
uses: actions/checkout@v4
|
uses: actions/checkout@v4
|
||||||
@ -56,10 +49,10 @@ jobs:
|
|||||||
fetch-depth: 0 # preserve git history, so we can determine the build number
|
fetch-depth: 0 # preserve git history, so we can determine the build number
|
||||||
|
|
||||||
- name: Set up QEMU
|
- name: Set up QEMU
|
||||||
uses: docker/setup-qemu-action@v2
|
uses: docker/setup-qemu-action@v3
|
||||||
|
|
||||||
- name: Set up Docker Buildx
|
- name: Set up Docker Buildx
|
||||||
uses: docker/setup-buildx-action@v2
|
uses: docker/setup-buildx-action@v3
|
||||||
|
|
||||||
- name: Log in to Docker Hub
|
- name: Log in to Docker Hub
|
||||||
uses: docker/login-action@v2
|
uses: docker/login-action@v2
|
||||||
@ -79,25 +72,34 @@ jobs:
|
|||||||
|
|
||||||
# determine tag name postfix (build number, commit hash)
|
# determine tag name postfix (build number, commit hash)
|
||||||
if [[ "${{ env.GITHUB_BRANCH_NAME }}" == "master" ]]; then
|
if [[ "${{ env.GITHUB_BRANCH_NAME }}" == "master" ]]; then
|
||||||
TAG_POSTFIX="b${BUILD_NUMBER}"
|
TAG_POSTFIX="-b${BUILD_NUMBER}"
|
||||||
else
|
else
|
||||||
SAFE_NAME=$(echo "${{ env.GITHUB_BRANCH_NAME }}" | tr '/' '-')
|
SAFE_NAME=$(echo "${{ env.GITHUB_BRANCH_NAME }}" | tr '/' '-')
|
||||||
TAG_POSTFIX="${SAFE_NAME}-${SHORT_HASH}"
|
TAG_POSTFIX="-${SAFE_NAME}-${SHORT_HASH}"
|
||||||
fi
|
fi
|
||||||
|
|
||||||
# list all tags possible
|
# list all tags possible
|
||||||
TAGS=""
|
if [[ "${{ matrix.config.tag }}" == "cpu" ]]; then
|
||||||
TAGS="${TAGS}ghcr.io/${REPO_OWNER}/${REPO_NAME}:${{ matrix.config.tag }},"
|
TYPE=""
|
||||||
TAGS="${TAGS}ghcr.io/${REPO_OWNER}/${REPO_NAME}:${{ matrix.config.tag }}-${TAG_POSTFIX}"
|
else
|
||||||
|
TYPE="-${{ matrix.config.tag }}"
|
||||||
echo "output_tags=$TAGS" >> $GITHUB_OUTPUT
|
fi
|
||||||
echo "output_tags=$TAGS" # print out for debugging
|
PREFIX="ghcr.io/${REPO_OWNER}/${REPO_NAME}:"
|
||||||
|
FULLTAGS="${PREFIX}full${TYPE},${PREFIX}full${TYPE}${TAG_POSTFIX}"
|
||||||
|
LIGHTTAGS="${PREFIX}light${TYPE},${PREFIX}light${TYPE}${TAG_POSTFIX}"
|
||||||
|
SERVERTAGS="${PREFIX}server${TYPE},${PREFIX}server${TYPE}${TAG_POSTFIX}"
|
||||||
|
echo "full_output_tags=$FULLTAGS" >> $GITHUB_OUTPUT
|
||||||
|
echo "light_output_tags=$LIGHTTAGS" >> $GITHUB_OUTPUT
|
||||||
|
echo "server_output_tags=$SERVERTAGS" >> $GITHUB_OUTPUT
|
||||||
|
echo "full_output_tags=$FULLTAGS" # print out for debugging
|
||||||
|
echo "light_output_tags=$LIGHTTAGS" # print out for debugging
|
||||||
|
echo "server_output_tags=$SERVERTAGS" # print out for debugging
|
||||||
env:
|
env:
|
||||||
GITHUB_BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
|
GITHUB_BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
|
||||||
GITHUB_REPOSITORY_OWNER: '${{ github.repository_owner }}'
|
GITHUB_REPOSITORY_OWNER: '${{ github.repository_owner }}'
|
||||||
|
|
||||||
# https://github.com/jlumbroso/free-disk-space/tree/54081f138730dfa15788a46383842cd2f914a1be#example
|
# https://github.com/jlumbroso/free-disk-space/tree/54081f138730dfa15788a46383842cd2f914a1be#example
|
||||||
- name: Free Disk Space (Ubuntu)
|
- name: Free Disk Space (Ubuntu)
|
||||||
|
if: ${{ matrix.config.free_disk_space == true }}
|
||||||
uses: jlumbroso/free-disk-space@main
|
uses: jlumbroso/free-disk-space@main
|
||||||
with:
|
with:
|
||||||
# this might remove tools that are actually needed,
|
# this might remove tools that are actually needed,
|
||||||
@ -113,13 +115,59 @@ jobs:
|
|||||||
docker-images: true
|
docker-images: true
|
||||||
swap-storage: true
|
swap-storage: true
|
||||||
|
|
||||||
- name: Build and push Docker image (tagged + versioned)
|
- name: Build and push Full Docker image (tagged + versioned)
|
||||||
if: ${{ github.event_name == 'push' || github.event_name == 'schedule' || github.event_name == 'workflow_dispatch' }}
|
if: ${{ (github.event_name == 'push' || github.event_name == 'schedule' || github.event_name == 'workflow_dispatch') && matrix.config.full == true }}
|
||||||
uses: docker/build-push-action@v6
|
uses: docker/build-push-action@v6
|
||||||
with:
|
with:
|
||||||
context: .
|
context: .
|
||||||
push: true
|
push: true
|
||||||
platforms: ${{ matrix.config.platforms }}
|
platforms: ${{ matrix.config.platforms }}
|
||||||
# tag list is generated from step above
|
# tag list is generated from step above
|
||||||
tags: ${{ steps.tag.outputs.output_tags }}
|
tags: ${{ steps.tag.outputs.full_output_tags }}
|
||||||
file: ${{ matrix.config.dockerfile }}
|
file: ${{ matrix.config.dockerfile }}
|
||||||
|
target: full
|
||||||
|
provenance: false
|
||||||
|
# using github experimental cache
|
||||||
|
cache-from: type=gha
|
||||||
|
cache-to: type=gha,mode=max
|
||||||
|
# return to this if the experimental github cache is having issues
|
||||||
|
#cache-to: type=local,dest=/tmp/.buildx-cache
|
||||||
|
#cache-from: type=local,src=/tmp/.buildx-cache
|
||||||
|
|
||||||
|
- name: Build and push Light Docker image (tagged + versioned)
|
||||||
|
if: ${{ (github.event_name == 'push' || github.event_name == 'schedule' || github.event_name == 'workflow_dispatch') && matrix.config.light == true }}
|
||||||
|
uses: docker/build-push-action@v6
|
||||||
|
with:
|
||||||
|
context: .
|
||||||
|
push: true
|
||||||
|
platforms: ${{ matrix.config.platforms }}
|
||||||
|
# tag list is generated from step above
|
||||||
|
tags: ${{ steps.tag.outputs.light_output_tags }}
|
||||||
|
file: ${{ matrix.config.dockerfile }}
|
||||||
|
target: light
|
||||||
|
provenance: false
|
||||||
|
# using github experimental cache
|
||||||
|
cache-from: type=gha
|
||||||
|
cache-to: type=gha,mode=max
|
||||||
|
# return to this if the experimental github cache is having issues
|
||||||
|
#cache-to: type=local,dest=/tmp/.buildx-cache
|
||||||
|
#cache-from: type=local,src=/tmp/.buildx-cache
|
||||||
|
|
||||||
|
- name: Build and push Server Docker image (tagged + versioned)
|
||||||
|
if: ${{ (github.event_name == 'push' || github.event_name == 'schedule' || github.event_name == 'workflow_dispatch') && matrix.config.server == true }}
|
||||||
|
uses: docker/build-push-action@v6
|
||||||
|
with:
|
||||||
|
context: .
|
||||||
|
push: true
|
||||||
|
platforms: ${{ matrix.config.platforms }}
|
||||||
|
# tag list is generated from step above
|
||||||
|
tags: ${{ steps.tag.outputs.server_output_tags }}
|
||||||
|
file: ${{ matrix.config.dockerfile }}
|
||||||
|
target: server
|
||||||
|
provenance: false
|
||||||
|
# using github experimental cache
|
||||||
|
cache-from: type=gha
|
||||||
|
cache-to: type=gha,mode=max
|
||||||
|
# return to this if the experimental github cache is having issues
|
||||||
|
#cache-to: type=local,dest=/tmp/.buildx-cache
|
||||||
|
#cache-from: type=local,src=/tmp/.buildx-cache
|
||||||
|
@ -529,9 +529,19 @@ class Model:
|
|||||||
else:
|
else:
|
||||||
token: str = reverse_vocab[i]
|
token: str = reverse_vocab[i]
|
||||||
if token in added_vocab:
|
if token in added_vocab:
|
||||||
|
# The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
|
||||||
|
# To avoid unexpected issues - we make sure to normalize non-normalized tokens
|
||||||
|
if not tokenizer.added_tokens_decoder[i].normalized:
|
||||||
|
previous_token = token
|
||||||
|
token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
|
||||||
|
if previous_token != token:
|
||||||
|
logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
|
||||||
|
|
||||||
if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
|
if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
|
||||||
toktypes.append(gguf.TokenType.CONTROL)
|
toktypes.append(gguf.TokenType.CONTROL)
|
||||||
else:
|
else:
