mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-11-14 06:49:54 +00:00
Compare commits
No commits in common. "caeba159dae8b75575baa69952d98fe712425bfd" and "7c39f2d3aba6ca0ac5d8070c23c5df38b10a4213" have entirely different histories.
caeba159da
...
7c39f2d3ab
73
.github/workflows/build.yml
vendored
73
.github/workflows/build.yml
vendored
@ -23,9 +23,6 @@ env:
|
||||
BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
|
||||
GGML_NLOOP: 3
|
||||
GGML_N_THREADS: 1
|
||||
LLAMA_LOG_COLORS: 1
|
||||
LLAMA_LOG_PREFIX: 1
|
||||
LLAMA_LOG_TIMESTAMPS: 1
|
||||
|
||||
jobs:
|
||||
macOS-latest-cmake-arm64:
|
||||
@ -967,7 +964,6 @@ jobs:
|
||||
name: llama-bin-win-sycl-x64.zip
|
||||
|
||||
windows-latest-cmake-hip:
|
||||
if: ${{ github.event.inputs.create_release != 'true' }}
|
||||
runs-on: windows-latest
|
||||
|
||||
steps:
|
||||
@ -995,72 +991,8 @@ jobs:
|
||||
run: |
|
||||
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
|
||||
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
|
||||
cmake -G "Unix Makefiles" -B build -S . -DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" -DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" -DGGML_HIPBLAS=ON -DCMAKE_BUILD_TYPE=Release -DGGML_RPC=ON
|
||||
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
|
||||
|
||||
windows-latest-cmake-hip-release:
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
runs-on: windows-latest
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
gpu_target: [gfx1100, gfx1101, gfx1030]
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Install
|
||||
id: depends
|
||||
run: |
|
||||
$ErrorActionPreference = "Stop"
|
||||
write-host "Downloading AMD HIP SDK Installer"
|
||||
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
|
||||
write-host "Installing AMD HIP SDK"
|
||||
Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
|
||||
write-host "Completed AMD HIP SDK installation"
|
||||
|
||||
- name: Verify ROCm
|
||||
id: verify
|
||||
run: |
|
||||
& 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
|
||||
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
|
||||
cmake -G "Unix Makefiles" -B build -S . -DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" -DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" -DGGML_HIPBLAS=ON -DCMAKE_BUILD_TYPE=Release -DGPU_TARGETS=${{ matrix.gpu_target }} -DGGML_RPC=ON
|
||||
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
|
||||
md "build\bin\rocblas\library\"
|
||||
cp "${env:HIP_PATH}\bin\hipblas.dll" "build\bin\"
|
||||
cp "${env:HIP_PATH}\bin\rocblas.dll" "build\bin\"
|
||||
cp "${env:HIP_PATH}\bin\rocblas\library\*" "build\bin\rocblas\library\"
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
shell: bash
|
||||
run: |
|
||||
BUILD_NUMBER="$(git rev-list --count HEAD)"
|
||||
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
|
||||
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
|
||||
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
|
||||
else
|
||||
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
|
||||
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
run: |
|
||||
7z a llama-${{ steps.tag.outputs.name }}-bin-win-hip-x64-${{ matrix.gpu_target }}.zip .\build\bin\*
|
||||
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-win-hip-x64-${{ matrix.gpu_target }}.zip
|
||||
name: llama-bin-win-hip-x64-${{ matrix.gpu_target }}.zip
|
||||
cmake -G "Unix Makefiles" -B build -S . -DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" -DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" -DGGML_HIPBLAS=ON
|
||||
cmake --build build --config Release
|
||||
|
||||
ios-xcode-build:
|
||||
runs-on: macos-latest
|
||||
@ -1125,7 +1057,6 @@ jobs:
|
||||
- macOS-latest-cmake
|
||||
- windows-latest-cmake
|
||||
- windows-latest-cmake-cuda
|
||||
- windows-latest-cmake-hip-release
|
||||
- macOS-latest-cmake-arm64
|
||||
- macOS-latest-cmake-x64
|
||||
|
||||
|
6
.github/workflows/server.yml
vendored
6
.github/workflows/server.yml
vendored
@ -20,12 +20,6 @@ on:
|
||||
types: [opened, synchronize, reopened]
|
||||
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/**.*']
|
||||
|
||||
env:
|
||||
LLAMA_LOG_COLORS: 1
|
||||
LLAMA_LOG_PREFIX: 1
|
||||
LLAMA_LOG_TIMESTAMPS: 1
|
||||
LLAMA_LOG_VERBOSITY: 10
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}-${{ github.head_ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
@ -82,11 +82,11 @@ set(GGML_FATAL_WARNINGS ${LLAMA_FATAL_WARNINGS})
|
||||
|
||||
# change the default for these ggml options
|
||||
if (NOT DEFINED GGML_LLAMAFILE)
|
||||
set(GGML_LLAMAFILE_DEFAULT ON)
|
||||
set(GGML_LLAMAFILE ON)
|
||||
endif()
|
||||
|
||||
if (NOT DEFINED GGML_CUDA_GRAPHS)
|
||||
set(GGML_CUDA_GRAPHS_DEFAULT ON)
|
||||
if (NOT DEFINED GGML_CUDA_USE_GRAPHS)
|
||||
set(GGML_CUDA_USE_GRAPHS ON)
|
||||
endif()
|
||||
|
||||
# transition helpers
|
||||
|
41
Makefile
41
Makefile
@ -54,7 +54,6 @@ TEST_TARGETS = \
|
||||
tests/test-grammar-parser \
|
||||
tests/test-json-schema-to-grammar \
|
||||
tests/test-llama-grammar \
|
||||
tests/test-log \
|
||||
tests/test-model-load-cancel \
|
||||
tests/test-opt \
|
||||
tests/test-quantize-fns \
|
||||
@ -149,14 +148,6 @@ GGML_NO_METAL := 1
|
||||
DEPRECATE_WARNING := 1
|
||||
endif
|
||||
|
||||
ifdef LLAMA_DISABLE_LOGS
|
||||
REMOVE_WARNING := 1
|
||||
endif
|
||||
|
||||
ifdef LLAMA_SERVER_VERBOSE
|
||||
REMOVE_WARNING := 1
|
||||
endif
|
||||
|
||||
ifndef UNAME_S
|
||||
UNAME_S := $(shell uname -s)
|
||||
endif
|
||||
@ -360,11 +351,19 @@ ifdef LLAMA_SANITIZE_UNDEFINED
|
||||
MK_LDFLAGS += -fsanitize=undefined -g
|
||||
endif
|
||||
|
||||
ifdef LLAMA_SERVER_VERBOSE
|
||||
MK_CPPFLAGS += -DSERVER_VERBOSE=$(LLAMA_SERVER_VERBOSE)
|
||||
endif
|
||||
|
||||
ifdef LLAMA_SERVER_SSL
|
||||
MK_CPPFLAGS += -DCPPHTTPLIB_OPENSSL_SUPPORT
|
||||
MK_LDFLAGS += -lssl -lcrypto
|
||||
endif
|
||||
|
||||
ifdef LLAMA_DISABLE_LOGS
|
||||
MK_CPPFLAGS += -DLOG_DISABLE_LOGS
|
||||
endif # LLAMA_DISABLE_LOGS
|
||||
|
||||
# warnings
|
||||
WARN_FLAGS = \
|
||||
-Wall \
|
||||
@ -619,7 +618,7 @@ ifdef GGML_CUDA
|
||||
CUDA_PATH ?= /usr/local/cuda
|
||||
endif
|
||||
|
||||
MK_CPPFLAGS += -DGGML_USE_CUDA -DGGML_CUDA_USE_GRAPHS -I$(CUDA_PATH)/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
|
||||
MK_CPPFLAGS += -DGGML_USE_CUDA -I$(CUDA_PATH)/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include -DGGML_CUDA_USE_GRAPHS
|
||||
MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L$(CUDA_PATH)/lib64 -L/usr/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L$(CUDA_PATH)/lib64/stubs -L/usr/lib/wsl/lib
|
||||
MK_NVCCFLAGS += -use_fast_math
|
||||
endif # GGML_MUSA
|
||||
@ -932,7 +931,6 @@ OBJ_LLAMA = \
|
||||
OBJ_COMMON = \
|
||||
common/common.o \
|
||||
common/arg.o \
|
||||
common/log.o \
|
||||
common/console.o \
|
||||
common/ngram-cache.o \
|
||||
common/sampling.o \
|
||||
@ -1029,14 +1027,6 @@ $(info - LLAMA_NO_CCACHE)
|
||||
$(info )
|
||||
endif
|
||||
|
||||
ifdef REMOVE_WARNING
|
||||
$(info !!! REMOVAL WARNING !!!)
|
||||
$(info The following LLAMA_ options have been removed and are no longer supported)
|
||||
$(info - LLAMA_DISABLE_LOGS (https://github.com/ggerganov/llama.cpp/pull/9418))
|
||||
$(info - LLAMA_SERVER_VERBOSE (https://github.com/ggerganov/llama.cpp/pull/9418))
|
||||
$(info )
|
||||
endif
|
||||
|
||||
#
|
||||
# Build libraries
|
||||
#
|
||||
@ -1178,11 +1168,6 @@ common/arg.o: \
|
||||
common/arg.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
common/log.o: \
|
||||
common/log.cpp \
|
||||
common/log.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
common/sampling.o: \
|
||||
common/sampling.cpp \
|
||||
common/sampling.h \
|
||||
@ -1361,7 +1346,7 @@ llama-cvector-generator: examples/cvector-generator/cvector-generator.cpp \
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(OBJ_GGML) $(OBJ_LLAMA)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
@ -1455,7 +1440,6 @@ llama-server: \
|
||||
examples/server/system-prompts.js.hpp \
|
||||
examples/server/prompt-formats.js.hpp \
|
||||
examples/server/json-schema-to-grammar.mjs.hpp \
|
||||
examples/server/loading.html.hpp \
|
||||
common/json.hpp \
|
||||
common/stb_image.h \
|
||||
$(OBJ_ALL)
|
||||
@ -1543,11 +1527,6 @@ tests/test-llama-grammar: tests/test-llama-grammar.cpp \
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-log: tests/test-log.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-grammar-parser: tests/test-grammar-parser.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
|
@ -77,7 +77,6 @@ Typically finetunes of the base models below are supported as well.
