Compare commits

..

1 Commits

Author SHA1 Message Date
pancake
8d2b6381b8
Merge a279f17815 into c02e5ab2a6 2024-10-31 21:55:53 +00:00
5 changed files with 88 additions and 59 deletions

View File

@ -217,6 +217,7 @@
#define GGML_MAX_DIMS 4
#define GGML_MAX_PARAMS 2048
#define GGML_MAX_CONTEXTS 64
#define GGML_MAX_SRC 10
#define GGML_MAX_N_THREADS 512
#define GGML_MAX_OP_PARAMS 64
@ -656,7 +657,6 @@ extern "C" {
};
// scratch buffer
// TODO: deprecate and remove
struct ggml_scratch {
size_t offs;
size_t size;
@ -761,7 +761,6 @@ extern "C" {
// main
GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
GGML_API void ggml_reset(struct ggml_context * ctx);
GGML_API void ggml_free(struct ggml_context * ctx);
GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);

View File

@ -1402,7 +1402,7 @@ list(APPEND GGML_EXTRA_LIBS_PRIVATE Threads::Threads)
find_library(MATH_LIBRARY m)
if (MATH_LIBRARY)
if (NOT WIN32 OR NOT DEFINED ENV{ONEAPI_ROOT})
if (NOT WIN32 OR NOT GGML_SYCL)
list(APPEND GGML_EXTRA_LIBS_PRIVATE m)
endif()
endif()

View File

@ -306,7 +306,6 @@ void ggml_abort(const char * file, int line, const char * fmt, ...) {
}
#define GGML_DEBUG 0
#define GGML_GELU_FP16
#define GGML_GELU_QUICK_FP16
@ -3264,6 +3263,7 @@ struct ggml_numa_nodes {
//
struct ggml_state {
struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
struct ggml_numa_nodes numa;
};
@ -3845,6 +3845,7 @@ struct ggml_context * ggml_init(struct ggml_init_params params) {
const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
g_state = (struct ggml_state) {
/*.contexts =*/ { { 0 } },
/*.numa =*/ {
.n_nodes = 0,
.total_cpus = 0,
@ -3863,9 +3864,26 @@ struct ggml_context * ggml_init(struct ggml_init_params params) {
is_first_call = false;
}
// find non-used context in g_state
struct ggml_context * ctx = NULL;
for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
if (!g_state.contexts[i].used) {
g_state.contexts[i].used = true;
ctx = &g_state.contexts[i].context;
GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
break;
}
}
if (ctx == NULL) {
GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
ggml_critical_section_end();
struct ggml_context * ctx = GGML_MALLOC(sizeof(struct ggml_context));
return NULL;
}
// allow to call ggml_init with 0 size
if (params.mem_size == 0) {
@ -3893,31 +3911,42 @@ struct ggml_context * ggml_init(struct ggml_init_params params) {
GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
ggml_critical_section_end();
return ctx;
}
void ggml_reset(struct ggml_context * ctx) {
if (ctx == NULL) {
return;
}
ctx->n_objects = 0;
ctx->objects_begin = NULL;
ctx->objects_end = NULL;
ctx->scratch = (struct ggml_scratch) { 0, 0, NULL, };
ctx->scratch_save = (struct ggml_scratch) { 0, 0, NULL, };
}
void ggml_free(struct ggml_context * ctx) {
if (ctx == NULL) {
return;
}
// make this function thread safe
ggml_critical_section_start();
bool found = false;
for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
if (&g_state.contexts[i].context == ctx) {
g_state.contexts[i].used = false;
GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
__func__, i, ggml_used_mem(ctx));
if (ctx->mem_buffer_owned) {
ggml_aligned_free(ctx->mem_buffer, ctx->mem_size);
}
GGML_FREE(ctx);
found = true;
break;
}
}
if (!found) {
GGML_PRINT_DEBUG("%s: context not found\n", __func__);
}
ggml_critical_section_end();
}
size_t ggml_used_mem(const struct ggml_context * ctx) {

View File

@ -1 +1 @@
bb78a40dc60e04c626bac2b65840b509988e990d
162e232411ee98ceb0cccfa84886118d917d2123