|
||||||
|
# NOTE: this was added for Gemma.
|
||||||
|
# Encoding and decoding the tokens above isn't sufficient for this case.
|
||||||
token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
|
token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
|
||||||
toktypes.append(gguf.TokenType.USER_DEFINED)
|
toktypes.append(gguf.TokenType.USER_DEFINED)
|
||||||
else:
|
else:
|
||||||
@ -575,6 +585,9 @@ class Model:
|
|||||||
if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
|
if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
|
||||||
# ref: https://huggingface.co/tiiuae/falcon-7b
|
# ref: https://huggingface.co/tiiuae/falcon-7b
|
||||||
res = "falcon"
|
res = "falcon"
|
||||||
|
if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
|
||||||
|
# ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
|
||||||
|
res = "falcon3"
|
||||||
if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
|
if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
|
||||||
# ref: https://huggingface.co/BAAI/bge-small-en-v1.5
|
# ref: https://huggingface.co/BAAI/bge-small-en-v1.5
|
||||||
res = "bert-bge"
|
res = "bert-bge"
|
||||||
@ -671,6 +684,9 @@ class Model:
|
|||||||
if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
|
if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
|
||||||
# ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
|
# ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
|
||||||
res = "gigachat"
|
res = "gigachat"
|
||||||
|
if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
|
||||||
|
# ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
|
||||||
|
res = "megrez"
|
||||||
|
|
||||||
if res is None:
|
if res is None:
|
||||||
logger.warning("\n")
|
logger.warning("\n")
|
||||||
@ -1679,6 +1695,184 @@ class LlamaModel(Model):
|
|||||||
raise ValueError(f"Unprocessed experts: {experts}")
|
raise ValueError(f"Unprocessed experts: {experts}")
|
||||||
|
|
||||||
|
|
||||||
|
@Model.register("DeciLMForCausalLM")
|
||||||
|
class DeciModel(Model):
|
||||||
|
model_arch = gguf.MODEL_ARCH.DECI
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
|
||||||
|
# DeciLM-specific code
|
||||||
|
intermediate_size = int(2 * ffn_mult * n_embd / 3)
|
||||||
|
return DeciModel._find_multiple(intermediate_size, 256)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _find_multiple(n: int, k: int) -> int:
|
||||||
|
# DeciLM-specific code
|
||||||
|
if n % k == 0:
|
||||||
|
return n
|
||||||
|
return n + k - (n % k)
|
||||||
|
|
||||||
|
def __init__(self, *args, **kwargs):
|
||||||
|
super().__init__(*args, **kwargs)
|
||||||
|
|
||||||
|
if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
|
||||||
|
_block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
|
||||||
|
assert self.block_count == len(_block_configs)
|
||||||
|
self._num_kv_heads = list()
|
||||||
|
self._num_heads = list()
|
||||||
|
_ffn_multipliers = list()
|
||||||
|
# ***linear attention layer***
|
||||||
|
# if n_heads_in_group is None and replace_with_linear is True
|
||||||
|
# then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
|
||||||
|
# ***attention-free layer***
|
||||||
|
# if n_heads_in_group is None and replace_with_linear is False
|
||||||
|
# then _num_kv_heads[il] is 0 and _num_heads[il] is 0
|
||||||
|
# ***normal attention-layer***
|
||||||
|
# if n_heads_in_group is not None, then
|
||||||
|
# _num_kv_heads[il] is num_attention_head // n_heads_in_group and
|
||||||
|
# _num_heads[il] is num_attention_head
|
||||||
|
for il in range(len(_block_configs)):
|
||||||
|
if _block_configs[il]["attention"]["n_heads_in_group"] is None:
|
||||||
|
if _block_configs[il]["attention"]["replace_with_linear"] is True:
|
||||||
|
self._num_kv_heads.append(0)
|
||||||
|
self._num_heads.append(self.hparams["num_attention_heads"])
|
||||||
|
else:
|
||||||
|
self._num_kv_heads.append(0)
|
||||||
|
self._num_heads.append(0)
|
||||||
|
else:
|
||||||
|
self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
|
||||||
|
self._num_heads.append(self.hparams["num_attention_heads"])
|
||||||
|
_ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
|
||||||
|
assert self.block_count == len(self._num_kv_heads)
|
||||||
|
assert self.block_count == len(self._num_heads)
|
||||||
|
assert self.block_count == len(_ffn_multipliers)
|
||||||
|
assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
|
||||||
|
assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
|
||||||
|
assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
|
||||||
|
self._ffn_dims: list[int] = [
|
||||||
|
DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
|
||||||
|
for multiplier in _ffn_multipliers
|
||||||
|
]
|
||||||
|
|
||||||
|
def set_vocab(self):
|
||||||
|
# Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
|
||||||
|
# eos_token from '|eot_id|' to '|end_of_text|'
|
||||||
|
if self.hparams.get("vocab_size", 128256) == 128256:
|
||||||
|
tokens, toktypes, tokpre = self.get_vocab_base()
|
||||||
|
self.gguf_writer.add_tokenizer_model("gpt2")
|
||||||
|
self.gguf_writer.add_tokenizer_pre(tokpre)
|
||||||
|
self.gguf_writer.add_token_list(tokens)
|
||||||
|
self.gguf_writer.add_token_types(toktypes)
|
||||||
|
|
||||||
|
special_vocab = gguf.SpecialVocab(
|
||||||
|
self.dir_model, load_merges=True,
|
||||||
|
special_token_types = ['bos', 'eos', 'eom', 'eot']
|
||||||
|
)
|
||||||
|
special_vocab._set_special_token("bos", 128000)
|
||||||
|
special_vocab._set_special_token("eos", 128001)
|
||||||
|
special_vocab._set_special_token("eom", 128008)
|
||||||
|
special_vocab._set_special_token("eot", 128009)
|
||||||
|
special_vocab.add_to_gguf(self.gguf_writer)
|
||||||
|
else:
|
||||||
|
# DeciLM-7B
|
||||||
|
self._set_vocab_llama_hf()
|
||||||
|
# self._set_vocab_gpt2()
|
||||||
|
|
||||||
|
def set_gguf_parameters(self):
|
||||||
|
if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
|
||||||
|
assert self.block_count == len(self._num_kv_heads)
|
||||||
|
assert self.block_count == len(self._num_heads)
|
||||||
|
assert self.block_count == len(self._ffn_dims)
|
||||||
|
self.gguf_writer.add_head_count_kv(self._num_kv_heads)
|
||||||
|
self.gguf_writer.add_head_count(self._num_heads)
|
||||||
|
self.gguf_writer.add_feed_forward_length(self._ffn_dims)
|
||||||
|
self.gguf_writer.add_block_count(self.block_count)
|
||||||
|
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
|
||||||
|
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||||||
|
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
||||||
|
self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
||||||
|
self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
||||||
|
self.gguf_writer.add_file_type(self.ftype)
|
||||||
|
else: # DeciLM-7B
|
||||||
|
super().set_gguf_parameters()
|
||||||
|
if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
|
||||||
|
self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
|
||||||
|
assert self.block_count == len(self._num_kv_heads)
|
||||||
|
self.gguf_writer.add_head_count_kv(self._num_kv_heads)
|
||||||
|
hparams = self.hparams
|
||||||
|
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||||||
|
|
||||||
|
if "head_dim" in hparams:
|
||||||
|
rope_dim = hparams["head_dim"]
|
||||||
|
else:
|
||||||
|
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
|
||||||
|
self.gguf_writer.add_rope_dimension_count(rope_dim)
|
||||||
|
|
||||||
|
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
||||||
|
if self.hparams["rope_scaling"].get("type") == "linear":
|
||||||
|
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||||||
|
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
|
||||||
|
if n_head_kv is not None and n_head != n_head_kv:
|
||||||
|
n_head = n_head_kv
|
||||||
|
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
||||||
|
.swapaxes(1, 2)
|
||||||
|
.reshape(weights.shape))
|
||||||
|
|
||||||
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||||
|
n_head = self.hparams["num_attention_heads"]
|
||||||
|
if bid is not None:
|
||||||
|
if "num_key_value_heads_per_layer" in self.hparams:
|
||||||
|
n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
|
||||||
|
elif "block_configs" in self.hparams:
|
||||||
|
n_kv_head = self._num_kv_heads[bid]
|
||||||
|
n_head = self._num_heads[bid]
|
||||||
|
else:
|
||||||
|
n_kv_head = self.hparams.get("num_key_value_heads")
|
||||||
|
else:
|
||||||
|
n_kv_head = self.hparams.get("num_key_value_heads")
|
||||||
|
|
||||||
|
if name.endswith(("q_proj.weight", "q_proj.bias")):
|
||||||
|
data_torch = DeciModel.permute(data_torch, n_head, n_head)
|
||||||
|
if name.endswith(("k_proj.weight", "k_proj.bias")):
|
||||||
|
data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
|
||||||
|
return [(self.map_tensor_name(name), data_torch)]
|
||||||
|
|
||||||
|
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
|
||||||
|
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
|
||||||
|
if rope_scaling.get("rope_type", '').lower() == "llama3":
|
||||||
|
base = self.hparams.get("rope_theta", 10000.0)
|
||||||
|
dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
||||||
|
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
|
||||||
|
|
||||||
|
factor = rope_scaling.get("factor", 8.0)
|
||||||
|
low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
|
||||||
|
high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
|
||||||
|
old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
|
||||||
|
|
||||||
|
low_freq_wavelen = old_context_len / low_freq_factor
|
||||||
|
high_freq_wavelen = old_context_len / high_freq_factor
|
||||||
|
assert low_freq_wavelen != high_freq_wavelen
|
||||||
|
|
||||||
|
rope_factors = []
|
||||||
|
for freq in freqs:
|
||||||
|
wavelen = 2 * math.pi / freq
|
||||||
|
if wavelen < high_freq_wavelen:
|
||||||
|
rope_factors.append(1)
|
||||||
|
elif wavelen > low_freq_wavelen:
|
||||||
|
rope_factors.append(factor)
|
||||||
|
else:
|
||||||
|
smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
|
||||||
|
rope_factors.append(1 / ((1 - smooth) / factor + smooth))
|
||||||
|
|
||||||
|
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
|
||||||
|
|
||||||
|
def prepare_tensors(self):
|
||||||
|
super().prepare_tensors()
|
||||||
|
|
||||||
|
|
||||||
@Model.register("BitnetForCausalLM")
|
@Model.register("BitnetForCausalLM")
|
||||||
class BitnetModel(Model):
|
class BitnetModel(Model):
|
||||||
model_arch = gguf.MODEL_ARCH.BITNET
|
model_arch = gguf.MODEL_ARCH.BITNET
|
||||||
|
@ -72,6 +72,7 @@ models = [
|
|||||||
{"name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", },
|
{"name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", },
|
||||||
{"name": "falcon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", },
|
{"name": "falcon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", },
|
||||||
{"name": "bert-bge", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", },
|
{"name": "bert-bge", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", },
|
||||||
|
{"name": "falcon3", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon3-7B-Base", },
|
||||||
{"name": "bert-bge-large", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/BAAI/bge-large-zh-v1.5", },
|
{"name": "bert-bge-large", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/BAAI/bge-large-zh-v1.5", },
|
||||||
{"name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", },
|
{"name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", },
|
||||||
{"name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", },
|
{"name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", },
|
||||||
@ -105,6 +106,7 @@ models = [
|
|||||||
{"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", },
|
{"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", },
|
||||||
{"name": "roberta-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sentence-transformers/stsb-roberta-base"},
|
{"name": "roberta-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sentence-transformers/stsb-roberta-base"},
|
||||||
{"name": "gigachat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct"},
|
{"name": "gigachat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct"},
|
||||||
|
{"name": "megrez", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Infinigence/Megrez-3B-Instruct"},
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
|
@ -12,6 +12,10 @@
|
|||||||
#include "ggml-vulkan.h"
|
#include "ggml-vulkan.h"
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
#ifdef GGML_USE_SYCL
|
||||||
|
#include "ggml-sycl.h"
|
||||||
|
#endif
|
||||||
|
|
||||||
#include "ggml-rpc.h"
|
#include "ggml-rpc.h"
|
||||||
#ifdef _WIN32
|
#ifdef _WIN32
|
||||||
# include <windows.h>
|
# include <windows.h>
|
||||||
@ -91,6 +95,12 @@ static ggml_backend_t create_backend() {
|
|||||||
if (!backend) {
|
if (!backend) {
|
||||||
fprintf(stderr, "%s: ggml_backend_vulkan_init() failed\n", __func__);
|
fprintf(stderr, "%s: ggml_backend_vulkan_init() failed\n", __func__);
|
||||||
}
|
}
|
||||||
|
#elif GGML_USE_SYCL
|
||||||
|
fprintf(stderr, "%s: using SYCL backend\n", __func__);
|
||||||
|
backend = ggml_backend_sycl_init(0); // init device 0
|
||||||
|
if (!backend) {
|
||||||
|
fprintf(stderr, "%s: ggml_backend_sycl_init() failed\n", __func__);
|
||||||
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// if there aren't GPU Backends fallback to CPU backend
|
// if there aren't GPU Backends fallback to CPU backend
|
||||||
@ -106,6 +116,8 @@ static void get_backend_memory(size_t * free_mem, size_t * total_mem) {
|
|||||||
ggml_backend_cuda_get_device_memory(0, free_mem, total_mem);
|
ggml_backend_cuda_get_device_memory(0, free_mem, total_mem);
|
||||||
#elif GGML_USE_VULKAN
|
#elif GGML_USE_VULKAN
|
||||||
ggml_backend_vk_get_device_memory(0, free_mem, total_mem);
|
ggml_backend_vk_get_device_memory(0, free_mem, total_mem);
|
||||||
|
#elif GGML_USE_SYCL
|
||||||
|
ggml_backend_sycl_get_device_memory(0, free_mem, total_mem);
|
||||||
#else
|
#else
|
||||||
#ifdef _WIN32
|
#ifdef _WIN32
|
||||||
MEMORYSTATUSEX status;
|
MEMORYSTATUSEX status;
|
||||||
|
@ -19,6 +19,8 @@ Options:
|
|||||||
Context size (default: 2048)
|
Context size (default: 2048)
|
||||||
-n, --ngl <value>
|
-n, --ngl <value>
|
||||||
Number of GPU layers (default: 0)
|
Number of GPU layers (default: 0)
|
||||||
|
--temp <value>
|
||||||
|
Temperature (default: 0.8)
|
||||||