|
||||
- [x] [SEA-LION](https://huggingface.co/models?search=sea-lion)
|
||||
- [x] [GritLM-7B](https://huggingface.co/GritLM/GritLM-7B) + [GritLM-8x7B](https://huggingface.co/GritLM/GritLM-8x7B)
|
||||
- [x] [OLMo](https://allenai.org/olmo)
|
||||
- [x] [OLMoE](https://huggingface.co/allenai/OLMoE-1B-7B-0924)
|
||||
- [x] [Granite models](https://huggingface.co/collections/ibm-granite/granite-code-models-6624c5cec322e4c148c8b330)
|
||||
- [x] [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) + [Pythia](https://github.com/EleutherAI/pythia)
|
||||
- [x] [Snowflake-Arctic MoE](https://huggingface.co/collections/Snowflake/arctic-66290090abe542894a5ac520)
|
||||
@ -174,7 +173,6 @@ Unless otherwise noted these projects are open-source with permissive licensing:
|
||||
- [akx/ggify](https://github.com/akx/ggify) – download PyTorch models from HuggingFace Hub and convert them to GGML
|
||||
- [crashr/gppm](https://github.com/crashr/gppm) – launch llama.cpp instances utilizing NVIDIA Tesla P40 or P100 GPUs with reduced idle power consumption
|
||||
- [gpustack/gguf-parser](https://github.com/gpustack/gguf-parser-go/tree/main/cmd/gguf-parser) - review/check the GGUF file and estimate the memory usage
|
||||
- [Styled Lines](https://marketplace.unity.com/packages/tools/generative-ai/styled-lines-llama-cpp-model-292902) (proprietary licensed, async wrapper of inference part for game development in Unity3d with prebuild Mobile and Web platform wrappers and a model example)
|
||||
|
||||
**Infrastructure:**
|
||||
|
||||
|
@ -737,9 +737,6 @@ function gg_sum_embd_bge_small {
|
||||
|
||||
## main
|
||||
|
||||
export LLAMA_LOG_PREFIX=1
|
||||
export LLAMA_LOG_TIMESTAMPS=1
|
||||
|
||||
if [ -z ${GG_BUILD_LOW_PERF} ]; then
|
||||
# Create symlink: ./llama.cpp/models-mnt -> $MNT/models/models-mnt
|
||||
rm -rf ${SRC}/models-mnt
|
||||
|
@ -51,23 +51,21 @@ endif()
|
||||
set(TARGET common)
|
||||
|
||||
add_library(${TARGET} STATIC
|
||||
arg.cpp
|
||||
arg.h
|
||||
base64.hpp
|
||||
common.cpp
|
||||
common.h
|
||||
console.cpp
|
||||
console.h
|
||||
json-schema-to-grammar.cpp
|
||||
json.hpp
|
||||
log.cpp
|
||||
log.h
|
||||
ngram-cache.cpp
|
||||
ngram-cache.h
|
||||
sampling.cpp
|
||||
common.cpp
|
||||
arg.h
|
||||
arg.cpp
|
||||
sampling.h
|
||||
train.cpp
|
||||
sampling.cpp
|
||||
console.h
|
||||
console.cpp
|
||||
json.hpp
|
||||
json-schema-to-grammar.cpp
|
||||
train.h
|
||||
train.cpp
|
||||
ngram-cache.h
|
||||
ngram-cache.cpp
|
||||
)
|
||||
|
||||
if (BUILD_SHARED_LIBS)
|
||||
|
133
common/arg.cpp
133
common/arg.cpp
@ -1,17 +1,15 @@
|
||||
#include "arg.h"
|
||||
|
||||
#include "log.h"
|
||||
#include "sampling.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <climits>
|
||||
#include <cstdarg>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <set>
|
||||
#include <fstream>
|
||||
#include <regex>
|
||||
#include <set>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
#include <cstdarg>
|
||||
#include <climits>
|
||||
|
||||
#include "json-schema-to-grammar.h"
|
||||
|
||||
@ -385,6 +383,20 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex,
|
||||
exit(0);
|
||||
}
|
||||
));
|
||||
add_opt(llama_arg(
|
||||
{"-v", "--verbose"},
|
||||
"print verbose information",
|
||||
[](gpt_params & params) {
|
||||
params.verbosity = 1;
|
||||
}
|
||||
));
|
||||
add_opt(llama_arg(
|
||||
{"--verbosity"}, "N",
|
||||
format("set specific verbosity level (default: %d)", params.verbosity),
|
||||
[](gpt_params & params, int value) {
|
||||
params.verbosity = value;
|
||||
}
|
||||
));
|
||||
add_opt(llama_arg(
|
||||
{"--verbose-prompt"},
|
||||
format("print a verbose prompt before generation (default: %s)", params.verbose_prompt ? "true" : "false"),
|
||||
@ -405,7 +417,7 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex,
|
||||
[](gpt_params & params) {
|
||||
params.use_color = true;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL, LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP}));
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
|
||||
add_opt(llama_arg(
|
||||
{"-t", "--threads"}, "N",
|
||||
format("number of threads to use during generation (default: %d)", params.cpuparams.n_threads),
|
||||
@ -685,13 +697,6 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex,
|
||||
params.n_keep = value;
|
||||
}
|
||||
));
|
||||
add_opt(llama_arg(
|
||||
{"--no-context-shift"},
|
||||
format("disables context shift on inifinite text generation (default: %s)", params.ctx_shift ? "disabled" : "enabled"),
|
||||
[](gpt_params & params) {
|
||||
params.ctx_shift = false;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN}));
|
||||
add_opt(llama_arg(
|
||||
{"--chunks"}, "N",
|
||||
format("max number of chunks to process (default: %d, -1 = all)", params.n_chunks),
|
||||
@ -715,14 +720,6 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex,
|
||||
params.prompt = value;
|
||||
}
|
||||
));
|
||||
add_opt(llama_arg(
|
||||
{"--no-perf"},
|
||||
format("disable internal libllama performance timings (default: %s)", params.no_perf ? "true" : "false"),
|
||||
[](gpt_params & params) {
|
||||
params.no_perf = true;
|
||||
params.sparams.no_perf = true;
|
||||
}
|
||||
).set_env("LLAMA_ARG_NO_PERF"));
|
||||
add_opt(llama_arg(
|
||||
{"-f", "--file"}, "FNAME",
|
||||
"a file containing the prompt (default: none)",
|
||||
@ -871,7 +868,7 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex,
|
||||
params.input_prefix = value;
|
||||
params.enable_chat_template = false;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN}));
|
||||
add_opt(llama_arg(
|
||||
{"--in-suffix"}, "STRING",
|
||||
"string to suffix after user inputs with (default: empty)",
|
||||
@ -879,7 +876,7 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex,
|
||||
params.input_suffix = value;
|
||||
params.enable_chat_template = false;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN}));
|
||||
add_opt(llama_arg(
|
||||
{"--no-warmup"},
|
||||
"skip warming up the model with an empty run",
|
||||
@ -1312,7 +1309,7 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex,
|
||||
[](gpt_params & params, int value) {
|
||||
params.n_parallel = value;
|
||||
}
|
||||
).set_env("LLAMA_ARG_N_PARALLEL"));
|
||||
));
|
||||
add_opt(llama_arg(
|
||||
{"-ns", "--sequences"}, "N",
|
||||
format("number of sequences to decode (default: %d)", params.n_sequences),
|
||||
@ -1819,6 +1816,19 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex,
|
||||
params.system_prompt = system_prompt;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(llama_arg(
|
||||
{"--log-format"}, "{text, json}",
|
||||
"log output format: json or text (default: json)",
|
||||
[](gpt_params & params, const std::string & value) {
|
||||
if (value == "json") {
|
||||
params.log_json = true;
|
||||
} else if (value == "text") {
|
||||
params.log_json = false;
|
||||
} else {
|
||||
throw std::invalid_argument("invalid value");
|
||||
}
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(llama_arg(
|
||||
{"--metrics"},
|
||||
format("enable prometheus compatible metrics endpoint (default: %s)", params.endpoint_metrics ? "enabled" : "disabled"),
|
||||
@ -1938,57 +1948,40 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex,
|
||||
else { std::invalid_argument("invalid value"); }
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_BENCH}));
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
// TODO: make this looks less weird
|
||||
add_opt(llama_arg(
|
||||
{"--log-test"},
|
||||
"Log test",
|
||||
[](gpt_params &) { log_param_single_parse("--log-test"); }
|
||||
));
|
||||
add_opt(llama_arg(
|
||||
{"--log-disable"},
|
||||
"Log disable",
|
||||
[](gpt_params &) {
|
||||
gpt_log_pause(gpt_log_main());
|
||||
}
|
||||
[](gpt_params &) { log_param_single_parse("--log-disable"); }
|
||||
));
|
||||
add_opt(llama_arg(
|
||||
{"--log-enable"},
|
||||
"Log enable",
|
||||
[](gpt_params &) { log_param_single_parse("--log-enable"); }
|
||||
));
|
||||
add_opt(llama_arg(
|
||||
{"--log-new"},
|
||||
"Log new",
|
||||
[](gpt_params &) { log_param_single_parse("--log-new"); }
|
||||
));
|
||||
add_opt(llama_arg(
|
||||
{"--log-append"},
|
||||
"Log append",
|
||||
[](gpt_params &) { log_param_single_parse("--log-append"); }
|
||||
));
|
||||
add_opt(llama_arg(
|
||||
{"--log-file"}, "FNAME",
|
||||
"Log to file",
|
||||
[](gpt_params &, const std::string & value) {
|
||||
gpt_log_set_file(gpt_log_main(), value.c_str());
|
||||
}
|
||||
"Log file",
|
||||
[](gpt_params &, const std::string & value) { log_param_pair_parse(false, "--log-file", value); }
|
||||
));
|
||||
add_opt(llama_arg(
|
||||
{"--log-colors"},
|
||||
"Enable colored logging",
|
||||
[](gpt_params &) {
|
||||
gpt_log_set_colors(gpt_log_main(), true);
|
||||
}
|
||||
).set_env("LLAMA_LOG_COLORS"));
|
||||
add_opt(llama_arg(
|
||||
{"-v", "--verbose", "--log-verbose"},
|
||||
"Set verbosity level to infinity (i.e. log all messages, useful for debugging)",
|
||||
[](gpt_params & params) {
|
||||
params.verbosity = INT_MAX;
|
||||
gpt_log_set_verbosity_thold(INT_MAX);
|
||||
}
|
||||
));
|
||||
add_opt(llama_arg(
|
||||
{"-lv", "--verbosity", "--log-verbosity"}, "N",
|
||||
"Set the verbosity threshold. Messages with a higher verbosity will be ignored.",
|
||||
[](gpt_params & params, int value) {
|
||||
params.verbosity = value;
|
||||
gpt_log_set_verbosity_thold(value);
|
||||
}
|
||||
).set_env("LLAMA_LOG_VERBOSITY"));
|
||||
add_opt(llama_arg(
|
||||
{"--log-prefix"},
|
||||
"Enable prefx in log messages",
|
||||
[](gpt_params &) {
|
||||
gpt_log_set_prefix(gpt_log_main(), true);
|
||||
}
|
||||
).set_env("LLAMA_LOG_PREFIX"));
|
||||
add_opt(llama_arg(
|
||||
{"--log-timestamps"},
|
||||
"Enable timestamps in log messages",
|
||||
[](gpt_params &) {
|
||||
gpt_log_set_timestamps(gpt_log_main(), true);
|
||||
}
|
||||
).set_env("LLAMA_LOG_TIMESTAMPS"));
|
||||
#endif // LOG_DISABLE_LOGS
|
||||
|
||||
return ctx_arg;
|
||||
}
|
||||
|
||||
|
@ -3,7 +3,6 @@
|
||||
#endif
|
||||
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
// Change JSON_ASSERT from assert() to GGML_ASSERT:
|
||||
#define JSON_ASSERT GGML_ASSERT
|
||||
#include "json.hpp"
|
||||
@ -26,7 +25,6 @@
|
||||
#include <unordered_map>
|
||||
#include <unordered_set>
|
||||
#include <vector>
|
||||
#include <thread>
|
||||
|
||||
#if defined(__APPLE__) && defined(__MACH__)
|
||||
#include <sys/types.h>
|
||||
@ -50,6 +48,7 @@
|
||||
#if defined(LLAMA_USE_CURL)
|
||||
#include <curl/curl.h>
|
||||
#include <curl/easy.h>
|
||||
#include <thread>
|
||||
#include <future>
|
||||
#endif
|
||||
|
||||
@ -227,7 +226,7 @@ bool set_process_priority(enum ggml_sched_priority prio) {
|
||||
}
|
||||
|
||||
if (!SetPriorityClass(GetCurrentProcess(), p)) {
|
||||
LOG_WRN("failed to set process priority class %d : (%d)\n", prio, (int) GetLastError());
|
||||
fprintf(stderr, "warn: failed to set process priority class %d : (%d)\n", prio, (int) GetLastError());
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -252,7 +251,7 @@ bool set_process_priority(enum ggml_sched_priority prio) {
|
||||
}
|
||||
|
||||
if (!setpriority(PRIO_PROCESS, 0, p)) {
|
||||
LOG_WRN("failed to set process priority %d : %s (%d)\n", prio, strerror(errno), errno);
|
||||
fprintf(stderr, "warn: failed to set process priority %d : %s (%d)\n", prio, strerror(errno), errno);
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
@ -285,14 +284,14 @@ void postprocess_cpu_params(cpu_params& cpuparams, const cpu_params* role_model)
|
||||
|
||||
if (n_set && n_set < cpuparams.n_threads) {
|
||||
// Not enough set bits, may experience performance issues.