View File

@ -4860,12 +4860,19 @@ struct llama_model_loader {
*last = 0;
*addr = mapping->addr;
for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
try {
const auto * weight = get_weight(ggml_get_name(tensor));
if (!weight || weight->idx != idx) {
if (!weight) {
continue;
}
if (weight->idx != idx) {
continue;
}
*first = std::min(*first, weight->offs);
*last = std::max(*last, weight->offs + ggml_nbytes(tensor));
} catch(...) {
// the tensor is not in the model
}
}
}
@ -5042,6 +5049,7 @@ struct llama_model_loader {
ggml_backend_tensor_set(cur, data, 0, n_size);
}
} else {
GGML_ASSERT(weight->idx < files.size());
const auto & file = files.at(weight->idx);
if (ggml_backend_buffer_is_host(cur->buffer)) {
file->seek(weight->offs, SEEK_SET);
@ -17162,11 +17170,19 @@ static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
auto * buft = ggml_backend_cpu_buffer_type();
// try to use the host buffer of the device where the output tensor is allocated for faster transfer to system memory
auto * output_dev = lctx.model.dev_output.dev;
auto * output_dev_host_buft = output_dev ? ggml_backend_dev_host_buffer_type(output_dev) : nullptr;
ggml_tensor * output_tensor = lctx.model.output;
if (!output_tensor) {
// bert models don't have an output tensor, use the last layer
output_tensor = lctx.model.layers.back().layer_out_norm;
}
if (output_tensor) {
auto * output_buft = ggml_backend_buffer_get_type(output_tensor->buffer);
auto * output_dev = ggml_backend_buft_get_device(output_buft);
auto * output_dev_host_buft = ggml_backend_dev_host_buffer_type(output_dev);
if (output_dev_host_buft) {
buft = output_dev_host_buft;
}
}
lctx.buf_output = ggml_backend_buft_alloc_buffer(buft, new_size);
if (lctx.buf_output == nullptr) {
LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
@ -18607,25 +18623,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
}
}
// make a list of weights
std::vector<const llama_model_loader::llama_tensor_weight *> tensors;
tensors.reserve(ml.weights_map.size());
for (const auto & it : ml.weights_map) {
tensors.push_back(&it.second);
}
// keep_split requires that the weights are sorted by split index
if (params->keep_split) {
std::sort(tensors.begin(), tensors.end(), [](const llama_model_loader::llama_tensor_weight * a, const llama_model_loader::llama_tensor_weight * b) {
if (a->idx == b->idx) {
return a->offs < b->offs;
}
return a->idx < b->idx;
});
}
for (const auto * it : tensors) {
const struct ggml_tensor * tensor = it->tensor;
const struct ggml_tensor * tensor = it.second.tensor;
const std::string name = ggml_get_name(tensor);
@ -18665,20 +18664,22 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
std::vector<no_init<float>> f32_conv_buf;
uint16_t n_split = 1;
const auto & weights_map = ml.weights_map;
// Assume split index is continuous
if (params->keep_split) {
for (const auto * it : tensors) {
n_split = std::max(uint16_t(it->idx + 1), n_split);
for (const auto & it : weights_map) {
n_split = std::max(uint16_t(it.second.idx + 1), n_split);
}
}
std::vector<gguf_context*> ctx_outs(n_split, NULL);
ctx_outs[0] = ctx_out;
// populate the original tensors so we get an initial meta data
for (const auto * it : tensors) {
uint16_t i_split = params->keep_split ? it->idx : 0;
struct ggml_tensor * tensor = it->tensor;
for (const auto & it : weights_map) {
uint16_t i_split = params->keep_split ? it.second.idx : 0;
struct ggml_tensor * tensor = it.second.tensor;
if (ctx_outs[i_split] == NULL) {
ctx_outs[i_split] = gguf_init_empty();
}
@ -18725,8 +18726,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
const auto tn = LLM_TN(model.arch);
new_ofstream(0);
for (const auto * it : tensors) {
const auto & weight = *it;
for (const auto & it : weights_map) {
const auto & weight = it.second;
struct ggml_tensor * tensor = weight.tensor;
if (weight.idx != cur_split && params->keep_split) {
close_ofstream();