-v, --verbose, --log-verbose
|
-v, --verbose, --log-verbose
|
||||||
Set verbosity level to infinity (i.e. log all messages, useful for debugging)
|
Set verbosity level to infinity (i.e. log all messages, useful for debugging)
|
||||||
-h, --help
|
-h, --help
|
||||||
|
@ -55,29 +55,51 @@ static int printe(const char * fmt, ...) {
|
|||||||
class Opt {
|
class Opt {
|
||||||
public:
|
public:
|
||||||
int init(int argc, const char ** argv) {
|
int init(int argc, const char ** argv) {
|
||||||
|
ctx_params = llama_context_default_params();
|
||||||
|
model_params = llama_model_default_params();
|
||||||
|
context_size_default = ctx_params.n_batch;
|
||||||
|
ngl_default = model_params.n_gpu_layers;
|
||||||
|
common_params_sampling sampling;
|
||||||
|
temperature_default = sampling.temp;
|
||||||
|
|
||||||
|
if (argc < 2) {
|
||||||
|
printe("Error: No arguments provided.\n");
|
||||||
|
print_help();
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
// Parse arguments
|
// Parse arguments
|
||||||
if (parse(argc, argv)) {
|
if (parse(argc, argv)) {
|
||||||
printe("Error: Failed to parse arguments.\n");
|
printe("Error: Failed to parse arguments.\n");
|
||||||
help();
|
print_help();
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
// If help is requested, show help and exit
|
// If help is requested, show help and exit
|
||||||
if (help_) {
|
if (help) {
|
||||||
help();
|
print_help();
|
||||||
return 2;
|
return 2;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
ctx_params.n_batch = context_size >= 0 ? context_size : context_size_default;
|
||||||
|
model_params.n_gpu_layers = ngl >= 0 ? ngl : ngl_default;
|
||||||
|
temperature = temperature >= 0 ? temperature : temperature_default;
|
||||||
|
|
||||||
return 0; // Success
|
return 0; // Success
|
||||||
}
|
}
|
||||||
|
|
||||||
|
llama_context_params ctx_params;
|
||||||
|
llama_model_params model_params;
|
||||||
std::string model_;
|
std::string model_;
|
||||||
std::string user_;
|
std::string user;
|
||||||
int context_size_ = -1, ngl_ = -1;
|
int context_size = -1, ngl = -1;
|
||||||
bool verbose_ = false;
|
float temperature = -1;
|
||||||
|
bool verbose = false;
|
||||||
|
|
||||||
private:
|
private:
|
||||||
bool help_ = false;
|
int context_size_default = -1, ngl_default = -1;
|
||||||
|
float temperature_default = -1;
|
||||||
|
bool help = false;
|
||||||
|
|
||||||
bool parse_flag(const char ** argv, int i, const char * short_opt, const char * long_opt) {
|
bool parse_flag(const char ** argv, int i, const char * short_opt, const char * long_opt) {
|
||||||
return strcmp(argv[i], short_opt) == 0 || strcmp(argv[i], long_opt) == 0;
|
return strcmp(argv[i], short_opt) == 0 || strcmp(argv[i], long_opt) == 0;
|
||||||
@ -89,6 +111,17 @@ class Opt {
|
|||||||
}
|
}
|
||||||
|
|
||||||
option_value = std::atoi(argv[++i]);
|
option_value = std::atoi(argv[++i]);
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
int handle_option_with_value(int argc, const char ** argv, int & i, float & option_value) {
|
||||||
|
if (i + 1 >= argc) {
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
option_value = std::atof(argv[++i]);
|
||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -96,18 +129,22 @@ class Opt {
|
|||||||
bool options_parsing = true;
|
bool options_parsing = true;
|
||||||
for (int i = 1, positional_args_i = 0; i < argc; ++i) {
|
for (int i = 1, positional_args_i = 0; i < argc; ++i) {
|
||||||
if (options_parsing && (strcmp(argv[i], "-c") == 0 || strcmp(argv[i], "--context-size") == 0)) {
|
if (options_parsing && (strcmp(argv[i], "-c") == 0 || strcmp(argv[i], "--context-size") == 0)) {
|
||||||
if (handle_option_with_value(argc, argv, i, context_size_) == 1) {
|
if (handle_option_with_value(argc, argv, i, context_size) == 1) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
} else if (options_parsing && (strcmp(argv[i], "-n") == 0 || strcmp(argv[i], "--ngl") == 0)) {
|
} else if (options_parsing && (strcmp(argv[i], "-n") == 0 || strcmp(argv[i], "--ngl") == 0)) {
|
||||||
if (handle_option_with_value(argc, argv, i, ngl_) == 1) {
|
if (handle_option_with_value(argc, argv, i, ngl) == 1) {
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
} else if (options_parsing && strcmp(argv[i], "--temp") == 0) {
|
||||||
|
if (handle_option_with_value(argc, argv, i, temperature) == 1) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
} else if (options_parsing &&
|
} else if (options_parsing &&
|
||||||
(parse_flag(argv, i, "-v", "--verbose") || parse_flag(argv, i, "-v", "--log-verbose"))) {
|
(parse_flag(argv, i, "-v", "--verbose") || parse_flag(argv, i, "-v", "--log-verbose"))) {
|
||||||
verbose_ = true;
|
verbose = true;
|
||||||
} else if (options_parsing && parse_flag(argv, i, "-h", "--help")) {
|
} else if (options_parsing && parse_flag(argv, i, "-h", "--help")) {
|
||||||
help_ = true;
|
help = true;
|
||||||
return 0;
|
return 0;
|
||||||
} else if (options_parsing && strcmp(argv[i], "--") == 0) {
|
} else if (options_parsing && strcmp(argv[i], "--") == 0) {
|
||||||
options_parsing = false;
|
options_parsing = false;
|
||||||
@ -120,16 +157,16 @@ class Opt {
|
|||||||
model_ = argv[i];
|
model_ = argv[i];
|
||||||
} else if (positional_args_i == 1) {
|
} else if (positional_args_i == 1) {
|
||||||
++positional_args_i;
|
++positional_args_i;
|
||||||
user_ = argv[i];
|
user = argv[i];
|
||||||
} else {
|
} else {
|
||||||
user_ += " " + std::string(argv[i]);
|
user += " " + std::string(argv[i]);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
void help() const {
|
void print_help() const {
|
||||||
printf(
|
printf(
|
||||||
"Description:\n"
|
"Description:\n"
|
||||||
" Runs a llm\n"
|
" Runs a llm\n"
|
||||||
@ -142,6 +179,8 @@ class Opt {
|
|||||||
" Context size (default: %d)\n"
|
" Context size (default: %d)\n"
|
||||||
" -n, --ngl <value>\n"
|
" -n, --ngl <value>\n"
|
||||||
" Number of GPU layers (default: %d)\n"
|
" Number of GPU layers (default: %d)\n"
|
||||||
|
" --temp <value>\n"
|
||||||
|
" Temperature (default: %.1f)\n"
|
||||||
" -v, --verbose, --log-verbose\n"
|
" -v, --verbose, --log-verbose\n"
|
||||||
" Set verbosity level to infinity (i.e. log all messages, useful for debugging)\n"
|
" Set verbosity level to infinity (i.e. log all messages, useful for debugging)\n"
|
||||||
" -h, --help\n"
|
" -h, --help\n"
|
||||||
@ -170,7 +209,7 @@ class Opt {
|
|||||||
" llama-run file://some-file3.gguf\n"
|
" llama-run file://some-file3.gguf\n"
|
||||||
" llama-run --ngl 999 some-file4.gguf\n"
|
" llama-run --ngl 999 some-file4.gguf\n"
|
||||||
" llama-run --ngl 999 some-file5.gguf Hello World\n",
|
" llama-run --ngl 999 some-file5.gguf Hello World\n",
|
||||||
llama_context_default_params().n_batch, llama_model_default_params().n_gpu_layers);
|
context_size_default, ngl_default, temperature_default);
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -495,12 +534,12 @@ class LlamaData {
|
|||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
context = initialize_context(model, opt.context_size_);
|
context = initialize_context(model, opt);
|
||||||
if (!context) {
|
if (!context) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
sampler = initialize_sampler();
|
sampler = initialize_sampler(opt);
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -619,14 +658,12 @@ class LlamaData {
|
|||||||
// Initializes the model and returns a unique pointer to it
|
// Initializes the model and returns a unique pointer to it
|
||||||
llama_model_ptr initialize_model(Opt & opt) {
|
llama_model_ptr initialize_model(Opt & opt) {
|
||||||
ggml_backend_load_all();
|
ggml_backend_load_all();
|
||||||
llama_model_params model_params = llama_model_default_params();
|
|
||||||
model_params.n_gpu_layers = opt.ngl_ >= 0 ? opt.ngl_ : model_params.n_gpu_layers;
|
|
||||||
resolve_model(opt.model_);
|
resolve_model(opt.model_);
|
||||||
printe(
|
printe(
|
||||||
"\r%*s"
|
"\r%*s"
|
||||||
"\rLoading model",
|
"\rLoading model",
|
||||||
get_terminal_width(), " ");
|
get_terminal_width(), " ");
|
||||||
llama_model_ptr model(llama_load_model_from_file(opt.model_.c_str(), model_params));
|
llama_model_ptr model(llama_load_model_from_file(opt.model_.c_str(), opt.model_params));
|
||||||
if (!model) {
|
if (!model) {
|
||||||
printe("%s: error: unable to load model from file: %s\n", __func__, opt.model_.c_str());
|
printe("%s: error: unable to load model from file: %s\n", __func__, opt.model_.c_str());
|
||||||
}
|
}
|
||||||
@ -636,10 +673,8 @@ class LlamaData {
|
|||||||
}
|
}
|
||||||
|
|
||||||
// Initializes the context with the specified parameters
|
// Initializes the context with the specified parameters
|
||||||
llama_context_ptr initialize_context(const llama_model_ptr & model, const int n_ctx) {
|
llama_context_ptr initialize_context(const llama_model_ptr & model, const Opt & opt) {
|
||||||
llama_context_params ctx_params = llama_context_default_params();
|
llama_context_ptr context(llama_new_context_with_model(model.get(), opt.ctx_params));
|
||||||
ctx_params.n_ctx = ctx_params.n_batch = n_ctx >= 0 ? n_ctx : ctx_params.n_batch;
|
|
||||||
llama_context_ptr context(llama_new_context_with_model(model.get(), ctx_params));
|
|
||||||
if (!context) {
|
if (!context) {
|
||||||
printe("%s: error: failed to create the llama_context\n", __func__);
|
printe("%s: error: failed to create the llama_context\n", __func__);
|
||||||
}
|
}
|
||||||
@ -648,10 +683,10 @@ class LlamaData {
|
|||||||
}
|
}
|
||||||
|
|
||||||
// Initializes and configures the sampler
|
// Initializes and configures the sampler
|
||||||
llama_sampler_ptr initialize_sampler() {
|
llama_sampler_ptr initialize_sampler(const Opt & opt) {
|
||||||
llama_sampler_ptr sampler(llama_sampler_chain_init(llama_sampler_chain_default_params()));
|
llama_sampler_ptr sampler(llama_sampler_chain_init(llama_sampler_chain_default_params()));
|
||||||
llama_sampler_chain_add(sampler.get(), llama_sampler_init_min_p(0.05f, 1));
|
llama_sampler_chain_add(sampler.get(), llama_sampler_init_min_p(0.05f, 1));
|
||||||
llama_sampler_chain_add(sampler.get(), llama_sampler_init_temp(0.8f));
|
llama_sampler_chain_add(sampler.get(), llama_sampler_init_temp(opt.temperature));
|
||||||
llama_sampler_chain_add(sampler.get(), llama_sampler_init_dist(LLAMA_DEFAULT_SEED));
|
llama_sampler_chain_add(sampler.get(), llama_sampler_init_dist(LLAMA_DEFAULT_SEED));
|
||||||
|
|
||||||
return sampler;
|
return sampler;
|
||||||
@ -798,9 +833,9 @@ static int apply_chat_template_with_error_handling(LlamaData & llama_data, const
|
|||||||
}
|
}
|
||||||
|
|
||||||
// Helper function to handle user input
|
// Helper function to handle user input
|
||||||
static int handle_user_input(std::string & user_input, const std::string & user_) {
|
static int handle_user_input(std::string & user_input, const std::string & user) {
|
||||||
if (!user_.empty()) {
|
if (!user.empty()) {
|
||||||
user_input = user_;
|
user_input = user;
|
||||||
return 0; // No need for interactive input
|
return 0; // No need for interactive input
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -832,17 +867,17 @@ static bool is_stdout_a_terminal() {
|
|||||||
}
|
}
|
||||||
|
|
||||||
// Function to tokenize the prompt
|
// Function to tokenize the prompt
|
||||||
static int chat_loop(LlamaData & llama_data, const std::string & user_) {
|
static int chat_loop(LlamaData & llama_data, const std::string & user) {
|
||||||
int prev_len = 0;
|
int prev_len = 0;
|
||||||
llama_data.fmtted.resize(llama_n_ctx(llama_data.context.get()));
|
llama_data.fmtted.resize(llama_n_ctx(llama_data.context.get()));
|
||||||
static const bool stdout_a_terminal = is_stdout_a_terminal();
|
static const bool stdout_a_terminal = is_stdout_a_terminal();
|
||||||
while (true) {
|
while (true) {
|
||||||
// Get user input
|
// Get user input
|
||||||
std::string user_input;
|
std::string user_input;
|
||||||
while (handle_user_input(user_input, user_)) {
|
while (handle_user_input(user_input, user)) {
|
||||||
}
|
}
|
||||||
|
|
||||||
add_message("user", user_.empty() ? user_input : user_, llama_data);
|
add_message("user", user.empty() ? user_input : user, llama_data);
|
||||||
int new_len;
|
int new_len;
|
||||||
if (apply_chat_template_with_error_handling(llama_data, true, new_len) < 0) {
|
if (apply_chat_template_with_error_handling(llama_data, true, new_len) < 0) {
|
||||||
return 1;
|
return 1;
|
||||||
@ -854,7 +889,7 @@ static int chat_loop(LlamaData & llama_data, const std::string & user_) {
|
|||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (!user_.empty()) {
|
if (!user.empty()) {
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -869,7 +904,7 @@ static int chat_loop(LlamaData & llama_data, const std::string & user_) {
|
|||||||
|
|
||||||
static void log_callback(const enum ggml_log_level level, const char * text, void * p) {
|
static void log_callback(const enum ggml_log_level level, const char * text, void * p) {
|
||||||
const Opt * opt = static_cast<Opt *>(p);
|
const Opt * opt = static_cast<Opt *>(p);
|
||||||
if (opt->verbose_ || level == GGML_LOG_LEVEL_ERROR) {
|
if (opt->verbose || level == GGML_LOG_LEVEL_ERROR) {
|
||||||
printe("%s", text);
|
printe("%s", text);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -890,11 +925,11 @@ int main(int argc, const char ** argv) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
if (!is_stdin_a_terminal()) {
|
if (!is_stdin_a_terminal()) {
|
||||||
if (!opt.user_.empty()) {
|
if (!opt.user.empty()) {
|
||||||
opt.user_ += "\n\n";
|
opt.user += "\n\n";
|
||||||
}
|
}
|
||||||
|
|
||||||
opt.user_ += read_pipe_data();
|
opt.user += read_pipe_data();
|
||||||
}
|
}
|
||||||
|
|
||||||
llama_log_set(log_callback, &opt);
|
llama_log_set(log_callback, &opt);
|
||||||
@ -903,7 +938,7 @@ int main(int argc, const char ** argv) {
|
|||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (chat_loop(llama_data, opt.user_)) {
|
if (chat_loop(llama_data, opt.user)) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -724,7 +724,8 @@ This endpoint is public (no API key check). By default, it is read-only. To make
|
|||||||
},
|
},
|
||||||
"total_slots": 1,
|
"total_slots": 1,
|
||||||
"model_path": "../models/Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf",
|
"model_path": "../models/Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf",
|
||||||
"chat_template": "..."