|
||||
LOG_WRN("Not enough set bits in CPU mask (%d) to satisfy requested thread count: %d\n", n_set, cpuparams.n_threads);
|
||||
fprintf(stderr, "warn: Not enough set bits in CPU mask (%d) to satisfy requested thread count: %d\n", n_set, cpuparams.n_threads);
|
||||
}
|
||||
}
|
||||
|
||||
bool parse_cpu_range(const std::string & range, bool (&boolmask)[GGML_MAX_N_THREADS]) {
|
||||
size_t dash_loc = range.find('-');
|
||||
if (dash_loc == std::string::npos) {
|
||||
LOG_ERR("Format of CPU range is invalid! Expected [<start>]-[<end>].\n");
|
||||
fprintf(stderr, "Format of CPU range is invalid! Expected [<start>]-[<end>].\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -304,7 +303,7 @@ bool parse_cpu_range(const std::string & range, bool (&boolmask)[GGML_MAX_N_THRE
|
||||
} else {
|
||||
start_i = std::stoull(range.substr(0, dash_loc));
|
||||
if (start_i >= GGML_MAX_N_THREADS) {
|
||||
LOG_ERR("Start index out of bounds!\n");
|
||||
fprintf(stderr, "Start index out of bounds!\n");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
@ -314,7 +313,7 @@ bool parse_cpu_range(const std::string & range, bool (&boolmask)[GGML_MAX_N_THRE
|
||||
} else {
|
||||
end_i = std::stoull(range.substr(dash_loc + 1));
|
||||
if (end_i >= GGML_MAX_N_THREADS) {
|
||||
LOG_ERR("End index out of bounds!\n");
|
||||
fprintf(stderr, "End index out of bounds!\n");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
@ -349,7 +348,7 @@ bool parse_cpu_mask(const std::string & mask, bool (&boolmask)[GGML_MAX_N_THREAD
|
||||
} else if (c >= 'A' && c <= 'F') {
|
||||
id -= 'A' - 10;
|
||||
} else {
|
||||
LOG_ERR("Invalid hex character '%c' at position %d\n", c, int32_t(i));
|
||||
fprintf(stderr, "Invalid hex character '%c' at position %d\n", c, int32_t(i));
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -362,22 +361,6 @@ bool parse_cpu_mask(const std::string & mask, bool (&boolmask)[GGML_MAX_N_THREAD
|
||||
return true;
|
||||
}
|
||||
|
||||
void gpt_init() {
|
||||
llama_log_set([](ggml_log_level level, const char * text, void * /*user_data*/) {
|
||||
if (LOG_DEFAULT_LLAMA <= gpt_log_verbosity_thold) {
|
||||
gpt_log_add(gpt_log_main(), level, "%s", text);
|
||||
}
|
||||
}, NULL);
|
||||
|
||||
#ifdef NDEBUG
|
||||
const char * build_type = "";
|
||||
#else
|
||||
const char * build_type = " (debug)";
|
||||
#endif
|
||||
|
||||
LOG_INF("build: %d (%s) with %s for %s%s\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT, LLAMA_COMPILER, LLAMA_BUILD_TARGET, build_type);
|
||||
}
|
||||
|
||||
std::string gpt_params_get_system_info(const gpt_params & params) {
|
||||
std::ostringstream os;
|
||||
|
||||
@ -458,94 +441,6 @@ void string_replace_all(std::string & s, const std::string & search, const std::
|
||||
s = std::move(builder);
|
||||
}
|
||||
|
||||
std::string string_from(bool value) {
|
||||
return value ? "true" : "false";
|
||||
}
|
||||
|
||||
std::string string_from(const std::vector<int> & values) {
|
||||
std::stringstream buf;
|
||||
|
||||
buf << "[ ";
|
||||
bool first = true;
|
||||
for (auto e : values) {
|
||||
if (first) {
|
||||
first = false;
|
||||
} else {
|
||||
buf << ", ";
|
||||
}
|
||||
buf << std::to_string(e);
|
||||
}
|
||||
buf << " ]";
|
||||
|
||||
return buf.str();
|
||||
}
|
||||
|
||||
std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens) {
|
||||
std::stringstream buf;
|
||||
|
||||
buf << "[ ";
|
||||
|
||||
bool first = true;
|
||||
for (const auto & token : tokens) {
|
||||
if (!first) {
|
||||
buf << ", ";
|
||||
} else {
|
||||
first = false;
|
||||
}
|
||||
|
||||
auto detokenized = llama_token_to_piece(ctx, token);
|
||||
|
||||
detokenized.erase(
|
||||
std::remove_if(
|
||||
detokenized.begin(),
|
||||
detokenized.end(),
|
||||
[](const unsigned char c) { return !std::isprint(c); }),
|
||||
detokenized.end());
|
||||
|
||||
buf << "'" << detokenized << "'"
|
||||
<< ":" << std::to_string(token);
|
||||
}
|
||||
|
||||
buf << " ]";
|
||||
|
||||
return buf.str();
|
||||
}
|
||||
|
||||
std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch) {
|
||||
std::stringstream buf;
|
||||
|
||||
buf << "[ ";
|
||||
|
||||
bool first = true;
|
||||
for (int i = 0; i < batch.n_tokens; ++i) {
|
||||
if (!first) {
|
||||
buf << ", ";
|
||||
} else {
|
||||
first = false;
|
||||
}
|
||||
|
||||
auto detokenized = llama_token_to_piece(ctx, batch.token[i]);
|
||||
|
||||
detokenized.erase(
|
||||
std::remove_if(
|
||||
detokenized.begin(),
|
||||
detokenized.end(),
|
||||
[](const unsigned char c) { return !std::isprint(c); }),
|
||||
detokenized.end());
|
||||
|
||||
buf << "\n" << std::to_string(i)
|
||||
<< ":token '" << detokenized << "'"
|
||||
<< ":pos " << std::to_string(batch.pos[i])
|
||||
<< ":n_seq_id " << std::to_string(batch.n_seq_id[i])
|
||||
<< ":seq_id " << std::to_string(batch.seq_id[i][0])
|
||||
<< ":logits " << std::to_string(batch.logits[i]);
|
||||
}
|
||||
|
||||
buf << " ]";
|
||||
|
||||
return buf.str();
|
||||
}
|
||||
|
||||
void string_process_escapes(std::string & input) {
|
||||
std::size_t input_len = input.length();
|
||||
std::size_t output_idx = 0;
|
||||
@ -586,7 +481,7 @@ void string_process_escapes(std::string & input) {
|
||||
bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides) {
|
||||
const char * sep = strchr(data, '=');
|
||||
if (sep == nullptr || sep - data >= 128) {
|
||||
LOG_ERR("%s: malformed KV override '%s'\n", __func__, data);
|
||||
fprintf(stderr, "%s: malformed KV override '%s'\n", __func__, data);
|
||||
return false;
|
||||
}
|
||||
llama_model_kv_override kvo;
|
||||
@ -609,20 +504,20 @@ bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_over
|
||||
} else if (std::strcmp(sep, "false") == 0) {
|
||||
kvo.val_bool = false;
|
||||
} else {
|
||||
LOG_ERR("%s: invalid boolean value for KV override '%s'\n", __func__, data);
|
||||
fprintf(stderr, "%s: invalid boolean value for KV override '%s'\n", __func__, data);
|
||||
return false;
|
||||
}
|
||||
} else if (strncmp(sep, "str:", 4) == 0) {
|
||||
sep += 4;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
|
||||
if (strlen(sep) > 127) {
|
||||
LOG_ERR("%s: malformed KV override '%s', value cannot exceed 127 chars\n", __func__, data);
|
||||
fprintf(stderr, "%s: malformed KV override '%s', value cannot exceed 127 chars\n", __func__, data);
|
||||
return false;
|
||||
}
|
||||
strncpy(kvo.val_str, sep, 127);
|
||||
kvo.val_str[127] = '\0';
|
||||
} else {
|
||||
LOG_ERR("%s: invalid type for KV override '%s'\n", __func__, data);
|
||||
fprintf(stderr, "%s: invalid type for KV override '%s'\n", __func__, data);
|
||||
return false;
|
||||
}
|
||||
overrides.emplace_back(std::move(kvo));
|
||||
@ -834,7 +729,7 @@ struct llama_init_result llama_init_from_gpt_params(gpt_params & params) {
|
||||
}
|
||||
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.c_str());
|
||||
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
|
||||
return iparams;
|
||||
}
|
||||
|
||||
@ -842,7 +737,7 @@ struct llama_init_result llama_init_from_gpt_params(gpt_params & params) {
|
||||
|
||||
llama_context * lctx = llama_new_context_with_model(model, cparams);
|
||||
if (lctx == NULL) {
|
||||
LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.c_str());
|
||||
fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str());
|
||||
llama_free_model(model);
|
||||
return iparams;
|
||||
}
|
||||
@ -878,7 +773,7 @@ struct llama_init_result llama_init_from_gpt_params(gpt_params & params) {
|
||||
loaded_la.scale = la.scale;
|
||||
loaded_la.adapter = llama_lora_adapter_init(model, la.path.c_str());
|
||||
if (loaded_la.adapter == nullptr) {
|
||||
LOG_ERR("%s: failed to apply lora adapter '%s'\n", __func__, la.path.c_str());
|
||||
fprintf(stderr, "%s: error: failed to apply lora adapter '%s'\n", __func__, la.path.c_str());
|
||||
llama_free(lctx);
|
||||
llama_free_model(model);
|
||||
return iparams;
|
||||
@ -890,12 +785,12 @@ struct llama_init_result llama_init_from_gpt_params(gpt_params & params) {
|
||||
}
|
||||
|
||||
if (params.sparams.ignore_eos && llama_token_eos(model) == -1) {
|
||||
LOG_WRN("%s: warning: model does not have an EOS token, ignoring --ignore-eos\n", __func__);
|
||||
fprintf(stderr, "%s: warning: model does not have an EOS token, ignoring --ignore-eos\n", __func__);
|
||||
params.sparams.ignore_eos = false;
|
||||
}
|
||||
|
||||
if (params.warmup) {
|
||||
LOG_WRN("%s: warming up the model with an empty run - please wait ... (--no-warmup to disable)\n", __func__);
|
||||
LOG("warming up the model with an empty run\n");
|
||||
|
||||
std::vector<llama_token> tmp;
|
||||
llama_token bos = llama_token_bos(model);
|
||||
@ -925,7 +820,7 @@ struct llama_init_result llama_init_from_gpt_params(gpt_params & params) {
|
||||
}
|
||||
llama_kv_cache_clear(lctx);
|
||||
llama_synchronize(lctx);
|
||||
llama_perf_context_reset(lctx);
|
||||
llama_perf_reset(lctx, LLAMA_PERF_TYPE_CONTEXT);
|
||||
}
|
||||
|
||||
iparams.model = model;
|
||||
@ -1021,7 +916,6 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
|
||||
cparams.cb_eval_user_data = params.cb_eval_user_data;
|
||||
cparams.offload_kqv = !params.no_kv_offload;
|
||||
cparams.flash_attn = params.flash_attn;
|
||||
cparams.no_perf = params.no_perf;
|
||||
|
||||
cparams.type_k = kv_cache_type_from_str(params.cache_type_k);
|
||||
cparams.type_v = kv_cache_type_from_str(params.cache_type_v);
|
||||
@ -1060,7 +954,7 @@ static bool curl_perform_with_retry(const std::string& url, CURL* curl, int max_
|
||||
int remaining_attempts = max_attempts;
|
||||
|
||||
while (remaining_attempts > 0) {
|
||||
LOG_INF("%s: Trying to download from %s (attempt %d of %d)...\n", __func__ , url.c_str(), max_attempts - remaining_attempts + 1, max_attempts);
|
||||
fprintf(stderr, "%s: Trying to download from %s (attempt %d of %d)...\n", __func__ , url.c_str(), max_attempts - remaining_attempts + 1, max_attempts);
|
||||
|
||||
CURLcode res = curl_easy_perform(curl);
|
||||
if (res == CURLE_OK) {
|
||||
@ -1068,14 +962,13 @@ static bool curl_perform_with_retry(const std::string& url, CURL* curl, int max_
|
||||
}
|
||||
|
||||
int exponential_backoff_delay = std::pow(retry_delay_seconds, max_attempts - remaining_attempts) * 1000;
|
||||
LOG_WRN("%s: curl_easy_perform() failed: %s, retrying after %d milliseconds...\n", __func__, curl_easy_strerror(res), exponential_backoff_delay);
|
||||
fprintf(stderr, "%s: curl_easy_perform() failed: %s, retrying after %d milliseconds...\n", __func__, curl_easy_strerror(res), exponential_backoff_delay);
|
||||
|
||||
remaining_attempts--;
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay));
|
||||
}
|
||||
|
||||
LOG_ERR("%s: curl_easy_perform() failed after %d attempts\n", __func__, max_attempts);
|
||||
|
||||
fprintf(stderr, "%s: curl_easy_perform() failed after %d attempts\n", __func__, max_attempts);
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -1084,7 +977,7 @@ static bool llama_download_file(const std::string & url, const std::string & pat
|
||||
// Initialize libcurl
|
||||
std::unique_ptr<CURL, decltype(&curl_easy_cleanup)> curl(curl_easy_init(), &curl_easy_cleanup);
|
||||
if (!curl) {
|
||||
LOG_ERR("%s: error initializing libcurl\n", __func__);
|
||||
fprintf(stderr, "%s: error initializing libcurl\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -1125,11 +1018,11 @@ static bool llama_download_file(const std::string & url, const std::string & pat
|
||||
if (metadata_in.good()) {
|
||||
try {
|
||||
metadata_in >> metadata;
|
||||
LOG_INF("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
|
||||
fprintf(stderr, "%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
|
||||
if (metadata.contains("url") && metadata.at("url").is_string()) {
|
||||
auto previous_url = metadata.at("url").get<std::string>();
|
||||
if (previous_url != url) {
|
||||
LOG_ERR("%s: Model URL mismatch: %s != %s\n", __func__, url.c_str(), previous_url.c_str());
|
||||
fprintf(stderr, "%s: Model URL mismatch: %s != %s\n", __func__, url.c_str(), previous_url.c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
@ -1140,12 +1033,12 @@ static bool llama_download_file(const std::string & url, const std::string & pat
|
||||
last_modified = metadata.at("lastModified");
|
||||
}
|
||||
} catch (const nlohmann::json::exception & e) {
|
||||
LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
|
||||
fprintf(stderr, "%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
|
||||
fprintf(stderr, "%s: no previous model file found %s\n", __func__, path.c_str());
|
||||
}
|
||||
|
||||
// Send a HEAD request to retrieve the etag and last-modified headers