|
"chat_template": "...",
|
||||||
|
"build_info": "b(build number)-(build commit hash)"
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
|
@ -595,10 +595,11 @@ struct server_task_result_cmpl_final : server_task_result {
|
|||||||
std::time_t t = std::time(0);
|
std::time_t t = std::time(0);
|
||||||
|
|
||||||
json res = json {
|
json res = json {
|
||||||
{"choices", json::array({choice})},
|
{"choices", json::array({choice})},
|
||||||
{"created", t},
|
{"created", t},
|
||||||
{"model", oaicompat_model},
|
{"model", oaicompat_model},
|
||||||
{"object", "chat.completion"},
|
{"system_fingerprint", build_info},
|
||||||
|
{"object", "chat.completion"},
|
||||||
{"usage", json {
|
{"usage", json {
|
||||||
{"completion_tokens", n_decoded},
|
{"completion_tokens", n_decoded},
|
||||||
{"prompt_tokens", n_prompt_tokens},
|
{"prompt_tokens", n_prompt_tokens},
|
||||||
@ -632,11 +633,12 @@ struct server_task_result_cmpl_final : server_task_result {
|
|||||||
};
|
};
|
||||||
|
|
||||||
json ret = json {
|
json ret = json {
|
||||||
{"choices", json::array({choice})},
|
{"choices", json::array({choice})},
|
||||||
{"created", t},
|
{"created", t},
|
||||||
{"id", oaicompat_cmpl_id},
|
{"id", oaicompat_cmpl_id},
|
||||||
{"model", oaicompat_model},
|
{"model", oaicompat_model},
|
||||||
{"object", "chat.completion.chunk"},
|
{"system_fingerprint", build_info},
|
||||||
|
{"object", "chat.completion.chunk"},
|
||||||
{"usage", json {
|
{"usage", json {
|
||||||
{"completion_tokens", n_decoded},
|
{"completion_tokens", n_decoded},
|
||||||
{"prompt_tokens", n_prompt_tokens},
|
{"prompt_tokens", n_prompt_tokens},
|
||||||
@ -761,11 +763,12 @@ struct server_task_result_cmpl_partial : server_task_result {
|
|||||||
}
|
}
|
||||||
|
|
||||||
json ret = json {
|
json ret = json {
|
||||||
{"choices", choices},
|
{"choices", choices},
|
||||||
{"created", t},
|
{"created", t},
|
||||||
{"id", oaicompat_cmpl_id},
|
{"id", oaicompat_cmpl_id},
|
||||||
{"model", oaicompat_model},
|
{"model", oaicompat_model},
|
||||||
{"object", "chat.completion.chunk"}
|
{"system_fingerprint", build_info},
|
||||||
|
{"object", "chat.completion.chunk"}
|
||||||
};
|
};
|
||||||
|
|
||||||
if (timings.prompt_n >= 0) {
|
if (timings.prompt_n >= 0) {
|
||||||
@ -3477,6 +3480,7 @@ int main(int argc, char ** argv) {
|
|||||||
{ "total_slots", ctx_server.params_base.n_parallel },
|
{ "total_slots", ctx_server.params_base.n_parallel },
|
||||||
{ "model_path", ctx_server.params_base.model },
|
{ "model_path", ctx_server.params_base.model },
|
||||||
{ "chat_template", llama_get_chat_template(ctx_server.model) },
|
{ "chat_template", llama_get_chat_template(ctx_server.model) },
|
||||||
|
{ "build_info", build_info },
|
||||||
};
|
};
|
||||||
|
|
||||||
res_ok(res, data);
|
res_ok(res, data);
|
||||||
@ -3698,7 +3702,7 @@ int main(int argc, char ** argv) {
|
|||||||
{"object", "list"},
|
{"object", "list"},
|
||||||
{"data", {
|
{"data", {
|
||||||
{
|
{
|
||||||
{"id", params.model_alias},
|
{"id", params.model_alias.empty() ? params.model : params.model_alias},
|
||||||
{"object", "model"},
|
{"object", "model"},
|
||||||
{"created", std::time(0)},
|
{"created", std::time(0)},
|
||||||
{"owned_by", "llamacpp"},
|
{"owned_by", "llamacpp"},
|
||||||
|
@ -31,6 +31,7 @@ def test_chat_completion(model, system_prompt, user_prompt, max_tokens, re_conte
|
|||||||
})
|
})
|
||||||
assert res.status_code == 200
|
assert res.status_code == 200
|
||||||
assert "cmpl" in res.body["id"] # make sure the completion id has the expected format
|
assert "cmpl" in res.body["id"] # make sure the completion id has the expected format
|
||||||
|
assert res.body["system_fingerprint"].startswith("b")
|
||||||
assert res.body["model"] == model if model is not None else server.model_alias
|
assert res.body["model"] == model if model is not None else server.model_alias
|
||||||
assert res.body["usage"]["prompt_tokens"] == n_prompt
|
assert res.body["usage"]["prompt_tokens"] == n_prompt
|
||||||
assert res.body["usage"]["completion_tokens"] == n_predicted
|
assert res.body["usage"]["completion_tokens"] == n_predicted
|
||||||
@ -63,6 +64,7 @@ def test_chat_completion_stream(system_prompt, user_prompt, max_tokens, re_conte
|
|||||||
last_cmpl_id = None
|
last_cmpl_id = None
|
||||||
for data in res:
|
for data in res:
|
||||||
choice = data["choices"][0]
|
choice = data["choices"][0]
|
||||||
|
assert data["system_fingerprint"].startswith("b")
|
||||||
assert "gpt-3.5" in data["model"] # DEFAULT_OAICOMPAT_MODEL, maybe changed in the future
|
assert "gpt-3.5" in data["model"] # DEFAULT_OAICOMPAT_MODEL, maybe changed in the future
|
||||||
if last_cmpl_id is None:
|
if last_cmpl_id is None:
|
||||||
last_cmpl_id = data["id"]
|
last_cmpl_id = data["id"]
|
||||||
@ -92,6 +94,7 @@ def test_chat_completion_with_openai_library():
|
|||||||
seed=42,
|
seed=42,
|
||||||
temperature=0.8,
|
temperature=0.8,
|
||||||
)
|
)
|
||||||
|
assert res.system_fingerprint is not None and res.system_fingerprint.startswith("b")
|
||||||
assert res.choices[0].finish_reason == "length"
|
assert res.choices[0].finish_reason == "length"
|
||||||
assert res.choices[0].message.content is not None
|
assert res.choices[0].message.content is not None
|
||||||
assert match_regex("(Suddenly)+", res.choices[0].message.content)
|
assert match_regex("(Suddenly)+", res.choices[0].message.content)
|
||||||
|
@ -56,6 +56,8 @@ static T json_value(const json & body, const std::string & key, const T & defaul
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
const static std::string build_info("b" + std::to_string(LLAMA_BUILD_NUMBER) + "-" + LLAMA_COMMIT);
|
||||||
|
|
||||||
//
|
//
|
||||||
// tokenizer and input processing utils
|
// tokenizer and input processing utils
|
||||||
//
|
//
|
||||||
|
@ -234,6 +234,7 @@ function(ggml_add_backend_library backend)
|
|||||||
# write the shared library to the output directory
|
# write the shared library to the output directory
|
||||||
set_target_properties(${backend} PROPERTIES LIBRARY_OUTPUT_DIRECTORY ${CMAKE_RUNTIME_OUTPUT_DIRECTORY})
|
set_target_properties(${backend} PROPERTIES LIBRARY_OUTPUT_DIRECTORY ${CMAKE_RUNTIME_OUTPUT_DIRECTORY})
|
||||||
target_compile_definitions(${backend} PRIVATE GGML_BACKEND_DL)
|
target_compile_definitions(${backend} PRIVATE GGML_BACKEND_DL)
|
||||||
|
add_dependencies(ggml ${backend})
|
||||||
else()
|
else()
|
||||||
add_library(${backend} ${ARGN})
|
add_library(${backend} ${ARGN})
|
||||||
target_link_libraries(ggml PUBLIC ${backend})
|
target_link_libraries(ggml PUBLIC ${backend})
|
||||||
|
@ -66,6 +66,26 @@
|
|||||||
#include "ggml-kompute.h"
|
#include "ggml-kompute.h"
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
// disable C++17 deprecation warning for std::codecvt_utf8
|
||||||
|
#if defined(__clang__)
|
||||||
|
# pragma clang diagnostic push
|
||||||
|
# pragma clang diagnostic ignored "-Wdeprecated-declarations"
|
||||||
|
#endif
|
||||||
|
|
||||||
|
static std::wstring utf8_to_utf16(const std::string & str) {
|
||||||
|
std::wstring_convert<std::codecvt_utf8_utf16<wchar_t>> converter;
|
||||||
|
return converter.from_bytes(str);
|
||||||
|
}
|
||||||
|
|
||||||
|
static std::string utf16_to_utf8(const std::wstring & str) {
|
||||||
|
std::wstring_convert<std::codecvt_utf8_utf16<wchar_t>> converter;
|
||||||
|
return converter.to_bytes(str);
|
||||||
|
}
|
||||||
|
|
||||||
|
#if defined(__clang__)
|
||||||
|
# pragma clang diagnostic pop
|
||||||
|
#endif
|
||||||
|
|
||||||
#ifdef _WIN32
|
#ifdef _WIN32
|
||||||
|
|
||||||
using dl_handle = std::remove_pointer_t<HMODULE>;
|
using dl_handle = std::remove_pointer_t<HMODULE>;
|
||||||
@ -88,11 +108,6 @@ static dl_handle * dl_load_library(const std::wstring & path) {
|
|||||||
return handle;
|
return handle;
|
||||||
}
|
}
|
||||||
|
|
||||||
static dl_handle * dl_load_library(const std::string & path) {
|
|
||||||
std::wstring_convert<std::codecvt_utf8_utf16<wchar_t>> converter;
|
|
||||||
return dl_load_library(converter.from_bytes(path));
|
|
||||||
}
|
|
||||||
|
|
||||||
static void * dl_get_sym(dl_handle * handle, const char * name) {
|
static void * dl_get_sym(dl_handle * handle, const char * name) {
|
||||||
DWORD old_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
|
DWORD old_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
|
||||||
SetErrorMode(old_mode | SEM_FAILCRITICALERRORS);
|
SetErrorMode(old_mode | SEM_FAILCRITICALERRORS);
|
||||||
@ -114,8 +129,8 @@ struct dl_handle_deleter {
|
|||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
static void * dl_load_library(const std::string & path) {
|
static void * dl_load_library(const std::wstring & path) {
|
||||||
dl_handle * handle = dlopen(path.c_str(), RTLD_NOW | RTLD_LOCAL);
|
dl_handle * handle = dlopen(utf16_to_utf8(path).c_str(), RTLD_NOW | RTLD_LOCAL);
|
||||||
|
|
||||||
return handle;
|
return handle;
|
||||||
}
|
}
|
||||||
@ -202,11 +217,11 @@ struct ggml_backend_registry {
|
|||||||
devices.push_back(device);
|
devices.push_back(device);
|
||||||
}
|
}
|
||||||
|
|
||||||
ggml_backend_reg_t load_backend(const char * path, bool silent) {
|
ggml_backend_reg_t load_backend(const std::wstring & path, bool silent) {
|
||||||
dl_handle_ptr handle { dl_load_library(path) };
|
dl_handle_ptr handle { dl_load_library(path) };
|
||||||
if (!handle) {
|
if (!handle) {
|
||||||
if (!silent) {
|
if (!silent) {
|
||||||
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, path);
|
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(path).c_str());
|
||||||
}
|
}
|
||||||
return nullptr;
|
return nullptr;
|
||||||
}
|
}
|
||||||
@ -214,7 +229,7 @@ struct ggml_backend_registry {
|
|||||||
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
|
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
|
||||||
if (score_fn && score_fn() == 0) {
|
if (score_fn && score_fn() == 0) {
|
||||||
if (!silent) {
|
if (!silent) {
|
||||||
GGML_LOG_INFO("%s: backend %s is not supported on this system\n", __func__, path);
|
GGML_LOG_INFO("%s: backend %s is not supported on this system\n", __func__, utf16_to_utf8(path).c_str());
|
||||||
}
|
}
|
||||||
return nullptr;
|
return nullptr;
|
||||||
}
|
}
|
||||||
@ -222,7 +237,7 @@ struct ggml_backend_registry {
|
|||||||
auto backend_init_fn = (ggml_backend_init_t) dl_get_sym(handle.get(), "ggml_backend_init");
|
auto backend_init_fn = (ggml_backend_init_t) dl_get_sym(handle.get(), "ggml_backend_init");
|
||||||
if (!backend_init_fn) {
|
if (!backend_init_fn) {
|
||||||
if (!silent) {
|
if (!silent) {
|
||||||
GGML_LOG_ERROR("%s: failed to find ggml_backend_init in %s\n", __func__, path);
|
GGML_LOG_ERROR("%s: failed to find ggml_backend_init in %s\n", __func__, utf16_to_utf8(path).c_str());