|
||||
@ -1193,26 +1086,26 @@ static bool llama_download_file(const std::string & url, const std::string & pat
|
||||
// HEAD not supported, we don't know if the file has changed
|
||||
// force trigger downloading
|
||||
force_download = true;
|
||||
LOG_ERR("%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
|
||||
fprintf(stderr, "%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
|
||||
}
|
||||
}
|
||||
|
||||
bool should_download = !file_exists || force_download;
|
||||
if (!should_download) {
|
||||
if (!etag.empty() && etag != headers.etag) {
|
||||
LOG_WRN("%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str());
|
||||
fprintf(stderr, "%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str());
|
||||
should_download = true;
|
||||
} else if (!last_modified.empty() && last_modified != headers.last_modified) {
|
||||
LOG_WRN("%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__, last_modified.c_str(), headers.last_modified.c_str());
|
||||
fprintf(stderr, "%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__, last_modified.c_str(), headers.last_modified.c_str());
|
||||
should_download = true;
|
||||
}
|
||||
}
|
||||
if (should_download) {
|
||||
std::string path_temporary = path + ".downloadInProgress";
|
||||
if (file_exists) {
|
||||
LOG_WRN("%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
|
||||
fprintf(stderr, "%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
|
||||
if (remove(path.c_str()) != 0) {
|
||||
LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str());
|
||||
fprintf(stderr, "%s: unable to delete file: %s\n", __func__, path.c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
@ -1227,7 +1120,7 @@ static bool llama_download_file(const std::string & url, const std::string & pat
|
||||
|
||||
std::unique_ptr<FILE, FILE_deleter> outfile(fopen(path_temporary.c_str(), "wb"));
|
||||
if (!outfile) {
|
||||
LOG_ERR("%s: error opening local file for writing: %s\n", __func__, path.c_str());
|
||||
fprintf(stderr, "%s: error opening local file for writing: %s\n", __func__, path.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -1258,7 +1151,7 @@ static bool llama_download_file(const std::string & url, const std::string & pat
|
||||
};
|
||||
|
||||
// start the download
|
||||
LOG_INF("%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
|
||||
fprintf(stderr, "%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
|
||||
llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
|
||||
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
|
||||
if (!was_perform_successful) {
|
||||
@ -1268,7 +1161,7 @@ static bool llama_download_file(const std::string & url, const std::string & pat
|
||||
long http_code = 0;
|
||||
curl_easy_getinfo (curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
|
||||
if (http_code < 200 || http_code >= 400) {
|
||||
LOG_ERR("%s: invalid http status code received: %ld\n", __func__, http_code);
|
||||
fprintf(stderr, "%s: invalid http status code received: %ld\n", __func__, http_code);
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -1282,10 +1175,10 @@ static bool llama_download_file(const std::string & url, const std::string & pat
|
||||
{"lastModified", headers.last_modified}
|
||||
});
|
||||
std::ofstream(metadata_path) << metadata.dump(4);
|
||||
LOG_INF("%s: file metadata saved: %s\n", __func__, metadata_path.c_str());
|
||||
fprintf(stderr, "%s: file metadata saved: %s\n", __func__, metadata_path.c_str());
|
||||
|
||||
if (rename(path_temporary.c_str(), path.c_str()) != 0) {
|
||||
LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
|
||||
fprintf(stderr, "%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
@ -1300,7 +1193,7 @@ struct llama_model * llama_load_model_from_url(
|
||||
const struct llama_model_params & params) {
|
||||
// Basic validation of the model_url
|
||||
if (!model_url || strlen(model_url) == 0) {
|
||||
LOG_ERR("%s: invalid model_url\n", __func__);
|
||||
fprintf(stderr, "%s: invalid model_url\n", __func__);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
@ -1317,7 +1210,7 @@ struct llama_model * llama_load_model_from_url(
|
||||
};
|
||||
auto * ctx_gguf = gguf_init_from_file(path_model, gguf_params);
|
||||
if (!ctx_gguf) {
|
||||
LOG_ERR("\n%s: failed to load input GGUF from %s\n", __func__, path_model);
|
||||
fprintf(stderr, "\n%s: failed to load input GGUF from %s\n", __func__, path_model);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
@ -1337,12 +1230,14 @@ struct llama_model * llama_load_model_from_url(
|
||||
// and extract split URL and PATH prefixes
|
||||
{
|
||||
if (!llama_split_prefix(split_prefix, sizeof(split_prefix), path_model, 0, n_split)) {
|
||||
LOG_ERR("\n%s: unexpected model file name: %s n_split=%d\n", __func__, path_model, n_split);
|
||||
fprintf(stderr, "\n%s: unexpected model file name: %s"
|
||||
" n_split=%d\n", __func__, path_model, n_split);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model_url, 0, n_split)) {
|
||||
LOG_ERR("\n%s: unexpected model url: %s n_split=%d\n", __func__, model_url, n_split);
|
||||
fprintf(stderr, "\n%s: unexpected model url: %s"
|
||||
" n_split=%d\n", __func__, model_url, n_split);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
@ -1402,7 +1297,7 @@ struct llama_model * llama_load_model_from_url(
|
||||
const char * /*path_model*/,
|
||||
const char * /*hf_token*/,
|
||||
const struct llama_model_params & /*params*/) {
|
||||
LOG_WRN("%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__);
|
||||
fprintf(stderr, "%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
@ -1412,7 +1307,7 @@ struct llama_model * llama_load_model_from_hf(
|
||||
const char * /*path_model*/,
|
||||
const char * /*hf_token*/,
|
||||
const struct llama_model_params & /*params*/) {
|
||||
LOG_WRN("%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
|
||||
fprintf(stderr, "%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
@ -1740,13 +1635,13 @@ static llama_control_vector_data llama_control_vector_load_one(const llama_contr
|
||||
};
|
||||
struct gguf_context * ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), meta_gguf_params);
|
||||
if (!ctx_gguf) {
|
||||
LOG_ERR("%s: failed to load control vector file from %s\n", __func__, load_info.fname.c_str());
|
||||
fprintf(stderr, "%s: failed to load control vector file from %s\n", __func__, load_info.fname.c_str());
|
||||
return result;
|
||||
}
|
||||
|
||||
int32_t n_tensors = gguf_get_n_tensors(ctx_gguf);
|
||||
if (n_tensors == 0) {
|
||||
LOG_WRN("%s: no direction tensors found in %s\n", __func__, load_info.fname.c_str());
|
||||
fprintf(stderr, "%s: no direction tensors found in %s\n", __func__, load_info.fname.c_str());
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_tensors; i++) {
|
||||
@ -1764,23 +1659,23 @@ static llama_control_vector_data llama_control_vector_load_one(const llama_contr
|
||||
}
|
||||
}
|
||||
if (layer_idx < 0) {
|
||||
LOG_ERR("%s: invalid/unparsable direction tensor layer index in %s\n", __func__, load_info.fname.c_str());
|
||||
fprintf(stderr, "%s: invalid/unparsable direction tensor layer index in %s\n", __func__, load_info.fname.c_str());
|
||||
result.n_embd = -1;
|
||||
break;
|
||||
} else if (layer_idx == 0) {
|
||||
LOG_ERR("%s: invalid (zero) direction tensor layer index in %s\n", __func__, load_info.fname.c_str());
|
||||
fprintf(stderr, "%s: invalid (zero) direction tensor layer index in %s\n", __func__, load_info.fname.c_str());
|
||||
result.n_embd = -1;
|
||||
break;
|
||||
}
|
||||
|
||||
struct ggml_tensor * tensor = ggml_get_tensor(ctx, name.c_str());
|
||||
if (tensor->type != GGML_TYPE_F32) {
|
||||
LOG_ERR("%s: invalid (non-F32) direction tensor type in %s\n", __func__, load_info.fname.c_str());
|
||||
fprintf(stderr, "%s: invalid (non-F32) direction tensor type in %s\n", __func__, load_info.fname.c_str());
|
||||
result.n_embd = -1;
|
||||
break;
|
||||
}
|
||||
if (ggml_n_dims(tensor) != 1) {
|
||||
LOG_ERR("%s: invalid (non-1D) direction tensor shape in %s\n", __func__, load_info.fname.c_str());
|
||||
fprintf(stderr, "%s: invalid (non-1D) direction tensor shape in %s\n", __func__, load_info.fname.c_str());
|
||||
result.n_embd = -1;
|
||||
break;
|
||||
}
|
||||
@ -1788,7 +1683,7 @@ static llama_control_vector_data llama_control_vector_load_one(const llama_contr
|
||||
if (result.n_embd == -1) {
|
||||
result.n_embd = ggml_nelements(tensor);
|
||||
} else if (ggml_nelements(tensor) != result.n_embd) {
|
||||
LOG_ERR("%s: direction tensor in %s does not match previous dimensions\n", __func__, load_info.fname.c_str());
|
||||
fprintf(stderr, "%s: direction tensor in %s does not match previous dimensions\n", __func__, load_info.fname.c_str());
|
||||
result.n_embd = -1;
|
||||
break;
|
||||
}
|
||||
@ -1805,7 +1700,7 @@ static llama_control_vector_data llama_control_vector_load_one(const llama_contr
|
||||
}
|
||||
|
||||
if (result.n_embd == -1) {
|
||||
LOG_WRN("%s: skipping %s due to invalid direction tensors\n", __func__, load_info.fname.c_str());
|
||||
fprintf(stderr, "%s: skipping %s due to invalid direction tensors\n", __func__, load_info.fname.c_str());
|
||||
result.data.clear();
|
||||
}
|
||||
|
||||
@ -1826,7 +1721,7 @@ llama_control_vector_data llama_control_vector_load(const std::vector<llama_cont
|
||||
break;
|
||||
}
|
||||
if (result.n_embd != -1 && result.n_embd != cur.n_embd) {
|
||||
LOG_ERR("%s: control vectors in %s does not match previous dimensions\n", __func__, info.fname.c_str());
|
||||
fprintf(stderr, "%s: control vectors in %s does not match previous dimensions\n", __func__, info.fname.c_str());
|
||||
result.n_embd = -1;
|
||||
break;
|
||||
}
|
||||
@ -1842,7 +1737,7 @@ llama_control_vector_data llama_control_vector_load(const std::vector<llama_cont
|
||||
}
|
||||
|
||||
if (result.n_embd == -1) {
|
||||
LOG_ERR("%s: no valid control vector files passed\n", __func__);
|
||||
fprintf(stderr, "%s: no valid control vector files passed\n", __func__);
|
||||
result.data.clear();
|
||||
}
|
||||
|
||||
|
@ -4,9 +4,11 @@
|
||||
|
||||
#include "llama.h"
|
||||
|
||||
#define LOG_NO_FILE_LINE_FUNCTION
|
||||
#include "log.h"
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <sstream>
|
||||
|
||||
#ifdef _WIN32
|
||||
#define DIRECTORY_SEPARATOR '\\'
|
||||
@ -122,7 +124,6 @@ struct gpt_sampler_params {
|
||||
float mirostat_eta = 0.10f; // learning rate
|
||||
bool penalize_nl = false; // consider newlines as a repeatable token
|
||||
bool ignore_eos = false;
|
||||
bool no_perf = false; // disable performance metrics
|
||||
|
||||
std::vector<enum gpt_sampler_type> samplers = {
|
||||
GPT_SAMPLER_TYPE_TOP_K,
|
||||
@ -245,8 +246,6 @@ struct gpt_params {
|
||||
bool simple_io = false; // improves compatibility with subprocesses and limited consoles
|
||||
bool cont_batching = true; // insert new sequences for decoding on-the-fly
|
||||
bool flash_attn = false; // flash attention
|
||||
bool no_perf = false; // disable performance metrics
|
||||
bool ctx_shift = true; // context shift on inifinite text generation
|
||||
|
||||
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
|
||||
bool logits_all = false; // return logits for all tokens in the batch
|
||||
@ -342,10 +341,6 @@ struct gpt_params {
|
||||
bool batched_bench_output_jsonl = false;
|
||||
};
|
||||
|
||||
// call once at the start of a program if it uses libcommon
|
||||
// initializes the logging system and prints info about the build
|
||||
void gpt_init();
|
||||
|
||||
std::string gpt_params_get_system_info(const gpt_params & params);
|
||||
|
||||
bool parse_cpu_range(const std::string& range, bool(&boolmask)[GGML_MAX_N_THREADS]);
|
||||
@ -381,11 +376,6 @@ static std::vector<T> string_split(const std::string & str, char delim) {
|
||||
bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
|
||||
void string_process_escapes(std::string & input);
|
||||
|
||||
std::string string_from(bool value);
|
||||
std::string string_from(const std::vector<int> & values);
|
||||
std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens);
|
||||
std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch);
|
||||
|
||||
//
|
||||
// Filesystem utils
|
||||
//
|
||||
|
401
common/log.cpp
401
common/log.cpp
@ -1,401 +0,0 @@
|
||||
#include "log.h"
|
||||
|
||||
#include <condition_variable>
|
||||
#include <cstdarg>
|
||||
#include <cstdio>
|
||||
#include <mutex>
|
||||
#include <sstream>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
|
||||
int gpt_log_verbosity_thold = LOG_DEFAULT_LLAMA;
|
||||
|
||||
void gpt_log_set_verbosity_thold(int verbosity) {
|
||||
gpt_log_verbosity_thold = verbosity;
|
||||
}
|
||||
|
||||
#define LOG_COL_DEFAULT "\033[0m"
|
||||
#define LOG_COL_BOLD "\033[1m"
|
||||
#define LOG_COL_RED "\033[31m"
|
||||
#define LOG_COL_GREEN "\033[32m"
|
||||
#define LOG_COL_YELLOW "\033[33m"
|
||||
#define LOG_COL_BLUE "\033[34m"
|
||||
#define LOG_COL_MAGENTA "\033[35m"
|
||||
#define LOG_COL_CYAN "\033[36m"
|
||||
#define LOG_COL_WHITE "\033[37m"
|
||||
|
||||
static int64_t t_us() {
|
||||
return std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::system_clock::now().time_since_epoch()).count();
|
||||
}
|
||||
|
||||
// colors
|
||||
enum gpt_log_col : int {
|
||||
GPT_LOG_COL_DEFAULT = 0,
|
||||
GPT_LOG_COL_BOLD,
|
||||
GPT_LOG_COL_RED,
|
||||
GPT_LOG_COL_GREEN,
|
||||
GPT_LOG_COL_YELLOW,
|
||||
GPT_LOG_COL_BLUE,
|
||||
GPT_LOG_COL_MAGENTA,
|
||||
GPT_LOG_COL_CYAN,
|
||||
GPT_LOG_COL_WHITE,
|
||||
};
|
||||
|
||||
// disable colors by default
|
||||
static std::vector<const char *> g_col = {
|
||||
"",
|
||||
"",
|
||||
"",
|
||||
"",
|
||||
"",
|
||||
"",
|
||||
"",
|
||||
"",
|
||||
"",
|
||||
};
|
||||
|
||||
struct gpt_log_entry {
|
||||
enum ggml_log_level level;
|
||||
|
||||
bool prefix;
|
||||
|
||||
int64_t timestamp;
|
||||
|
||||
std::vector<char> msg;
|
||||
|
||||
// signals the worker thread to stop
|
||||
bool is_end;
|
||||
|
||||
void print(FILE * file = nullptr) const {
|
||||
FILE * fcur = file;
|
||||
if (!fcur) {
|
||||
// stderr displays DBG messages only when their verbosity level is not higher than the threshold
|
||||
// these messages will still be logged to a file
|
||||
if (level == GGML_LOG_LEVEL_DEBUG && gpt_log_verbosity_thold < LOG_DEFAULT_DEBUG) {
|
||||
return;
|
||||
}
|
||||
|
||||
fcur = stdout;
|
||||
|
||||
if (level != GGML_LOG_LEVEL_NONE) {
|
||||
fcur = stderr;
|
||||
}
|
||||
}
|
||||
|
||||
if (level != GGML_LOG_LEVEL_NONE && prefix) {
|
||||
if (timestamp) {
|
||||
// [M.s.ms.us]
|
||||
fprintf(fcur, "%s%d.%02d.%03d.%03d%s ",
|
||||
g_col[GPT_LOG_COL_BLUE],
|
||||
(int) (timestamp / 1000000 / 60),
|
||||
(int) (timestamp / 1000000 % 60),
|
||||
(int) (timestamp / 1000 % 1000),
|
||||
(int) (timestamp % 1000),
|
||||
g_col[GPT_LOG_COL_DEFAULT]);
|
||||
}
|
||||
|
||||
switch (level) {
|
||||
case GGML_LOG_LEVEL_INFO: fprintf(fcur, "%sI %s", g_col[GPT_LOG_COL_GREEN], g_col[GPT_LOG_COL_DEFAULT]); break;
|
||||
case GGML_LOG_LEVEL_WARN: fprintf(fcur, "%sW %s", g_col[GPT_LOG_COL_MAGENTA], "" ); break;
|
||||
case GGML_LOG_LEVEL_ERROR: fprintf(fcur, "%sE %s", g_col[GPT_LOG_COL_RED], "" ); break;
|
||||
case GGML_LOG_LEVEL_DEBUG: fprintf(fcur, "%sD %s", g_col[GPT_LOG_COL_YELLOW], "" ); break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
fprintf(fcur, "%s", msg.data());
|
||||
|
||||
if (level == GGML_LOG_LEVEL_WARN || level == GGML_LOG_LEVEL_ERROR || level == GGML_LOG_LEVEL_DEBUG) {
|
||||
fprintf(fcur, "%s", g_col[GPT_LOG_COL_DEFAULT]);
|
||||
}
|
||||
|
||||
fflush(fcur);
|
||||
}
|
||||
};
|
||||
|
||||
struct gpt_log {
|
||||
// default capacity - will be expanded if needed
|
||||
gpt_log() : gpt_log(256) {}
|
||||
|
||||
gpt_log(size_t capacity) {
|
||||
file = nullptr;
|
||||
prefix = false;
|
||||
timestamps = false;
|
||||
running = false;
|
||||
t_start = t_us();
|
||||
|
||||
// initial message size - will be expanded if longer messages arrive
|
||||
entries.resize(capacity);
|
||||
for (auto & entry : entries) {
|
||||
entry.msg.resize(256);
|
||||
}
|
||||
|
||||
head = 0;
|
||||
tail = 0;
|
||||
|
||||
resume();
|
||||
}
|
||||
|
||||
~gpt_log() {
|
||||
pause();
|
||||
if (file) {
|
||||
fclose(file);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
std::mutex mtx;
|
||||
std::thread thrd;
|
||||
std::condition_variable cv;
|
||||
|
||||
FILE * file;
|
||||
|
||||
bool prefix;
|
||||
bool timestamps;
|
||||
bool running;
|
||||
|
||||
int64_t t_start;
|
||||
|
||||
// ring buffer of entries
|
||||
std::vector<gpt_log_entry> entries;
|
||||
size_t head;
|
||||
size_t tail;
|
||||
|
||||
// worker thread copies into this
|
||||
gpt_log_entry cur;
|
||||
|
||||
public:
|
||||
void add(enum ggml_log_level level, const char * fmt, va_list args) {
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
|
||||
if (!running) {
|
||||
// discard messages while the worker thread is paused
|
||||
return;
|
||||
}
|
||||
|
||||
auto & entry = entries[tail];
|
||||
|
||||
{
|
||||
// cannot use args twice, so make a copy in case we need to expand the buffer
|
||||
va_list args_copy;
|
||||
va_copy(args_copy, args);
|
||||
|
||||
#if 1
|
||||
const size_t n = vsnprintf(entry.msg.data(), entry.msg.size(), fmt, args);
|
||||
if (n >= entry.msg.size()) {
|
||||
entry.msg.resize(n + 1);
|
||||
vsnprintf(entry.msg.data(), entry.msg.size(), fmt, args_copy);
|
||||
}
|
||||
#else
|
||||
// hack for bolding arguments
|
||||
|
||||
std::stringstream ss;
|
||||
for (int i = 0; fmt[i] != 0; i++) {
|
||||
if (fmt[i] == '%') {
|
||||
ss << LOG_COL_BOLD;
|
||||
while (fmt[i] != ' ' && fmt[i] != ')' && fmt[i] != ']' && fmt[i] != 0) ss << fmt[i++];
|
||||
ss << LOG_COL_DEFAULT;
|
||||
if (fmt[i] == 0) break;
|
||||
}
|
||||
ss << fmt[i];
|
||||
}
|
||||
const size_t n = vsnprintf(entry.msg.data(), entry.msg.size(), ss.str().c_str(), args);
|
||||
if (n >= entry.msg.size()) {
|
||||
entry.msg.resize(n + 1);
|
||||
vsnprintf(entry.msg.data(), entry.msg.size(), ss.str().c_str(), args_copy);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
entry.level = level;
|
||||
entry.prefix = prefix;
|
||||
entry.timestamp = 0;
|
||||
if (timestamps) {
|
||||
entry.timestamp = t_us() - t_start;
|
||||
}
|
||||
entry.is_end = false;
|
||||
|
||||
tail = (tail + 1) % entries.size();
|
||||
if (tail == head) {
|
||||
// expand the buffer
|
||||
std::vector<gpt_log_entry> new_entries(2*entries.size());
|
||||
|
||||
size_t new_tail = 0;
|
||||
|
||||
do {
|
||||
new_entries[new_tail] = std::move(entries[head]);
|
||||
|
||||
head = (head + 1) % entries.size();
|
||||
new_tail = (new_tail + 1);
|
||||
} while (head != tail);
|
||||
|
||||
head = 0;
|
||||
tail = new_tail;
|
||||
|
||||
for (size_t i = tail; i < new_entries.size(); i++) {
|
||||
new_entries[i].msg.resize(256);
|
||||
}
|
||||
|
||||
entries = std::move(new_entries);
|
||||
}
|
||||
|
||||
cv.notify_one();
|
||||
}
|
||||
|
||||
void resume() {
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
|
||||
if (running) {
|
||||
return;
|
||||
}
|
||||
|
||||
running = true;
|
||||
|
||||
thrd = std::thread([this]() {
|
||||
while (true) {
|
||||
{
|
||||
std::unique_lock<std::mutex> lock(mtx);
|
||||
cv.wait(lock, [this]() { return head != tail; });
|
||||
|
||||
cur = entries[head];
|
||||
|
||||
head = (head + 1) % entries.size();
|
||||
}
|
||||
|
||||
if (cur.is_end) {
|
||||
break;
|
||||
}
|
||||
|
||||
cur.print(); // stdout and stderr
|
||||
|
||||
if (file) {
|
||||
cur.print(file);
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
void pause() {
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
|
||||
if (!running) {
|
||||
return;
|
||||
}
|
||||
|
||||
running = false;
|
||||
|
||||
// push an entry to signal the worker thread to stop
|
||||
{
|
||||
auto & entry = entries[tail];
|
||||
entry.is_end = true;
|
||||
|
||||
tail = (tail + 1) % entries.size();
|
||||
}
|
||||
|
||||
cv.notify_one();
|
||||
}
|
||||
|
||||
thrd.join();
|
||||
}
|
||||
|
||||
void set_file(const char * path) {
|
||||
pause();
|
||||
|
||||
if (file) {
|
||||
fclose(file);
|
||||
}
|
||||
|
||||
if (path) {
|
||||
file = fopen(path, "w");
|
||||
} else {
|
||||
file = nullptr;
|
||||
}
|
||||
|
||||
resume();
|
||||
}
|
||||
|
||||
void set_colors(bool colors) {
|
||||
pause();
|
||||
|
||||
if (colors) {
|
||||
g_col[GPT_LOG_COL_DEFAULT] = LOG_COL_DEFAULT;
|
||||
g_col[GPT_LOG_COL_BOLD] = LOG_COL_BOLD;
|
||||
g_col[GPT_LOG_COL_RED] = LOG_COL_RED;
|
||||
g_col[GPT_LOG_COL_GREEN] = LOG_COL_GREEN;
|
||||
g_col[GPT_LOG_COL_YELLOW] = LOG_COL_YELLOW;
|
||||
g_col[GPT_LOG_COL_BLUE] = LOG_COL_BLUE;
|
||||
g_col[GPT_LOG_COL_MAGENTA] = LOG_COL_MAGENTA;
|
||||
g_col[GPT_LOG_COL_CYAN] = LOG_COL_CYAN;
|
||||
g_col[GPT_LOG_COL_WHITE] = LOG_COL_WHITE;
|
||||
} else {
|
||||
for (size_t i = 0; i < g_col.size(); i++) {
|
||||
g_col[i] = "";
|
||||
}
|
||||
}
|
||||
|
||||
resume();
|
||||
}
|
||||
|
||||
void set_prefix(bool prefix) {
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
|
||||
this->prefix = prefix;
|
||||
}
|
||||
|
||||
void set_timestamps(bool timestamps) {
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
|
||||
this->timestamps = timestamps;
|
||||
}
|
||||
};
|
||||
|
||||
//
|
||||
// public API
|
||||
//
|
||||
|
||||
struct gpt_log * gpt_log_init() {
|
||||
return new gpt_log;
|
||||
}
|
||||
|
||||
struct gpt_log * gpt_log_main() {
|
||||
static struct gpt_log log;
|
||||
|
||||
return &log;
|
||||
}
|
||||
|
||||
void gpt_log_pause(struct gpt_log * log) {
|
||||
log->pause();
|
||||
}
|
||||
|
||||
void gpt_log_resume(struct gpt_log * log) {
|
||||
log->resume();
|
||||
}
|
||||
|
||||
void gpt_log_free(struct gpt_log * log) {
|
||||
delete log;
|
||||
}
|
||||
|
||||
void gpt_log_add(struct gpt_log * log, enum ggml_log_level level, const char * fmt, ...) {
|
||||
va_list args;
|
||||
va_start(args, fmt);
|
||||
log->add(level, fmt, args);
|
||||
va_end(args);
|
||||
}
|
||||
|
||||
void gpt_log_set_file(struct gpt_log * log, const char * file) {
|
||||
log->set_file(file);
|
||||
}
|
||||
|
||||
void gpt_log_set_colors(struct gpt_log * log, bool colors) {
|
||||
log->set_colors(colors);
|
||||
}
|
||||
|
||||
void gpt_log_set_prefix(struct gpt_log * log, bool prefix) {
|
||||
log->set_prefix(prefix);
|
||||
}
|
||||
|
||||
void gpt_log_set_timestamps(struct gpt_log * log, bool timestamps) {
|
||||
log->set_timestamps(timestamps);
|
||||
}
|
778
common/log.h
778
common/log.h
@ -1,90 +1,724 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h" // for ggml_log_level
|
||||
#include <chrono>
|
||||
#include <cstring>
|
||||
#include <sstream>
|
||||
#include <iostream>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
#include <cinttypes>
|
||||
|
||||
#ifndef __GNUC__
|
||||
# define LOG_ATTRIBUTE_FORMAT(...)
|
||||
#elif defined(__MINGW32__)
|
||||
# define LOG_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
|
||||
#else
|
||||
# define LOG_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
|
||||
// --------------------------------
|
||||
//
|
||||
// Basic usage:
|
||||
//
|
||||
// --------
|
||||
//
|
||||
// The LOG() and LOG_TEE() macros are ready to go by default
|
||||
// they do not require any initialization.
|
||||
//
|
||||
// LOGLN() and LOG_TEELN() are variants which automatically
|
||||
// include \n character at the end of the log string.
|
||||
//
|
||||
// LOG() behaves exactly like printf, by default writing to a logfile.
|
||||
// LOG_TEE() additionally, prints to the screen too ( mimics Unix tee command ).
|
||||
//
|
||||
// Default logfile is named
|
||||
// "llama.<threadID>.log"
|
||||
// Default LOG_TEE() secondary output target is
|
||||
// stderr
|
||||
//
|
||||
// Logs can be dynamically disabled or enabled using functions:
|
||||
// log_disable()
|
||||
// and
|
||||
// log_enable()
|
||||
//
|
||||
// A log target can be changed with:
|
||||
// log_set_target( string )
|
||||
// creating and opening, or re-opening a file by string filename
|
||||
// or
|
||||
// log_set_target( FILE* )
|
||||
// allowing to point at stderr, stdout, or any valid FILE* file handler.
|
||||
//
|
||||
// --------
|
||||
//
|
||||
// End of Basic usage.
|
||||
//
|
||||
// --------------------------------
|
||||
|
||||
// Specifies a log target.
|
||||
// default uses log_handler() with "llama.log" log file
|
||||
// this can be changed, by defining LOG_TARGET
|
||||
// like so:
|
||||
//
|
||||
// #define LOG_TARGET (a valid FILE*)
|
||||
// #include "log.h"
|
||||
//
|
||||
// or it can be simply redirected to stdout or stderr
|
||||
// like so:
|
||||
//
|
||||
// #define LOG_TARGET stderr
|
||||
// #include "log.h"
|
||||
//
|
||||
// The log target can also be redirected to a different function
|
||||
// like so:
|
||||
//
|
||||
// #define LOG_TARGET log_handler_different()
|
||||
// #include "log.h"
|
||||
//
|
||||
// FILE* log_handler_different()
|
||||
// {
|
||||
// return stderr;
|
||||
// }
|
||||
//
|
||||
// or:
|
||||
//
|
||||
// #define LOG_TARGET log_handler_another_one("somelog.log")
|
||||
// #include "log.h"
|
||||
//
|
||||
// FILE* log_handler_another_one(char*filename)
|
||||
// {
|
||||
// static FILE* logfile = nullptr;
|
||||
// (...)