|
||||||
}
|
}
|
||||||
return nullptr;
|
return nullptr;
|
||||||
}
|
}
|
||||||
@ -231,16 +246,16 @@ struct ggml_backend_registry {
|
|||||||
if (!reg || reg->api_version != GGML_BACKEND_API_VERSION) {
|
if (!reg || reg->api_version != GGML_BACKEND_API_VERSION) {
|
||||||
if (!silent) {
|
if (!silent) {
|
||||||
if (!reg) {
|
if (!reg) {
|
||||||
GGML_LOG_ERROR("%s: failed to initialize backend from %s: ggml_backend_init returned NULL\n", __func__, path);
|
GGML_LOG_ERROR("%s: failed to initialize backend from %s: ggml_backend_init returned NULL\n", __func__, utf16_to_utf8(path).c_str());
|
||||||
} else {
|
} else {
|
||||||
GGML_LOG_ERROR("%s: failed to initialize backend from %s: incompatible API version (backend: %d, current: %d)\n",
|
GGML_LOG_ERROR("%s: failed to initialize backend from %s: incompatible API version (backend: %d, current: %d)\n",
|
||||||
__func__, path, reg->api_version, GGML_BACKEND_API_VERSION);
|
__func__, utf16_to_utf8(path).c_str(), reg->api_version, GGML_BACKEND_API_VERSION);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
return nullptr;
|
return nullptr;
|
||||||
}
|
}
|
||||||
|
|
||||||
GGML_LOG_INFO("%s: loaded %s backend from %s\n", __func__, ggml_backend_reg_name(reg), path);
|
GGML_LOG_INFO("%s: loaded %s backend from %s\n", __func__, ggml_backend_reg_name(reg), utf16_to_utf8(path).c_str());
|
||||||
|
|
||||||
register_backend(reg, std::move(handle));
|
register_backend(reg, std::move(handle));
|
||||||
|
|
||||||
@ -376,14 +391,14 @@ ggml_backend_t ggml_backend_init_best(void) {
|
|||||||
|
|
||||||
// Dynamic loading
|
// Dynamic loading
|
||||||
ggml_backend_reg_t ggml_backend_load(const char * path) {
|
ggml_backend_reg_t ggml_backend_load(const char * path) {
|
||||||
return get_reg().load_backend(path, false);
|
return get_reg().load_backend(utf8_to_utf16(path), false);
|
||||||
}
|
}
|
||||||
|
|
||||||
void ggml_backend_unload(ggml_backend_reg_t reg) {
|
void ggml_backend_unload(ggml_backend_reg_t reg) {
|
||||||
get_reg().unload_backend(reg, true);
|
get_reg().unload_backend(reg, true);
|
||||||
}
|
}
|
||||||
|
|
||||||
static std::string get_executable_path() {
|
static std::wstring get_executable_path() {
|
||||||
#if defined(__APPLE__)
|
#if defined(__APPLE__)
|
||||||
// get executable path
|
// get executable path
|
||||||
std::vector<char> path;
|
std::vector<char> path;
|
||||||
@ -401,13 +416,17 @@ static std::string get_executable_path() {
|
|||||||
if (last_slash != std::string::npos) {
|
if (last_slash != std::string::npos) {
|
||||||
base_path = base_path.substr(0, last_slash);
|
base_path = base_path.substr(0, last_slash);
|
||||||
}
|
}
|
||||||
return base_path + "/";
|
return utf8_to_utf16(base_path + "/");
|
||||||
#elif defined(__linux__)
|
#elif defined(__linux__) || defined(__FreeBSD__)
|
||||||
std::string base_path = ".";
|
std::string base_path = ".";
|
||||||
std::vector<char> path(1024);
|
std::vector<char> path(1024);
|
||||||
while (true) {
|
while (true) {
|
||||||
// get executable path
|
// get executable path
|
||||||
|
# if defined(__linux__)
|
||||||
ssize_t len = readlink("/proc/self/exe", path.data(), path.size());
|
ssize_t len = readlink("/proc/self/exe", path.data(), path.size());
|
||||||
|
# elif defined(__FreeBSD__)
|
||||||
|
ssize_t len = readlink("/proc/curproc/file", path.data(), path.size());
|
||||||
|
# endif
|
||||||
if (len == -1) {
|
if (len == -1) {
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
@ -423,57 +442,63 @@ static std::string get_executable_path() {
|
|||||||
path.resize(path.size() * 2);
|
path.resize(path.size() * 2);
|
||||||
}
|
}
|
||||||
|
|
||||||
return base_path + "/";
|
return utf8_to_utf16(base_path + "/");
|
||||||
#elif defined(_WIN32)
|
#elif defined(_WIN32)
|
||||||
std::vector<char> path(MAX_PATH);
|
std::vector<wchar_t> path(MAX_PATH);
|
||||||
DWORD len = GetModuleFileNameA(NULL, path.data(), path.size());
|
DWORD len = GetModuleFileNameW(NULL, path.data(), path.size());
|
||||||
if (len == 0) {
|
if (len == 0) {
|
||||||
return "";
|
return {};
|
||||||
}
|
}
|
||||||
std::string base_path(path.data(), len);
|
std::wstring base_path(path.data(), len);
|
||||||
// remove executable name
|
// remove executable name
|
||||||
auto last_slash = base_path.find_last_of('\\');
|
auto last_slash = base_path.find_last_of('\\');
|
||||||
if (last_slash != std::string::npos) {
|
if (last_slash != std::string::npos) {
|
||||||
base_path = base_path.substr(0, last_slash);
|
base_path = base_path.substr(0, last_slash);
|
||||||
}
|
}
|
||||||
return base_path + "\\";
|
return base_path + L"\\";
|
||||||
|
#else
|
||||||
|
return {};
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
static std::string backend_filename_prefix() {
|
static std::wstring backend_filename_prefix() {
|
||||||
#ifdef _WIN32
|
#ifdef _WIN32
|
||||||
return "ggml-";
|
return L"ggml-";
|
||||||
#else
|
#else
|
||||||
return "libggml-";
|
return L"libggml-";
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
static std::string backend_filename_suffix() {
|
static std::wstring backend_filename_suffix() {
|
||||||
#ifdef _WIN32
|
#ifdef _WIN32
|
||||||
return ".dll";
|
return L".dll";
|
||||||
#else
|
#else
|
||||||
return ".so";
|
return L".so";
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
static std::wstring path_separator() {
|
||||||
|
#ifdef _WIN32
|
||||||
|
return L"\\";
|
||||||
|
#else
|
||||||
|
return L"/";
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent, const char * user_search_path) {
|
static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent, const char * user_search_path) {
|
||||||
// enumerate all the files that match [lib]ggml-name-*.[so|dll] in the search paths
|
// enumerate all the files that match [lib]ggml-name-*.[so|dll] in the search paths
|
||||||
// TODO: search system paths
|
// TODO: search system paths
|
||||||
std::string file_prefix = backend_filename_prefix() + name + "-";
|
std::wstring file_prefix = backend_filename_prefix() + utf8_to_utf16(name) + L"-";
|
||||||
std::vector<std::string> search_paths;
|
std::vector<std::wstring> search_paths;
|
||||||
if (user_search_path == nullptr) {
|
if (user_search_path == nullptr) {
|
||||||
search_paths.push_back("./");
|
search_paths.push_back(L"." + path_separator());
|
||||||
search_paths.push_back(get_executable_path());
|
search_paths.push_back(get_executable_path());
|
||||||
} else {
|
} else {
|
||||||
#if defined(_WIN32)
|
search_paths.push_back(utf8_to_utf16(user_search_path) + path_separator());
|
||||||
search_paths.push_back(std::string(user_search_path) + "\\");
|
|
||||||
#else
|
|
||||||
search_paths.push_back(std::string(user_search_path) + "/");
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
int best_score = 0;
|
int best_score = 0;
|
||||||
std::string best_path;
|
std::wstring best_path;
|
||||||
|
|
||||||
namespace fs = std::filesystem;
|
namespace fs = std::filesystem;
|
||||||
for (const auto & search_path : search_paths) {
|
for (const auto & search_path : search_paths) {
|
||||||
@ -483,27 +508,27 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
|
|||||||
fs::directory_iterator dir_it(search_path, fs::directory_options::skip_permission_denied);
|
fs::directory_iterator dir_it(search_path, fs::directory_options::skip_permission_denied);
|
||||||
for (const auto & entry : dir_it) {
|
for (const auto & entry : dir_it) {
|
||||||
if (entry.is_regular_file()) {
|
if (entry.is_regular_file()) {
|
||||||
std::string filename = entry.path().filename().string();
|
std::wstring filename = entry.path().filename().wstring();
|
||||||
std::string ext = entry.path().extension().string();
|
std::wstring ext = entry.path().extension().wstring();
|
||||||
if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
|
if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
|
||||||
dl_handle_ptr handle { dl_load_library(entry.path().c_str()) };
|
dl_handle_ptr handle { dl_load_library(entry.path().wstring()) };
|
||||||
if (!handle && !silent) {
|
if (!handle && !silent) {
|
||||||
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, entry.path().string().c_str());
|
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
|
||||||
}
|
}
|
||||||
if (handle) {
|
if (handle) {
|
||||||
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
|
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
|
||||||
if (score_fn) {
|
if (score_fn) {
|
||||||
int s = score_fn();
|
int s = score_fn();
|
||||||
#ifndef NDEBUG
|
#ifndef NDEBUG
|
||||||
GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, entry.path().string().c_str(), s);
|
GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), s);
|
||||||
#endif
|
#endif
|
||||||
if (s > best_score) {
|
if (s > best_score) {
|
||||||
best_score = s;
|
best_score = s;
|
||||||
best_path = entry.path().string();
|
best_path = entry.path().wstring();
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
if (!silent) {
|
if (!silent) {
|
||||||
GGML_LOG_INFO("%s: failed to find ggml_backend_score in %s\n", __func__, entry.path().string().c_str());
|
GGML_LOG_INFO("%s: failed to find ggml_backend_score in %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -515,15 +540,15 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
|
|||||||
if (best_score == 0) {
|
if (best_score == 0) {
|
||||||
// try to load the base backend
|
// try to load the base backend
|
||||||
for (const auto & search_path : search_paths) {
|
for (const auto & search_path : search_paths) {
|
||||||
std::string path = search_path + backend_filename_prefix() + name + backend_filename_suffix();
|
std::wstring path = search_path + backend_filename_prefix() + utf8_to_utf16(name) + backend_filename_suffix();
|
||||||
if (fs::exists(path)) {
|
if (fs::exists(path)) {
|
||||||
return get_reg().load_backend(path.c_str(), silent);
|
return get_reg().load_backend(path, silent);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
return nullptr;
|
return nullptr;
|
||||||
}
|
}
|
||||||
|
|
||||||
return get_reg().load_backend(best_path.c_str(), silent);
|
return get_reg().load_backend(best_path, silent);
|
||||||
}
|
}
|
||||||
|
|
||||||
void ggml_backend_load_all() {
|
void ggml_backend_load_all() {
|
||||||
|
@ -135,14 +135,20 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
|||||||
endif()
|
endif()
|
||||||
|
|
||||||
# show enabled features
|
# show enabled features
|
||||||
|
if (CMAKE_HOST_SYSTEM_NAME STREQUAL "Windows")
|
||||||
|
set(FEAT_INPUT_FILE "NUL")
|
||||||
|
else()
|
||||||
|
set(FEAT_INPUT_FILE "/dev/null")
|
||||||
|
endif()
|
||||||
|
|
||||||
execute_process(
|
execute_process(
|
||||||
COMMAND ${CMAKE_C_COMPILER} ${ARCH_FLAGS} -dM -E -
|