|
||||
// if( !logfile )
|
||||
// {
|
||||
// fopen(...)
|
||||
// }
|
||||
// (...)
|
||||
// return logfile
|
||||
// }
|
||||
//
|
||||
#ifndef LOG_TARGET
|
||||
#define LOG_TARGET log_handler()
|
||||
#endif
|
||||
|
||||
#define LOG_DEFAULT_DEBUG 1
|
||||
#define LOG_DEFAULT_LLAMA 0
|
||||
#ifndef LOG_TEE_TARGET
|
||||
#define LOG_TEE_TARGET stderr
|
||||
#endif
|
||||
|
||||
// needed by the LOG_TMPL macro to avoid computing log arguments if the verbosity lower
|
||||
// set via gpt_log_set_verbosity()
|
||||
extern int gpt_log_verbosity_thold;
|
||||
// Utility for synchronizing log configuration state
|
||||
// since std::optional was introduced only in c++17
|
||||
enum LogTriState
|
||||
{
|
||||
LogTriStateSame,
|
||||
LogTriStateFalse,
|
||||
LogTriStateTrue
|
||||
};
|
||||
|
||||
void gpt_log_set_verbosity_thold(int verbosity); // not thread-safe
|
||||
// Utility to obtain "pid" like unique process id and use it when creating log files.
|
||||
inline std::string log_get_pid()
|
||||
{
|
||||
static std::string pid;
|
||||
if (pid.empty())
|
||||
{
|
||||
// std::this_thread::get_id() is the most portable way of obtaining a "process id"
|
||||
// it's not the same as "pid" but is unique enough to solve multiple instances
|
||||
// trying to write to the same log.
|
||||
std::stringstream ss;
|
||||
ss << std::this_thread::get_id();
|
||||
pid = ss.str();
|
||||
}
|
||||
|
||||
// the gpt_log uses an internal worker thread to print/write log messages
|
||||
// when the worker thread is paused, incoming log messages are discarded
|
||||
struct gpt_log;
|
||||
return pid;
|
||||
}
|
||||
|
||||
struct gpt_log * gpt_log_init();
|
||||
struct gpt_log * gpt_log_main(); // singleton, automatically destroys itself on exit
|
||||
void gpt_log_pause (struct gpt_log * log); // pause the worker thread, not thread-safe
|
||||
void gpt_log_resume(struct gpt_log * log); // resume the worker thread, not thread-safe
|
||||
void gpt_log_free (struct gpt_log * log);
|
||||
// Utility function for generating log file names with unique id based on thread id.
|
||||
// invocation with log_filename_generator( "llama", "log" ) creates a string "llama.<number>.log"
|
||||
// where the number is a runtime id of the current thread.
|
||||
|
||||
LOG_ATTRIBUTE_FORMAT(3, 4)
|
||||
void gpt_log_add(struct gpt_log * log, enum ggml_log_level level, const char * fmt, ...);
|
||||
#define log_filename_generator(log_file_basename, log_file_extension) log_filename_generator_impl(LogTriStateSame, log_file_basename, log_file_extension)
|
||||
|
||||
// defaults: file = NULL, colors = false, prefix = false, timestamps = false
|
||||
//
|
||||
// regular log output:
|
||||
//
|
||||
// ggml_backend_metal_log_allocated_size: allocated buffer, size = 6695.84 MiB, ( 6695.91 / 21845.34)
|
||||
// llm_load_tensors: ggml ctx size = 0.27 MiB
|
||||
// llm_load_tensors: offloading 32 repeating layers to GPU
|
||||
// llm_load_tensors: offloading non-repeating layers to GPU
|
||||
//
|
||||
// with prefix = true, timestamps = true, the log output will look like this:
|
||||
//
|
||||
// 0.00.035.060 D ggml_backend_metal_log_allocated_size: allocated buffer, size = 6695.84 MiB, ( 6695.91 / 21845.34)
|
||||
// 0.00.035.064 I llm_load_tensors: ggml ctx size = 0.27 MiB
|
||||
// 0.00.090.578 I llm_load_tensors: offloading 32 repeating layers to GPU
|
||||
// 0.00.090.579 I llm_load_tensors: offloading non-repeating layers to GPU
|
||||
//
|
||||
// I - info (stdout, V = 0)
|
||||
// W - warning (stderr, V = 0)
|
||||
// E - error (stderr, V = 0)
|
||||
// D - debug (stderr, V = LOG_DEFAULT_DEBUG)
|
||||
//
|
||||
// INTERNAL, DO NOT USE
|
||||
inline std::string log_filename_generator_impl(LogTriState multilog, const std::string & log_file_basename, const std::string & log_file_extension)
|
||||
{
|
||||
static bool _multilog = false;
|
||||
|
||||
void gpt_log_set_file (struct gpt_log * log, const char * file); // not thread-safe
|
||||
void gpt_log_set_colors (struct gpt_log * log, bool colors); // not thread-safe
|
||||
void gpt_log_set_prefix (struct gpt_log * log, bool prefix); // whether to output prefix to each log
|
||||
void gpt_log_set_timestamps(struct gpt_log * log, bool timestamps); // whether to output timestamps in the prefix
|
||||
if (multilog != LogTriStateSame)
|
||||
{
|
||||
_multilog = multilog == LogTriStateTrue;
|
||||
}
|
||||
|
||||
// helper macros for logging
|
||||
// use these to avoid computing log arguments if the verbosity of the log is higher than the threshold
|
||||
//
|
||||
// for example:
|
||||
//
|
||||
// LOG_DBG("this is a debug message: %d\n", expensive_function());
|
||||
//
|
||||
// this will avoid calling expensive_function() if LOG_DEFAULT_DEBUG > gpt_log_verbosity_thold
|
||||
//
|
||||
std::stringstream buf;
|
||||
|
||||
#define LOG_TMPL(level, verbosity, ...) \
|
||||
do { \
|
||||
if ((verbosity) <= gpt_log_verbosity_thold) { \
|
||||
gpt_log_add(gpt_log_main(), (level), __VA_ARGS__); \
|
||||
} \
|
||||
buf << log_file_basename;
|
||||
if (_multilog)
|
||||
{
|
||||
buf << ".";
|
||||
buf << log_get_pid();
|
||||
}
|
||||
buf << ".";
|
||||
buf << log_file_extension;
|
||||
|
||||
return buf.str();
|
||||
}
|
||||
|
||||
#ifndef LOG_DEFAULT_FILE_NAME
|
||||
#define LOG_DEFAULT_FILE_NAME log_filename_generator("llama", "log")
|
||||
#endif
|
||||
|
||||
// Utility for turning #define values into string literals
|
||||
// so we can have a define for stderr and
|
||||
// we can print "stderr" instead of literal stderr, etc.
|
||||
#define LOG_STRINGIZE1(s) #s
|
||||
#define LOG_STRINGIZE(s) LOG_STRINGIZE1(s)
|
||||
|
||||
#define LOG_TEE_TARGET_STRING LOG_STRINGIZE(LOG_TEE_TARGET)
|
||||
|
||||
// Allows disabling timestamps.
|
||||
// in order to disable, define LOG_NO_TIMESTAMPS
|
||||
// like so:
|
||||
//
|
||||
// #define LOG_NO_TIMESTAMPS
|
||||
// #include "log.h"
|
||||
//
|
||||
#ifndef LOG_NO_TIMESTAMPS
|
||||
#ifndef _MSC_VER
|
||||
#define LOG_TIMESTAMP_FMT "[%" PRIu64 "] "
|
||||
#define LOG_TIMESTAMP_VAL , (std::chrono::duration_cast<std::chrono::duration<std::uint64_t>>(std::chrono::system_clock::now().time_since_epoch())).count()
|
||||
#else
|
||||
#define LOG_TIMESTAMP_FMT "[%" PRIu64 "] "
|
||||
#define LOG_TIMESTAMP_VAL , (std::chrono::duration_cast<std::chrono::duration<std::uint64_t>>(std::chrono::system_clock::now().time_since_epoch())).count()
|
||||
#endif
|
||||
#else
|
||||
#define LOG_TIMESTAMP_FMT "%s"
|
||||
#define LOG_TIMESTAMP_VAL ,""
|
||||
#endif
|
||||
|
||||
#ifdef LOG_TEE_TIMESTAMPS
|
||||
#ifndef _MSC_VER
|
||||
#define LOG_TEE_TIMESTAMP_FMT "[%" PRIu64 "] "
|
||||
#define LOG_TEE_TIMESTAMP_VAL , (std::chrono::duration_cast<std::chrono::duration<std::uint64_t>>(std::chrono::system_clock::now().time_since_epoch())).count()
|
||||
#else
|
||||
#define LOG_TEE_TIMESTAMP_FMT "[%" PRIu64 "] "
|
||||
#define LOG_TEE_TIMESTAMP_VAL , (std::chrono::duration_cast<std::chrono::duration<std::uint64_t>>(std::chrono::system_clock::now().time_since_epoch())).count()
|
||||
#endif
|
||||
#else
|
||||
#define LOG_TEE_TIMESTAMP_FMT "%s"
|
||||
#define LOG_TEE_TIMESTAMP_VAL ,""
|
||||
#endif
|
||||
|
||||
// Allows disabling file/line/function prefix
|
||||
// in order to disable, define LOG_NO_FILE_LINE_FUNCTION
|
||||
// like so:
|
||||
//
|
||||
// #define LOG_NO_FILE_LINE_FUNCTION
|
||||
// #include "log.h"
|
||||
//
|
||||
#ifndef LOG_NO_FILE_LINE_FUNCTION
|
||||
#ifndef _MSC_VER
|
||||
#define LOG_FLF_FMT "[%24s:%5d][%24s] "
|
||||
#define LOG_FLF_VAL , __FILE__, __LINE__, __FUNCTION__
|
||||
#else
|
||||
#define LOG_FLF_FMT "[%24s:%5ld][%24s] "
|
||||
#define LOG_FLF_VAL , __FILE__, (long)__LINE__, __FUNCTION__
|
||||
#endif
|
||||
#else
|
||||
#define LOG_FLF_FMT "%s"
|
||||
#define LOG_FLF_VAL ,""
|
||||
#endif
|
||||
|
||||
#ifdef LOG_TEE_FILE_LINE_FUNCTION
|
||||
#ifndef _MSC_VER
|
||||
#define LOG_TEE_FLF_FMT "[%24s:%5d][%24s] "
|
||||
#define LOG_TEE_FLF_VAL , __FILE__, __LINE__, __FUNCTION__
|
||||
#else
|
||||
#define LOG_TEE_FLF_FMT "[%24s:%5ld][%24s] "
|
||||
#define LOG_TEE_FLF_VAL , __FILE__, (long)__LINE__, __FUNCTION__
|
||||
#endif
|
||||
#else
|
||||
#define LOG_TEE_FLF_FMT "%s"
|
||||
#define LOG_TEE_FLF_VAL ,""
|
||||
#endif
|
||||
|
||||
// INTERNAL, DO NOT USE
|
||||
// USE LOG() INSTEAD
|
||||
//
|
||||
#if !defined(_MSC_VER) || defined(__INTEL_LLVM_COMPILER) || defined(__clang__)
|
||||
#define LOG_IMPL(str, ...) \
|
||||
do { \
|
||||
if (LOG_TARGET != nullptr) \
|
||||
{ \
|
||||
fprintf(LOG_TARGET, LOG_TIMESTAMP_FMT LOG_FLF_FMT str "%s" LOG_TIMESTAMP_VAL LOG_FLF_VAL, __VA_ARGS__); \
|
||||
fflush(LOG_TARGET); \
|
||||
} \
|
||||
} while (0)
|
||||
#else
|
||||
#define LOG_IMPL(str, ...) \
|
||||
do { \
|
||||
if (LOG_TARGET != nullptr) \
|
||||
{ \
|
||||
fprintf(LOG_TARGET, LOG_TIMESTAMP_FMT LOG_FLF_FMT str "%s" LOG_TIMESTAMP_VAL LOG_FLF_VAL "", ##__VA_ARGS__); \
|
||||
fflush(LOG_TARGET); \
|
||||
} \
|
||||
} while (0)
|
||||
#endif
|
||||
|
||||
#define LOG(...) LOG_TMPL(GGML_LOG_LEVEL_NONE, 0, __VA_ARGS__)
|
||||
#define LOGV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_NONE, verbosity, __VA_ARGS__)
|
||||
// INTERNAL, DO NOT USE
|
||||
// USE LOG_TEE() INSTEAD
|
||||
//
|
||||
#if !defined(_MSC_VER) || defined(__INTEL_LLVM_COMPILER) || defined(__clang__)
|
||||
#define LOG_TEE_IMPL(str, ...) \
|
||||
do { \
|
||||
if (LOG_TARGET != nullptr) \
|
||||
{ \
|
||||
fprintf(LOG_TARGET, LOG_TIMESTAMP_FMT LOG_FLF_FMT str "%s" LOG_TIMESTAMP_VAL LOG_FLF_VAL, __VA_ARGS__); \
|
||||
fflush(LOG_TARGET); \
|
||||
} \
|
||||
if (LOG_TARGET != nullptr && LOG_TARGET != stdout && LOG_TARGET != stderr && LOG_TEE_TARGET != nullptr) \
|
||||
{ \
|
||||
fprintf(LOG_TEE_TARGET, LOG_TEE_TIMESTAMP_FMT LOG_TEE_FLF_FMT str "%s" LOG_TEE_TIMESTAMP_VAL LOG_TEE_FLF_VAL, __VA_ARGS__); \
|
||||
fflush(LOG_TEE_TARGET); \
|
||||
} \
|
||||
} while (0)
|
||||
#else
|
||||
#define LOG_TEE_IMPL(str, ...) \
|
||||
do { \
|
||||
if (LOG_TARGET != nullptr) \
|
||||
{ \
|
||||
fprintf(LOG_TARGET, LOG_TIMESTAMP_FMT LOG_FLF_FMT str "%s" LOG_TIMESTAMP_VAL LOG_FLF_VAL "", ##__VA_ARGS__); \
|
||||
fflush(LOG_TARGET); \
|
||||
} \
|
||||
if (LOG_TARGET != nullptr && LOG_TARGET != stdout && LOG_TARGET != stderr && LOG_TEE_TARGET != nullptr) \
|
||||
{ \
|
||||
fprintf(LOG_TEE_TARGET, LOG_TEE_TIMESTAMP_FMT LOG_TEE_FLF_FMT str "%s" LOG_TEE_TIMESTAMP_VAL LOG_TEE_FLF_VAL "", ##__VA_ARGS__); \
|
||||
fflush(LOG_TEE_TARGET); \
|
||||
} \
|
||||
} while (0)
|
||||
#endif
|
||||
|
||||
#define LOG_INF(...) LOG_TMPL(GGML_LOG_LEVEL_INFO, 0, __VA_ARGS__)
|
||||
#define LOG_WRN(...) LOG_TMPL(GGML_LOG_LEVEL_WARN, 0, __VA_ARGS__)
|
||||
#define LOG_ERR(...) LOG_TMPL(GGML_LOG_LEVEL_ERROR, 0, __VA_ARGS__)
|
||||
#define LOG_DBG(...) LOG_TMPL(GGML_LOG_LEVEL_DEBUG, LOG_DEFAULT_DEBUG, __VA_ARGS__)
|
||||
// The '\0' as a last argument, is a trick to bypass the silly
|
||||
// "warning: ISO C++11 requires at least one argument for the "..." in a variadic macro"
|
||||
// so we can have a single macro which can be called just like printf.