COMMAND ${CMAKE_C_COMPILER} ${ARCH_FLAGS} -dM -E -
|
||||||
INPUT_FILE "/dev/null"
|
INPUT_FILE ${FEAT_INPUT_FILE}
|
||||||
OUTPUT_VARIABLE ARM_FEATURE
|
OUTPUT_VARIABLE ARM_FEATURE
|
||||||
RESULT_VARIABLE ARM_FEATURE_RESULT
|
RESULT_VARIABLE ARM_FEATURE_RESULT
|
||||||
)
|
)
|
||||||
if (ARM_FEATURE_RESULT)
|
if (ARM_FEATURE_RESULT)
|
||||||
message(FATAL_ERROR "Failed to get ARM features")
|
message(WARNING "Failed to get ARM features")
|
||||||
else()
|
else()
|
||||||
foreach(feature DOTPROD SVE MATMUL_INT8 FMA FP16_VECTOR_ARITHMETIC)
|
foreach(feature DOTPROD SVE MATMUL_INT8 FMA FP16_VECTOR_ARITHMETIC)
|
||||||
string(FIND "${ARM_FEATURE}" "__ARM_FEATURE_${feature} 1" feature_pos)
|
string(FIND "${ARM_FEATURE}" "__ARM_FEATURE_${feature} 1" feature_pos)
|
||||||
@ -317,6 +323,11 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
|||||||
target_compile_definitions(${GGML_CPU_NAME} PRIVATE ${ARCH_DEFINITIONS})
|
target_compile_definitions(${GGML_CPU_NAME} PRIVATE ${ARCH_DEFINITIONS})
|
||||||
|
|
||||||
if (GGML_BACKEND_DL)
|
if (GGML_BACKEND_DL)
|
||||||
|
if (GGML_NATIVE)
|
||||||
|
# the feature check relies on ARCH_DEFINITIONS, but it is not set with GGML_NATIVE
|
||||||
|
message(FATAL_ERROR "GGML_NATIVE is not compatible with GGML_BACKEND_DL, consider using GGML_CPU_ALL_VARIANTS")
|
||||||
|
endif()
|
||||||
|
|
||||||
# The feature detection code is compiled as a separate target so that
|
# The feature detection code is compiled as a separate target so that
|
||||||
# it can be built without the architecture flags
|
# it can be built without the architecture flags
|
||||||
# Since multiple variants of the CPU backend may be included in the same
|
# Since multiple variants of the CPU backend may be included in the same
|
||||||
|
@ -986,7 +986,7 @@ inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
|
|||||||
#define GGML_F16_STEP 32
|
#define GGML_F16_STEP 32
|
||||||
#define GGML_F16_EPR 4
|
#define GGML_F16_EPR 4
|
||||||
|
|
||||||
static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
|
static inline __m128 __sse_f16x4_load(const ggml_fp16_t * x) {
|
||||||
float tmp[4];
|
float tmp[4];
|
||||||
|
|
||||||
tmp[0] = GGML_FP16_TO_FP32(x[0]);
|
tmp[0] = GGML_FP16_TO_FP32(x[0]);
|
||||||
@ -997,7 +997,7 @@ static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
|
|||||||
return _mm_loadu_ps(tmp);
|
return _mm_loadu_ps(tmp);
|
||||||
}
|
}
|
||||||
|
|
||||||
static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
|
static inline void __sse_f16x4_store(ggml_fp16_t * x, __m128 y) {
|
||||||
float arr[4];
|
float arr[4];
|
||||||
|
|
||||||
_mm_storeu_ps(arr, y);
|
_mm_storeu_ps(arr, y);
|
||||||
|
@ -221,6 +221,7 @@ class GGUFType:
|
|||||||
|
|
||||||
class MODEL_ARCH(IntEnum):
|
class MODEL_ARCH(IntEnum):
|
||||||
LLAMA = auto()
|
LLAMA = auto()
|
||||||
|
DECI = auto()
|
||||||
FALCON = auto()
|
FALCON = auto()
|
||||||
BAICHUAN = auto()
|
BAICHUAN = auto()
|
||||||
GROK = auto()
|
GROK = auto()
|
||||||
@ -402,6 +403,7 @@ class MODEL_TENSOR(IntEnum):
|
|||||||
|
|
||||||
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||||
MODEL_ARCH.LLAMA: "llama",
|
MODEL_ARCH.LLAMA: "llama",
|
||||||
|
MODEL_ARCH.DECI: "deci",
|
||||||
MODEL_ARCH.FALCON: "falcon",
|
MODEL_ARCH.FALCON: "falcon",
|
||||||
MODEL_ARCH.BAICHUAN: "baichuan",
|
MODEL_ARCH.BAICHUAN: "baichuan",
|
||||||
MODEL_ARCH.GROK: "grok",
|
MODEL_ARCH.GROK: "grok",
|
||||||
@ -602,6 +604,26 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||||||
MODEL_TENSOR.FFN_DOWN_EXP,
|
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||||
MODEL_TENSOR.FFN_UP_EXP,
|
MODEL_TENSOR.FFN_UP_EXP,
|
||||||
],
|
],
|
||||||
|
MODEL_ARCH.DECI: [
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
MODEL_TENSOR.OUTPUT,
|
||||||
|
MODEL_TENSOR.ROPE_FREQS,
|
||||||
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_Q,
|
||||||
|
MODEL_TENSOR.ATTN_K,
|
||||||
|
MODEL_TENSOR.ATTN_V,
|
||||||
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||||
|
MODEL_TENSOR.FFN_GATE_INP,
|
||||||
|
MODEL_TENSOR.FFN_NORM,
|
||||||
|
MODEL_TENSOR.FFN_GATE,
|
||||||
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
|
MODEL_TENSOR.FFN_UP,
|
||||||
|
MODEL_TENSOR.FFN_GATE_EXP,
|
||||||
|
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||||
|
MODEL_TENSOR.FFN_UP_EXP,
|
||||||
|
],
|
||||||
MODEL_ARCH.GROK: [
|
MODEL_ARCH.GROK: [
|
||||||
MODEL_TENSOR.TOKEN_EMBD,
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
MODEL_TENSOR.OUTPUT_NORM,
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
@ -1448,6 +1470,10 @@ MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||||||
MODEL_TENSOR.ROPE_FREQS,
|
MODEL_TENSOR.ROPE_FREQS,
|
||||||
MODEL_TENSOR.ATTN_ROT_EMBD,
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||||
],
|
],
|
||||||
|
MODEL_ARCH.DECI: [
|
||||||
|
MODEL_TENSOR.ROPE_FREQS,
|
||||||
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||||
|
],
|
||||||
MODEL_ARCH.BAICHUAN: [
|
MODEL_ARCH.BAICHUAN: [
|
||||||
MODEL_TENSOR.ROPE_FREQS,
|
MODEL_TENSOR.ROPE_FREQS,
|
||||||
MODEL_TENSOR.ATTN_ROT_EMBD,
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||||
|
@ -198,6 +198,7 @@ class TensorNameMap:
|
|||||||
"transformer.h.{bid}.self_attention.dense", # falcon
|
"transformer.h.{bid}.self_attention.dense", # falcon
|
||||||
"h.{bid}.self_attention.dense", # bloom
|
"h.{bid}.self_attention.dense", # bloom
|
||||||
"model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2
|
"model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2
|
||||||
|
"model.layers.{bid}.self_attn.linear_attn", # deci
|
||||||
"layers.{bid}.attention.wo", # llama-pth
|
"layers.{bid}.attention.wo", # llama-pth
|
||||||
"encoder.layer.{bid}.attention.output.dense", # bert
|
"encoder.layer.{bid}.attention.output.dense", # bert
|
||||||
"transformer.h.{bid}.attn.out_proj", # gpt-j
|
"transformer.h.{bid}.attn.out_proj", # gpt-j
|
||||||
|
300
src/llama.cpp
300
src/llama.cpp
@ -146,6 +146,7 @@ static std::string format(const char * fmt, ...) {
|
|||||||
|
|
||||||
enum llm_arch {
|
enum llm_arch {
|
||||||
LLM_ARCH_LLAMA,
|
LLM_ARCH_LLAMA,
|
||||||
|
LLM_ARCH_DECI,
|
||||||
LLM_ARCH_FALCON,
|
LLM_ARCH_FALCON,
|
||||||
LLM_ARCH_BAICHUAN,
|
LLM_ARCH_BAICHUAN,
|
||||||
LLM_ARCH_GROK,
|
LLM_ARCH_GROK,
|
||||||
@ -203,6 +204,7 @@ enum llm_arch {
|
|||||||
|
|
||||||
static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||||
{ LLM_ARCH_LLAMA, "llama" },
|
{ LLM_ARCH_LLAMA, "llama" },
|
||||||
|
{ LLM_ARCH_DECI, "deci" },
|
||||||
{ LLM_ARCH_FALCON, "falcon" },
|
{ LLM_ARCH_FALCON, "falcon" },
|
||||||
{ LLM_ARCH_GROK, "grok" },
|
{ LLM_ARCH_GROK, "grok" },
|
||||||
{ LLM_ARCH_GPT2, "gpt2" },
|
{ LLM_ARCH_GPT2, "gpt2" },
|
||||||
@ -674,6 +676,32 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
|||||||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
LLM_ARCH_DECI,
|
||||||
|
{
|
||||||
|
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||||
|
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||||
|
{ LLM_TENSOR_OUTPUT, "output" },
|
||||||
|
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
|
||||||
|
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||||
|
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||||
|
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||||
|
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||||
|
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||||
|
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
|
||||||
|
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||||||
|
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||||
|
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||||
|
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||||
|
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||||
|
{ LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
|
||||||
|
{ LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
|
||||||
|
{ LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
|
||||||
|
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
||||||
|
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||||||
|
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||||
|
},
|
||||||
|
},
|
||||||
{
|
{
|
||||||
LLM_ARCH_BAICHUAN,
|
LLM_ARCH_BAICHUAN,
|
||||||
{
|
{
|
||||||
@ -1673,6 +1701,7 @@ enum llm_chat_template {
|
|||||||
LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN,
|
LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN,
|
||||||
LLM_CHAT_TEMPLATE_MISTRAL_V7,
|
LLM_CHAT_TEMPLATE_MISTRAL_V7,
|
||||||
LLM_CHAT_TEMPLATE_PHI_3,
|
LLM_CHAT_TEMPLATE_PHI_3,
|
||||||
|
LLM_CHAT_TEMPLATE_FALCON_3,
|
||||||
LLM_CHAT_TEMPLATE_ZEPHYR,
|
LLM_CHAT_TEMPLATE_ZEPHYR,
|
||||||
LLM_CHAT_TEMPLATE_MONARCH,
|
LLM_CHAT_TEMPLATE_MONARCH,
|
||||||
LLM_CHAT_TEMPLATE_GEMMA,
|
LLM_CHAT_TEMPLATE_GEMMA,
|
||||||
@ -1691,6 +1720,7 @@ enum llm_chat_template {
|
|||||||
LLM_CHAT_TEMPLATE_RWKV_WORLD,
|
LLM_CHAT_TEMPLATE_RWKV_WORLD,
|
||||||
LLM_CHAT_TEMPLATE_GRANITE,
|
LLM_CHAT_TEMPLATE_GRANITE,
|
||||||
LLM_CHAT_TEMPLATE_GIGACHAT,
|
LLM_CHAT_TEMPLATE_GIGACHAT,
|
||||||
|
LLM_CHAT_TEMPLATE_MEGREZ,
|
||||||
LLM_CHAT_TEMPLATE_UNKNOWN,
|
LLM_CHAT_TEMPLATE_UNKNOWN,
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -1705,6 +1735,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
|
|||||||
{ "mistral-v3-tekken", LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN },
|
{ "mistral-v3-tekken", LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN },
|
||||||
{ "mistral-v7", LLM_CHAT_TEMPLATE_MISTRAL_V7 },
|
{ "mistral-v7", LLM_CHAT_TEMPLATE_MISTRAL_V7 },
|
||||||
{ "phi3", LLM_CHAT_TEMPLATE_PHI_3 },
|
{ "phi3", LLM_CHAT_TEMPLATE_PHI_3 },
|
||||||
|
{ "falcon3", LLM_CHAT_TEMPLATE_FALCON_3 },
|
||||||
{ "zephyr", LLM_CHAT_TEMPLATE_ZEPHYR },
|
{ "zephyr", LLM_CHAT_TEMPLATE_ZEPHYR },
|
||||||
{ "monarch", LLM_CHAT_TEMPLATE_MONARCH },
|
{ "monarch", LLM_CHAT_TEMPLATE_MONARCH },
|
||||||
{ "gemma", LLM_CHAT_TEMPLATE_GEMMA },
|
{ "gemma", LLM_CHAT_TEMPLATE_GEMMA },
|
||||||
@ -1723,6 +1754,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
|
|||||||
{ "rwkv-world", LLM_CHAT_TEMPLATE_RWKV_WORLD },
|
{ "rwkv-world", LLM_CHAT_TEMPLATE_RWKV_WORLD },
|
||||||
{ "granite", LLM_CHAT_TEMPLATE_GRANITE },
|
{ "granite", LLM_CHAT_TEMPLATE_GRANITE },
|
||||||
{ "gigachat", LLM_CHAT_TEMPLATE_GIGACHAT },
|
{ "gigachat", LLM_CHAT_TEMPLATE_GIGACHAT },
|
||||||
|
{ "megrez", LLM_CHAT_TEMPLATE_MEGREZ },
|
||||||
};
|
};
|
||||||
|
|
||||||
static llm_arch llm_arch_from_string(const std::string & name) {
|
static llm_arch llm_arch_from_string(const std::string & name) {
|
||||||
@ -5692,7 +5724,7 @@ static void llm_load_hparams(
|
|||||||
|
|
||||||
ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
|
ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
|
||||||
|
|
||||||
if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
|
if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_DECI || model.arch == LLM_ARCH_FALCON) {
|
||||||
if (hparams.n_rot != hparams.n_embd_head_k) {
|
if (hparams.n_rot != hparams.n_embd_head_k) {
|
||||||
throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
|
throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
|
||||||
}
|
}
|
||||||
@ -5732,6 +5764,15 @@ static void llm_load_hparams(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
} break;
|
} break;
|
||||||
|
case LLM_ARCH_DECI:
|
||||||
|
{
|
||||||
|
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||||
|
switch (hparams.n_layer) {
|
||||||
|
case 32: model.type = e_model::MODEL_7B; break;
|
||||||
|
case 80: model.type = e_model::MODEL_70B; break;
|
||||||
|
default: model.type = e_model::MODEL_UNKNOWN;
|
||||||
|
}
|
||||||
|
} break;
|
||||||
case LLM_ARCH_MINICPM:
|
case LLM_ARCH_MINICPM:
|
||||||
{
|
{
|
||||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||||
@ -6562,7 +6603,8 @@ static void llm_load_vocab(
|
|||||||
} else if (
|
} else if (
|
||||||
tokenizer_pre == "llama3" ||
|
tokenizer_pre == "llama3" ||
|
||||||
tokenizer_pre == "llama-v3" ||
|
tokenizer_pre == "llama-v3" ||
|
||||||
tokenizer_pre == "llama-bpe") {
|
tokenizer_pre == "llama-bpe"||
|
||||||
|
tokenizer_pre == "falcon3") {
|
||||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
|
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
|
||||||
vocab.tokenizer_ignore_merges = true;
|
vocab.tokenizer_ignore_merges = true;
|
||||||
vocab.tokenizer_add_bos = true;
|
vocab.tokenizer_add_bos = true;
|
||||||
@ -6663,6 +6705,9 @@ static void llm_load_vocab(
|
|||||||
} else if (
|
} else if (
|
||||||
tokenizer_pre == "minerva-7b") {
|
tokenizer_pre == "minerva-7b") {
|
||||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_MINERVA;
|
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_MINERVA;
|
||||||
|
} else if (
|
||||||
|
tokenizer_pre == "megrez") {
|
||||||
|
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2;
|
||||||
} else {
|
} else {
|
||||||
throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
|
throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
|
||||||
}
|
}
|
||||||
@ -7936,6 +7981,68 @@ static bool llm_load_tensors(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
} break;
|
} break;
|
||||||
|
case LLM_ARCH_DECI:
|
||||||
|
{
|
||||||
|
model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||||
|
|
||||||
|
// output
|
||||||
|
model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
||||||
|
model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||||
|
|
||||||
|
// if output is NULL, init from the input tok embed
|
||||||
|
if (model.output == NULL) {
|
||||||
|
model.output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int i = 0; i < n_layer; ++i) {
|
||||||
|
auto & layer = model.layers[i];
|
||||||
|
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(i);
|
||||||
|
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(i);
|
||||||
|
const int64_t n_embd_gqa = hparams.n_embd_v_gqa(i);
|
||||||
|
const int64_t n_ff = hparams.n_ff(i);
|
||||||
|
const int64_t n_head = hparams.n_head(i);
|
||||||
|
const int64_t n_head_kv = hparams.n_head_kv(i);
|
||||||
|
|
||||||
|
if (n_head_kv == 0 && n_head > 0) {
|
||||||
|
// linear attention for DeciLMCausalModel
|
||||||
|
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
|
||||||
|
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
|
||||||
|
}
|
||||||
|
else if (n_head_kv > 0) {
|
||||||
|
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
|
||||||
|
|
||||||
|
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
|
||||||
|
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
|
||||||
|
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
|
||||||
|
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
// optional bias tensors
|
||||||
|
layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||||
|
layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||||
|
layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||||
|
layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||||
|
|
||||||
|
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
|
||||||
|
|
||||||
|
if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
|
||||||
|
layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
||||||
|
layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
||||||
|
}
|
||||||
|
|
||||||
|
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
|
||||||
|
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
|
||||||
|
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
||||||
|
|
||||||
|
// optional MLP bias
|
||||||
|
layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||||
|
layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||||
|
layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||||
|
}
|
||||||
|
} break;
|
||||||
case LLM_ARCH_MINICPM3:
|
case LLM_ARCH_MINICPM3:
|
||||||
{
|
{
|
||||||
const int64_t n_embd_head_qk_rope = hparams.n_rot;
|
const int64_t n_embd_head_qk_rope = hparams.n_rot;
|
||||||
@ -11305,6 +11412,167 @@ struct llm_build_context {
|
|||||||
return gf;
|
return gf;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
struct ggml_cgraph * build_deci() {
|
||||||
|
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||||
|
|
||||||
|
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||||
|
int32_t n_tokens = this->n_tokens;
|
||||||
|
|
||||||
|
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||||
|
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||||
|
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||||
|
|
||||||
|
struct ggml_tensor * cur;
|
||||||
|
struct ggml_tensor * inpL;
|
||||||
|
|
||||||
|
inpL = llm_build_inp_embd(ctx0, lctx, hparams, ubatch, model.tok_embd, cb);
|
||||||
|
|
||||||
|
// inp_pos - contains the positions
|
||||||
|
struct ggml_tensor * inp_pos = build_inp_pos();
|
||||||
|
|
||||||
|
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||||
|
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||||||
|
|
||||||
|
const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
|
||||||
|
for (int il = 0; il < n_layer; ++il) {
|
||||||
|
struct ggml_tensor * inpSA = inpL;
|
||||||
|
const int64_t n_head_kv = hparams.n_head_kv(il);
|
||||||
|
const int64_t n_head = hparams.n_head(il);
|
||||||
|
|
||||||
|
if (n_head == 0) {
|
||||||
|
// attention-free layer of Llama-3_1-Nemotron-51B
|
||||||
|
cur = inpL;
|
||||||
|
} else {
|
||||||
|
// norm
|
||||||
|
cur = llm_build_norm(ctx0, inpL, hparams,
|
||||||
|
model.layers[il].attn_norm, NULL,
|
||||||
|
LLM_NORM_RMS, cb, il);
|
||||||
|
cb(cur, "attn_norm", il);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (n_head > 0 && n_head_kv == 0) {
|
||||||
|
// "linear attention" of Llama-3_1-Nemotron-51B
|
||||||
|
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo, cur);
|
||||||
|
cb(cur, "wo", il);
|
||||||
|
} else if (n_head > 0) {
|
||||||
|
// self-attention
|
||||||
|
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
||||||
|
struct ggml_tensor * rope_factors = build_rope_factors(il);
|
||||||
|
|
||||||
|
// compute Q and K and RoPE them
|
||||||
|
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
||||||
|
cb(Qcur, "Qcur", il);
|
||||||
|
if (model.layers[il].bq) {
|
||||||
|
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
||||||
|
cb(Qcur, "Qcur", il);
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
||||||
|
cb(Kcur, "Kcur", il);
|
||||||
|
if (model.layers[il].bk) {
|
||||||
|
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
||||||
|
cb(Kcur, "Kcur", il);
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
||||||
|
cb(Vcur, "Vcur", il);
|
||||||
|
if (model.layers[il].bv) {
|
||||||
|
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||||||
|
cb(Vcur, "Vcur", il);
|
||||||
|
}
|
||||||
|
|
||||||
|
Qcur = ggml_rope_ext(
|
||||||
|
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors,
|
||||||
|
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||||
|
ext_factor, attn_factor, beta_fast, beta_slow
|
||||||
|
);
|
||||||
|
cb(Qcur, "Qcur", il);
|
||||||
|
|
||||||
|
Kcur = ggml_rope_ext(
|
||||||
|
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors,
|
||||||
|
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||||
|
ext_factor, attn_factor, beta_fast, beta_slow
|
||||||
|
);
|
||||||
|
cb(Kcur, "Kcur", il);
|
||||||
|
|
||||||
|
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||||||
|
model.layers[il].wo, model.layers[il].bo,
|
||||||
|
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, kq_scale, cb, il);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (il == n_layer - 1) {
|
||||||
|
// skip computing output for unused tokens
|
||||||
|
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||||
|
n_tokens = n_outputs;
|
||||||
|
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||||
|
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||||
|
}
|
||||||
|
|
||||||
|
// For Granite architecture
|
||||||
|
if (hparams.f_residual_scale) {
|
||||||
|
cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
|
||||||
|
}
|
||||||
|
|
||||||
|
// modified to support attention-free layer of Llama-3_1-Nemotron-51B
|
||||||
|
struct ggml_tensor * ffn_inp = cur;
|
||||||
|
if (n_head > 0) {
|
||||||
|
ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||||
|
cb(ffn_inp, "ffn_inp", il);
|
||||||
|
}
|
||||||
|
|
||||||
|
// feed-forward network
|
||||||
|
if (model.layers[il].ffn_gate_inp == nullptr) {
|
||||||
|
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||||||
|
model.layers[il].ffn_norm, NULL,
|
||||||
|
LLM_NORM_RMS, cb, il);
|
||||||
|
cb(cur, "ffn_norm", il);
|
||||||
|
|
||||||
|
cur = llm_build_ffn(ctx0, lctx, cur,
|
||||||
|
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
||||||
|
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
|
||||||
|
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
||||||
|
NULL,
|
||||||
|
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||||||
|
cb(cur, "ffn_out", il);
|
||||||
|
}
|
||||||
|
|
||||||
|
// For Granite architecture
|
||||||
|
if (hparams.f_residual_scale) {
|
||||||
|
cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
|
||||||
|
}
|
||||||
|
|
||||||
|
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||||
|
cb(cur, "ffn_out", il);
|
||||||
|
|
||||||
|
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||||||
|
cb(cur, "l_out", il);
|
||||||
|
|
||||||
|
// input for next layer
|
||||||
|
inpL = cur;
|
||||||
|
}
|
||||||
|
|
||||||
|
cur = inpL;
|