|
||||
|
||||
#define LOG_INFV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_INFO, verbosity, __VA_ARGS__)
|
||||
#define LOG_WRNV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_WARN, verbosity, __VA_ARGS__)
|
||||
#define LOG_ERRV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_ERROR, verbosity, __VA_ARGS__)
|
||||
#define LOG_DBGV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_DEBUG, verbosity, __VA_ARGS__)
|
||||
// Main LOG macro.
|
||||
// behaves like printf, and supports arguments the exact same way.
|
||||
//
|
||||
#if !defined(_MSC_VER) || defined(__clang__)
|
||||
#define LOG(...) LOG_IMPL(__VA_ARGS__, "")
|
||||
#else
|
||||
#define LOG(str, ...) LOG_IMPL("%s" str, "", ##__VA_ARGS__, "")
|
||||
#endif
|
||||
|
||||
// Main TEE macro.
|
||||
// does the same as LOG
|
||||
// and
|
||||
// simultaneously writes stderr.
|
||||
//
|
||||
// Secondary target can be changed just like LOG_TARGET
|
||||
// by defining LOG_TEE_TARGET
|
||||
//
|
||||
#if !defined(_MSC_VER) || defined(__clang__)
|
||||
#define LOG_TEE(...) LOG_TEE_IMPL(__VA_ARGS__, "")
|
||||
#else
|
||||
#define LOG_TEE(str, ...) LOG_TEE_IMPL("%s" str, "", ##__VA_ARGS__, "")
|
||||
#endif
|
||||
|
||||
// LOG macro variants with auto endline.
|
||||
#if !defined(_MSC_VER) || defined(__clang__)
|
||||
#define LOGLN(...) LOG_IMPL(__VA_ARGS__, "\n")
|
||||
#define LOG_TEELN(...) LOG_TEE_IMPL(__VA_ARGS__, "\n")
|
||||
#else
|
||||
#define LOGLN(str, ...) LOG_IMPL("%s" str, "", ##__VA_ARGS__, "\n")
|
||||
#define LOG_TEELN(str, ...) LOG_TEE_IMPL("%s" str, "", ##__VA_ARGS__, "\n")
|
||||
#endif
|
||||
|
||||
// INTERNAL, DO NOT USE
|
||||
inline FILE *log_handler1_impl(bool change = false, LogTriState append = LogTriStateSame, LogTriState disable = LogTriStateSame, const std::string & filename = LOG_DEFAULT_FILE_NAME, FILE *target = nullptr)
|
||||
{
|
||||
static bool _initialized = false;
|
||||
static bool _append = false;
|
||||
static bool _disabled = filename.empty() && target == nullptr;
|
||||
static std::string log_current_filename{filename};
|
||||
static FILE *log_current_target{target};
|
||||
static FILE *logfile = nullptr;
|
||||
|
||||
if (change)
|
||||
{
|
||||
if (append != LogTriStateSame)
|
||||
{
|
||||
_append = append == LogTriStateTrue;
|
||||
return logfile;
|
||||
}
|
||||
|
||||
if (disable == LogTriStateTrue)
|
||||
{
|
||||
// Disable primary target
|
||||
_disabled = true;
|
||||
}
|
||||
// If previously disabled, only enable, and keep previous target
|
||||
else if (disable == LogTriStateFalse)
|
||||
{
|
||||
_disabled = false;
|
||||
}
|
||||
// Otherwise, process the arguments
|
||||
else if (log_current_filename != filename || log_current_target != target)
|
||||
{
|
||||
_initialized = false;
|
||||
}
|
||||
}
|
||||
|
||||
if (_disabled)
|
||||
{
|
||||
// Log is disabled
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
if (_initialized)
|
||||
{
|
||||
// with fallback in case something went wrong
|
||||
return logfile ? logfile : stderr;
|
||||
}
|
||||
|
||||
// do the (re)initialization
|
||||
if (target != nullptr)
|
||||
{
|
||||
if (logfile != nullptr && logfile != stdout && logfile != stderr)
|
||||
{
|
||||
fclose(logfile);
|
||||
}
|
||||
|
||||
log_current_filename = LOG_DEFAULT_FILE_NAME;
|
||||
log_current_target = target;
|
||||
|
||||
logfile = target;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (log_current_filename != filename)
|
||||
{
|
||||
if (logfile != nullptr && logfile != stdout && logfile != stderr)
|
||||
{
|
||||
fclose(logfile);
|
||||
}
|
||||
}
|
||||
|
||||
logfile = fopen(filename.c_str(), _append ? "a" : "w");
|
||||
}
|
||||
|
||||
if (!logfile)
|
||||
{
|
||||
// Verify whether the file was opened, otherwise fallback to stderr
|
||||
logfile = stderr;
|
||||
|
||||
fprintf(stderr, "Failed to open logfile '%s' with error '%s'\n", filename.c_str(), std::strerror(errno));
|
||||
fflush(stderr);
|
||||
|
||||
// At this point we let the init flag be to true below, and let the target fallback to stderr
|
||||
// otherwise we would repeatedly fopen() which was already unsuccessful
|
||||
}
|
||||
|
||||
_initialized = true;
|
||||
|
||||
return logfile ? logfile : stderr;
|
||||
}
|
||||
|
||||
// INTERNAL, DO NOT USE
|
||||
inline FILE *log_handler2_impl(bool change = false, LogTriState append = LogTriStateSame, LogTriState disable = LogTriStateSame, FILE *target = nullptr, const std::string & filename = LOG_DEFAULT_FILE_NAME)
|
||||
{
|
||||
return log_handler1_impl(change, append, disable, filename, target);
|
||||
}
|
||||
|
||||
// Disables logs entirely at runtime.
|
||||
// Makes LOG() and LOG_TEE() produce no output,
|
||||
// until enabled back.
|
||||
#define log_disable() log_disable_impl()
|
||||
|
||||
// INTERNAL, DO NOT USE
|
||||
inline FILE *log_disable_impl()
|
||||
{
|
||||
return log_handler1_impl(true, LogTriStateSame, LogTriStateTrue);
|
||||
}
|
||||
|
||||
// Enables logs at runtime.
|
||||
#define log_enable() log_enable_impl()
|
||||
|
||||
// INTERNAL, DO NOT USE
|
||||
inline FILE *log_enable_impl()
|
||||
{
|
||||
return log_handler1_impl(true, LogTriStateSame, LogTriStateFalse);
|
||||
}
|
||||
|
||||
// Sets target fir logs, either by a file name or FILE* pointer (stdout, stderr, or any valid FILE*)
|
||||
#define log_set_target(target) log_set_target_impl(target)
|
||||
|
||||
// INTERNAL, DO NOT USE
|
||||
inline FILE *log_set_target_impl(const std::string & filename) { return log_handler1_impl(true, LogTriStateSame, LogTriStateSame, filename); }
|
||||
inline FILE *log_set_target_impl(FILE *target) { return log_handler2_impl(true, LogTriStateSame, LogTriStateSame, target); }
|
||||
|
||||
// INTERNAL, DO NOT USE
|
||||
inline FILE *log_handler() { return log_handler1_impl(); }
|
||||
|
||||
// Enable or disable creating separate log files for each run.
|
||||
// can ONLY be invoked BEFORE first log use.
|
||||
#define log_multilog(enable) log_filename_generator_impl((enable) ? LogTriStateTrue : LogTriStateFalse, "", "")
|
||||
// Enable or disable append mode for log file.
|
||||
// can ONLY be invoked BEFORE first log use.