||||||
|
|
||||||
|
cur = llm_build_norm(ctx0, cur, hparams,
|
||||||
|
model.output_norm, NULL,
|
||||||
|
LLM_NORM_RMS, cb, -1);
|
||||||
|
cb(cur, "result_norm", -1);
|
||||||
|
|
||||||
|
// lm_head
|
||||||
|
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||||||
|
|
||||||
|
// For Granite architecture
|
||||||
|
if (hparams.f_logit_scale) {
|
||||||
|
cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
|
||||||
|
}
|
||||||
|
|
||||||
|
cb(cur, "result_output", -1);
|
||||||
|
|
||||||
|
ggml_build_forward_expand(gf, cur);
|
||||||
|
|
||||||
|
return gf;
|
||||||
|
}
|
||||||
|
|
||||||
struct ggml_cgraph * build_baichuan() {
|
struct ggml_cgraph * build_baichuan() {
|
||||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||||
|
|
||||||
@ -17419,6 +17687,10 @@ static struct ggml_cgraph * llama_build_graph(
|
|||||||
{
|
{
|
||||||
result = llm.build_llama();
|
result = llm.build_llama();
|
||||||
} break;
|
} break;
|
||||||
|
case LLM_ARCH_DECI:
|
||||||
|
{
|
||||||
|
result = llm.build_deci();
|
||||||
|
} break;
|
||||||
case LLM_ARCH_BAICHUAN:
|
case LLM_ARCH_BAICHUAN:
|
||||||
{
|
{
|
||||||
result = llm.build_baichuan();
|
result = llm.build_baichuan();
|
||||||
@ -20794,6 +21066,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
|||||||
|
|
||||||
// use what we call a normal RoPE, operating on pairs of consecutive head values
|
// use what we call a normal RoPE, operating on pairs of consecutive head values
|
||||||
case LLM_ARCH_LLAMA:
|
case LLM_ARCH_LLAMA:
|
||||||
|
case LLM_ARCH_DECI:
|
||||||
case LLM_ARCH_BAICHUAN:
|
case LLM_ARCH_BAICHUAN:
|
||||||
case LLM_ARCH_STARCODER:
|
case LLM_ARCH_STARCODER:
|
||||||
case LLM_ARCH_PLAMO:
|
case LLM_ARCH_PLAMO:
|
||||||
@ -22615,6 +22888,8 @@ static llm_chat_template llama_chat_detect_template(const std::string & tmpl) {
|
|||||||
}
|
}
|
||||||
} else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|end|>")) {
|
} else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|end|>")) {
|
||||||
return LLM_CHAT_TEMPLATE_PHI_3;
|
return LLM_CHAT_TEMPLATE_PHI_3;
|
||||||
|
} else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|user|>")) {
|
||||||
|
return LLM_CHAT_TEMPLATE_FALCON_3;
|
||||||
} else if (tmpl_contains("<|user|>") && tmpl_contains("<|endoftext|>")) {
|
} else if (tmpl_contains("<|user|>") && tmpl_contains("<|endoftext|>")) {
|
||||||
return LLM_CHAT_TEMPLATE_ZEPHYR;
|
return LLM_CHAT_TEMPLATE_ZEPHYR;
|
||||||
} else if (tmpl_contains("bos_token + message['role']")) {
|
} else if (tmpl_contains("bos_token + message['role']")) {
|
||||||
@ -22661,6 +22936,8 @@ static llm_chat_template llama_chat_detect_template(const std::string & tmpl) {
|
|||||||
return LLM_CHAT_TEMPLATE_GRANITE;
|
return LLM_CHAT_TEMPLATE_GRANITE;
|
||||||
} else if (tmpl_contains("message['role'] + additional_special_tokens[0] + message['content'] + additional_special_tokens[1]")) {
|
} else if (tmpl_contains("message['role'] + additional_special_tokens[0] + message['content'] + additional_special_tokens[1]")) {
|
||||||
return LLM_CHAT_TEMPLATE_GIGACHAT;
|
return LLM_CHAT_TEMPLATE_GIGACHAT;
|
||||||
|
} else if (tmpl_contains("<|role_start|>")) {
|
||||||
|
return LLM_CHAT_TEMPLATE_MEGREZ;
|
||||||
}
|
}
|
||||||
return LLM_CHAT_TEMPLATE_UNKNOWN;
|
return LLM_CHAT_TEMPLATE_UNKNOWN;
|
||||||
}
|
}
|
||||||
@ -22767,6 +23044,15 @@ static int32_t llama_chat_apply_template_internal(
|
|||||||
if (add_ass) {
|
if (add_ass) {
|
||||||
ss << "<|assistant|>\n";
|
ss << "<|assistant|>\n";
|
||||||
}
|
}
|
||||||
|
} else if (tmpl == LLM_CHAT_TEMPLATE_FALCON_3) {
|
||||||
|
// Falcon 3
|
||||||
|
for (auto message : chat) {
|
||||||
|
std::string role(message->role);
|
||||||
|
ss << "<|" << role << "|>\n" << message->content << "\n";
|
||||||
|
}
|
||||||
|
if (add_ass) {
|
||||||
|
ss << "<|assistant|>\n";
|
||||||
|
}
|
||||||
} else if (tmpl == LLM_CHAT_TEMPLATE_ZEPHYR) {
|
} else if (tmpl == LLM_CHAT_TEMPLATE_ZEPHYR) {
|
||||||
// zephyr template
|
// zephyr template
|
||||||
for (auto message : chat) {
|
for (auto message : chat) {
|
||||||
@ -23010,6 +23296,16 @@ static int32_t llama_chat_apply_template_internal(
|
|||||||
if (add_ass) {
|
if (add_ass) {
|
||||||
ss << "assistant<|role_sep|>";
|
ss << "assistant<|role_sep|>";
|
||||||
}
|
}
|
||||||
|
} else if (tmpl == LLM_CHAT_TEMPLATE_MEGREZ) {
|
||||||
|
// Megrez template
|
||||||
|
for (auto message : chat) {
|
||||||
|
std::string role(message->role);
|
||||||
|
ss << "<|role_start|>" << role << "<|role_end|>" << message->content << "<|turn_end|>";
|
||||||
|
}
|
||||||
|
|
||||||
|
if (add_ass) {
|
||||||
|
ss << "<|role_start|>assistant<|role_end|>";
|
||||||
|
}
|
||||||
} else {
|
} else {
|
||||||
// template not supported
|
// template not supported
|
||||||
return -1;
|
return -1;
|
||||||
|
@ -77,6 +77,8 @@ int main(void) {
|
|||||||
"{{ bos_token }}{% for message in messages %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + '[/INST]' }}{% elif message['role'] == 'system' %}{{ '[SYSTEM_PROMPT] ' + message['content'] + '[/SYSTEM_PROMPT]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + message['content'] + eos_token }}{% else %}{{ raise_exception('Only user, system and assistant roles are supported!') }}{% endif %}{% endfor %}",
|
"{{ bos_token }}{% for message in messages %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + '[/INST]' }}{% elif message['role'] == 'system' %}{{ '[SYSTEM_PROMPT] ' + message['content'] + '[/SYSTEM_PROMPT]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + message['content'] + eos_token }}{% else %}{{ raise_exception('Only user, system and assistant roles are supported!') }}{% endif %}{% endfor %}",
|
||||||
// ai-sage/GigaChat-20B-A3B-instruct
|
// ai-sage/GigaChat-20B-A3B-instruct
|
||||||
"{% if messages[0]['role'] == 'system' -%}\n {%- set loop_messages = messages[1:] -%}\n {%- set system_message = bos_token + messages[0]['content'] + additional_special_tokens[1] -%}\n{%- else -%}\n {%- set loop_messages = messages -%}\n {%- set system_message = bos_token + '' -%}\n{%- endif -%}\n{%- for message in loop_messages %}\n {% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}\n {{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}\n {% endif %}\n \n {%- if loop.index0 == 0 -%}\n {{ system_message -}}\n {%- endif -%}\n {%- if message['role'] == 'user' -%}\n {{ message['role'] + additional_special_tokens[0] + message['content'] + additional_special_tokens[1] -}}\n {{ 'available functions' + additional_special_tokens[0] + additional_special_tokens[2] + additional_special_tokens[3] + additional_special_tokens[1] -}}\n {%- endif -%}\n {%- if message['role'] == 'assistant' -%}\n {{ message['role'] + additional_special_tokens[0] + message['content'] + additional_special_tokens[1] -}}\n {%- endif -%}\n {%- if loop.last and add_generation_prompt -%}\n {{ 'assistant' + additional_special_tokens[0] -}}\n {%- endif -%}\n{%- endfor %}",
|
"{% if messages[0]['role'] == 'system' -%}\n {%- set loop_messages = messages[1:] -%}\n {%- set system_message = bos_token + messages[0]['content'] + additional_special_tokens[1] -%}\n{%- else -%}\n {%- set loop_messages = messages -%}\n {%- set system_message = bos_token + '' -%}\n{%- endif -%}\n{%- for message in loop_messages %}\n {% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}\n {{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}\n {% endif %}\n \n {%- if loop.index0 == 0 -%}\n {{ system_message -}}\n {%- endif -%}\n {%- if message['role'] == 'user' -%}\n {{ message['role'] + additional_special_tokens[0] + message['content'] + additional_special_tokens[1] -}}\n {{ 'available functions' + additional_special_tokens[0] + additional_special_tokens[2] + additional_special_tokens[3] + additional_special_tokens[1] -}}\n {%- endif -%}\n {%- if message['role'] == 'assistant' -%}\n {{ message['role'] + additional_special_tokens[0] + message['content'] + additional_special_tokens[1] -}}\n {%- endif -%}\n {%- if loop.last and add_generation_prompt -%}\n {{ 'assistant' + additional_special_tokens[0] -}}\n {%- endif -%}\n{%- endfor %}",
|
||||||
|
// Infinigence/Megrez-3B-Instruct
|
||||||
|
u8"{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|role_start|>system<|role_end|>你是Megrez-3B-Instruct,将针对用户的问题给出详细的、积极的回答。<|turn_end|>' }}{% endif %}{{ '<|role_start|>' + message['role'] + '<|role_end|>' + message['content'] + '<|turn_end|>' }}{% endfor %}{% if add_generation_prompt %}{{ '<|role_start|>assistant<|role_end|>' }}{% endif %}"
|
||||||
};
|
};
|
||||||
std::vector<std::string> expected_output = {
|
std::vector<std::string> expected_output = {
|
||||||
// teknium/OpenHermes-2.5-Mistral-7B
|
// teknium/OpenHermes-2.5-Mistral-7B
|
||||||
@ -133,6 +135,8 @@ int main(void) {
|
|||||||
"[SYSTEM_PROMPT] You are a helpful assistant[/SYSTEM_PROMPT][INST] Hello[/INST] Hi there</s>[INST] Who are you[/INST] I am an assistant </s>[INST] Another question[/INST]",
|
"[SYSTEM_PROMPT] You are a helpful assistant[/SYSTEM_PROMPT][INST] Hello[/INST] Hi there</s>[INST] Who are you[/INST] I am an assistant </s>[INST] Another question[/INST]",
|
||||||
// ai-sage/GigaChat-20B-A3B-instruct
|
// ai-sage/GigaChat-20B-A3B-instruct
|
||||||
"<s>You are a helpful assistant<|message_sep|>user<|role_sep|>Hello<|message_sep|>available functions<|role_sep|>[]<|message_sep|>assistant<|role_sep|>Hi there<|message_sep|>user<|role_sep|>Who are you<|message_sep|>available functions<|role_sep|>[]<|message_sep|>assistant<|role_sep|> I am an assistant <|message_sep|>user<|role_sep|>Another question<|message_sep|>available functions<|role_sep|>[]<|message_sep|>assistant<|role_sep|>",
|
"<s>You are a helpful assistant<|message_sep|>user<|role_sep|>Hello<|message_sep|>available functions<|role_sep|>[]<|message_sep|>assistant<|role_sep|>Hi there<|message_sep|>user<|role_sep|>Who are you<|message_sep|>available functions<|role_sep|>[]<|message_sep|>assistant<|role_sep|> I am an assistant <|message_sep|>user<|role_sep|>Another question<|message_sep|>available functions<|role_sep|>[]<|message_sep|>assistant<|role_sep|>",
|
||||||
|
// Infinigence/Megrez-3B-Instruct
|
||||||
|
"<|role_start|>system<|role_end|>You are a helpful assistant<|turn_end|><|role_start|>user<|role_end|>Hello<|turn_end|><|role_start|>assistant<|role_end|>Hi there<|turn_end|><|role_start|>user<|role_end|>Who are you<|turn_end|><|role_start|>assistant<|role_end|> I am an assistant <|turn_end|><|role_start|>user<|role_end|>Another question<|turn_end|><|role_start|>assistant<|role_end|>",
|
||||||
};
|
};
|
||||||
std::vector<char> formatted_chat(1024);
|
std::vector<char> formatted_chat(1024);
|
||||||
int32_t res;
|
int32_t res;
|
||||||
|
Loading…
Reference in New Issue
Block a user