|
||||
#define log_append(enable) log_append_impl(enable)
|
||||
// INTERNAL, DO NOT USE
|
||||
inline FILE *log_append_impl(bool enable)
|
||||
{
|
||||
return log_handler1_impl(true, enable ? LogTriStateTrue : LogTriStateFalse, LogTriStateSame);
|
||||
}
|
||||
|
||||
inline void log_test()
|
||||
{
|
||||
log_disable();
|
||||
LOG("01 Hello World to nobody, because logs are disabled!\n");
|
||||
log_enable();
|
||||
LOG("02 Hello World to default output, which is \"%s\" ( Yaaay, arguments! )!\n", LOG_STRINGIZE(LOG_TARGET));
|
||||
LOG_TEE("03 Hello World to **both** default output and " LOG_TEE_TARGET_STRING "!\n");
|
||||
log_set_target(stderr);
|
||||
LOG("04 Hello World to stderr!\n");
|
||||
LOG_TEE("05 Hello World TEE with double printing to stderr prevented!\n");
|
||||
log_set_target(LOG_DEFAULT_FILE_NAME);
|
||||
LOG("06 Hello World to default log file!\n");
|
||||
log_set_target(stdout);
|
||||
LOG("07 Hello World to stdout!\n");
|
||||
log_set_target(LOG_DEFAULT_FILE_NAME);
|
||||
LOG("08 Hello World to default log file again!\n");
|
||||
log_disable();
|
||||
LOG("09 Hello World _1_ into the void!\n");
|
||||
log_enable();
|
||||
LOG("10 Hello World back from the void ( you should not see _1_ in the log or the output )!\n");
|
||||
log_disable();
|
||||
log_set_target("llama.anotherlog.log");
|
||||
LOG("11 Hello World _2_ to nobody, new target was selected but logs are still disabled!\n");
|
||||
log_enable();
|
||||
LOG("12 Hello World this time in a new file ( you should not see _2_ in the log or the output )?\n");
|
||||
log_set_target("llama.yetanotherlog.log");
|
||||
LOG("13 Hello World this time in yet new file?\n");
|
||||
log_set_target(log_filename_generator("llama_autonamed", "log"));
|
||||
LOG("14 Hello World in log with generated filename!\n");
|
||||
#ifdef _MSC_VER
|
||||
LOG_TEE("15 Hello msvc TEE without arguments\n");
|
||||
LOG_TEE("16 Hello msvc TEE with (%d)(%s) arguments\n", 1, "test");
|
||||
LOG_TEELN("17 Hello msvc TEELN without arguments\n");
|
||||
LOG_TEELN("18 Hello msvc TEELN with (%d)(%s) arguments\n", 1, "test");
|
||||
LOG("19 Hello msvc LOG without arguments\n");
|
||||
LOG("20 Hello msvc LOG with (%d)(%s) arguments\n", 1, "test");
|
||||
LOGLN("21 Hello msvc LOGLN without arguments\n");
|
||||
LOGLN("22 Hello msvc LOGLN with (%d)(%s) arguments\n", 1, "test");
|
||||
#endif
|
||||
}
|
||||
|
||||
inline bool log_param_single_parse(const std::string & param)
|
||||
{
|
||||
if ( param == "--log-test")
|
||||
{
|
||||
log_test();
|
||||
return true;
|
||||
}
|
||||
|
||||
if ( param == "--log-disable")
|
||||
{
|
||||
log_disable();
|
||||
return true;
|
||||
}
|
||||
|
||||
if ( param == "--log-enable")
|
||||
{
|
||||
log_enable();
|
||||
return true;
|
||||
}
|
||||
|
||||
if (param == "--log-new")
|
||||
{
|
||||
log_multilog(true);
|
||||
return true;
|
||||
}
|
||||
|
||||
if (param == "--log-append")
|
||||
{
|
||||
log_append(true);
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
inline bool log_param_pair_parse(bool check_but_dont_parse, const std::string & param, const std::string & next = std::string())
|
||||
{
|
||||
if ( param == "--log-file")
|
||||
{
|
||||
if (!check_but_dont_parse)
|
||||
{
|
||||
log_set_target(log_filename_generator(next.empty() ? "unnamed" : next, "log"));
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
inline void log_print_usage()
|
||||
{
|
||||
printf("log options:\n");
|
||||
/* format
|
||||
printf(" -h, --help show this help message and exit\n");*/
|
||||
/* spacing
|
||||
printf("__-param----------------Description\n");*/
|
||||
printf(" --log-test Run simple logging test\n");
|
||||
printf(" --log-disable Disable trace logs\n");
|
||||
printf(" --log-enable Enable trace logs\n");
|
||||
printf(" --log-file Specify a log filename (without extension)\n");
|
||||
printf(" --log-new Create a separate new log file on start. "
|
||||
"Each log file will have unique name: \"<name>.<ID>.log\"\n");
|
||||
printf(" --log-append Don't truncate the old log file.\n");
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
#define log_dump_cmdline(argc, argv) log_dump_cmdline_impl(argc, argv)
|
||||
|
||||
// INTERNAL, DO NOT USE
|
||||
inline void log_dump_cmdline_impl(int argc, char **argv)
|
||||
{
|
||||
std::stringstream buf;
|
||||
for (int i = 0; i < argc; ++i)
|
||||
{
|
||||
if (std::string(argv[i]).find(' ') != std::string::npos)
|
||||
{
|
||||
buf << " \"" << argv[i] <<"\"";
|
||||
}
|
||||
else
|
||||
{
|
||||
buf << " " << argv[i];
|
||||
}
|
||||
}
|
||||
LOGLN("Cmd:%s", buf.str().c_str());
|
||||
}
|
||||
|
||||
#define log_tostr(var) log_var_to_string_impl(var).c_str()
|
||||
|
||||
inline std::string log_var_to_string_impl(bool var)
|
||||
{
|
||||
return var ? "true" : "false";
|
||||
}
|
||||
|
||||
inline std::string log_var_to_string_impl(std::string var)
|
||||
{
|
||||
return var;
|
||||
}
|
||||
|
||||
inline std::string log_var_to_string_impl(const std::vector<int> & var)
|
||||
{
|
||||
std::stringstream buf;
|
||||
buf << "[ ";
|
||||
bool first = true;
|
||||
for (auto e : var)
|
||||
{
|
||||
if (first)
|
||||
{
|
||||
first = false;
|
||||
}
|
||||
else
|
||||
{
|
||||
buf << ", ";
|
||||
}
|
||||
buf << std::to_string(e);
|
||||
}
|
||||
buf << " ]";
|
||||
|
||||
return buf.str();
|
||||
}
|
||||
|
||||
template <typename C, typename T>
|
||||
inline std::string LOG_TOKENS_TOSTR_PRETTY(const C & ctx, const T & tokens)
|
||||
{
|
||||
std::stringstream buf;
|
||||
buf << "[ ";
|
||||
|
||||
bool first = true;
|
||||
for (const auto & token : tokens)
|
||||
{
|
||||
if (!first) {
|
||||
buf << ", ";
|
||||
} else {
|
||||
first = false;
|
||||
}
|
||||
|
||||
auto detokenized = llama_token_to_piece(ctx, token);
|
||||
|
||||
detokenized.erase(
|
||||
std::remove_if(
|
||||
detokenized.begin(),
|
||||
detokenized.end(),
|
||||
[](const unsigned char c) { return !std::isprint(c); }),
|
||||
detokenized.end());
|
||||
|
||||
buf
|
||||
<< "'" << detokenized << "'"
|
||||
<< ":" << std::to_string(token);
|
||||
}
|
||||
buf << " ]";
|
||||
|
||||
return buf.str();
|
||||
}
|
||||
|
||||
template <typename C, typename B>
|
||||
inline std::string LOG_BATCH_TOSTR_PRETTY(const C & ctx, const B & batch)
|
||||
{
|
||||
std::stringstream buf;
|
||||
buf << "[ ";
|
||||
|
||||
bool first = true;
|
||||
for (int i = 0; i < batch.n_tokens; ++i)
|
||||
{
|
||||
if (!first) {
|
||||
buf << ", ";
|
||||
} else {
|
||||
first = false;
|
||||
}
|
||||
|
||||
auto detokenized = llama_token_to_piece(ctx, batch.token[i]);
|
||||
|
||||
detokenized.erase(
|
||||
std::remove_if(
|
||||
detokenized.begin(),
|
||||
detokenized.end(),
|
||||
[](const unsigned char c) { return !std::isprint(c); }),
|
||||
detokenized.end());
|
||||
|
||||
buf
|
||||
<< "\n" << std::to_string(i)
|
||||
<< ":token '" << detokenized << "'"
|
||||
<< ":pos " << std::to_string(batch.pos[i])
|
||||
<< ":n_seq_id " << std::to_string(batch.n_seq_id[i])
|
||||
<< ":seq_id " << std::to_string(batch.seq_id[i][0])
|
||||
<< ":logits " << std::to_string(batch.logits[i]);
|
||||
}
|
||||
buf << " ]";
|
||||
|
||||
return buf.str();
|
||||
}
|
||||
|
||||
#ifdef LOG_DISABLE_LOGS
|
||||
|
||||
#undef LOG
|
||||
#define LOG(...) // dummy stub
|
||||
#undef LOGLN
|
||||
#define LOGLN(...) // dummy stub
|
||||
|
||||
#undef LOG_TEE
|
||||
#define LOG_TEE(...) fprintf(stderr, __VA_ARGS__) // convert to normal fprintf
|
||||
|
||||
#undef LOG_TEELN
|
||||
#define LOG_TEELN(...) fprintf(stderr, __VA_ARGS__) // convert to normal fprintf
|
||||
|
||||
#undef LOG_DISABLE
|
||||
#define LOG_DISABLE() // dummy stub
|
||||
|
||||
#undef LOG_ENABLE
|
||||
#define LOG_ENABLE() // dummy stub
|
||||
|
||||
#undef LOG_ENABLE
|
||||
#define LOG_ENABLE() // dummy stub
|
||||
|
||||
#undef LOG_SET_TARGET
|
||||
#define LOG_SET_TARGET(...) // dummy stub
|
||||
|
||||
#undef LOG_DUMP_CMDLINE
|
||||
#define LOG_DUMP_CMDLINE(...) // dummy stub
|
||||
|
||||
#endif // LOG_DISABLE_LOGS
|
||||
|
@ -2,11 +2,8 @@
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
|
||||
#include <cinttypes>
|
||||
#include <cstdint>
|
||||
#include <cstdio>
|
||||
#include <fstream>
|
||||
#include <thread>
|
||||
|
||||
void llama_ngram_cache_update(llama_ngram_cache & ngram_cache, int ngram_min, int ngram_max,
|
||||
std::vector<llama_token> & inp, int nnew, bool print_progress) {
|
||||
|
@ -142,7 +142,7 @@ std::string gpt_sampler_params::print() const {
|
||||
struct gpt_sampler * gpt_sampler_init(const struct llama_model * model, const struct gpt_sampler_params & params) {
|
||||
llama_sampler_chain_params lparams = llama_sampler_chain_default_params();
|
||||
|
||||
lparams.no_perf = params.no_perf;
|
||||
lparams.no_perf = false; // TODO: control via params
|
||||
|
||||
auto * result = new gpt_sampler {
|
||||
/* .params = */ params,
|
||||
@ -257,10 +257,10 @@ void gpt_perf_print(const struct llama_context * ctx, const struct gpt_sampler *
|
||||
// TODO: measure grammar performance
|
||||
|
||||
if (gsmpl) {
|
||||
llama_perf_sampler_print(gsmpl->chain);
|
||||
llama_perf_print(gsmpl->chain, LLAMA_PERF_TYPE_SAMPLER_CHAIN);
|
||||
}
|
||||
if (ctx) {
|
||||
llama_perf_context_print(ctx);
|
||||
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
|
||||
}
|
||||
}
|
||||
|
||||
@ -325,7 +325,7 @@ llama_token gpt_sampler_last(const struct gpt_sampler * gsmpl) {
|
||||
}
|
||||
|
||||
std::string gpt_sampler_print(const struct gpt_sampler * gsmpl) {
|
||||
std::string result = "logits ";
|
||||
std::string result = "\tlogits ";
|
||||
|
||||
for (int i = 0; i < llama_sampler_chain_n(gsmpl->chain); i++) {
|
||||
const auto * smpl = llama_sampler_chain_get(gsmpl->chain, i);
|
||||
|
@ -1,11 +1,9 @@
|
||||
#include "train.h"
|
||||
#include "common.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <random>
|
||||
#include <sstream>
|
||||
#include <functional>
|
||||
#include <cstring>
|
||||
|
||||
struct random_normal_distribution {
|
||||
std::mt19937 gen;
|
||||
|
@ -132,14 +132,12 @@ class Model:
|
||||
def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
|
||||
tensor_names_from_parts: set[str] = set()
|
||||
|
||||
index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
|
||||
index_name += ".index.json"
|
||||
index_file = self.dir_model / index_name
|
||||
|
||||
if index_file.is_file():
|
||||
if len(self.part_names) > 1:
|
||||
self.tensor_names = set()
|
||||
index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
|
||||
index_name += ".index.json"
|
||||
logger.info(f"gguf: loading model weight map from '{index_name}'")
|
||||
with open(index_file, "r", encoding="utf-8") as f:
|
||||
with open(self.dir_model / index_name, "r", encoding="utf-8") as f:
|
||||
index: dict[str, Any] = json.load(f)
|
||||
weight_map = index.get("weight_map")
|
||||
if weight_map is None or not isinstance(weight_map, dict):
|
||||
@ -147,7 +145,6 @@ class Model:
|
||||
self.tensor_names.update(weight_map.keys())
|
||||
else:
|
||||
self.tensor_names = tensor_names_from_parts
|
||||
weight_map = {}
|
||||
|
||||
for part_name in self.part_names:
|
||||
logger.info(f"gguf: loading model part '{part_name}'")
|
||||
@ -174,17 +171,9 @@ class Model:
|
||||
data = LazyTorchTensor.from_eager(data)
|
||||
yield name, data
|
||||
|
||||
# verify tensor name presence and identify potentially missing files
|
||||
if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
|
||||
missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
|
||||
extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
|
||||
missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
|
||||
if len(extra) == 0 and len(missing_files) > 0:
|
||||
raise ValueError(f"Missing or incomplete model files: {missing_files}")
|
||||
else:
|
||||
raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
|
||||
f"Missing tensors: {missing}\n"
|
||||
f"Extra tensors: {extra}")
|
||||
# only verify tensor name presence; it doesn't matter if they are not in the right files
|
||||
if len(sym_diff := tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
|
||||
raise ValueError(f"Mismatch between weight map and model parts for tensor names: {sym_diff}")
|
||||
|
||||
def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
|
||||
if key not in gguf.MODEL_TENSORS[self.model_arch]:
|
||||
@ -1498,7 +1487,7 @@ class StableLMModel(Model):
|
||||
raise ValueError(f"Unprocessed norms: {norms}")
|
||||
|
||||
|
||||
@Model.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
|
||||
@Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
|
||||
class LlamaModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.LLAMA
|
||||
|
||||
@ -1852,60 +1841,6 @@ class MiniCPMModel(Model):
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
|
||||
@Model.register("MiniCPM3ForCausalLM")
|
||||
class MiniCPM3Model(Model):
|
||||
model_arch = gguf.MODEL_ARCH.MINICPM3
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
hparams = self.hparams
|
||||
|
||||
rope_dims = hparams["qk_rope_head_dim"]
|
||||
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
|
||||
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
|
||||
self.gguf_writer.add_head_count(hparams["num_attention_heads"])
|
||||
self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
|
||||
self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
|
||||
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||||
if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
|
||||
self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
|
||||
self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
|
||||
self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
|
||||
self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
|
||||
|
||||
rope_scaling = self.find_hparam(['rope_scaling'], True)
|
||||
if rope_scaling is None:
|
||||
return
|
||||
|
||||
long_factors = rope_scaling.get('long_factor', None)
|
||||
short_factors = rope_scaling.get('short_factor', None)
|
||||
|
||||
if long_factors is None or short_factors is None:
|
||||
raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
|
||||
|
||||
if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
|
||||
raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
|
||||
|
||||
self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
|
||||
self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_llama_hf()
|
||||
|
||||
def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
|
||||
if n_kv_head is not None and n_head != n_kv_head:
|
||||
n_head //= n_kv_head
|
||||
|
||||
return (
|
||||
weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
||||
.swapaxes(1, 2)
|
||||
.reshape(weights.shape)
|
||||
)
|
||||
|
||||
|
||||
@Model.register("QWenLMHeadModel")
|
||||
class QwenModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.QWEN
|
||||
@ -3009,66 +2944,6 @@ class OlmoModel(Model):
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
|
||||
@Model.register("OlmoeForCausalLM")
|
||||
class OlmoeModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.OLMOE
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_layer_norm_rms_eps(1e-5)
|
||||
if (n_experts := self.hparams.get("num_experts")) is not None:
|
||||
self.gguf_writer.add_expert_count(n_experts)
|
||||
|
||||
_experts: list[dict[str, Tensor]] | None = None
|
||||
|
||||
# Copied from: Qwen2MoeModel
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
# process the experts separately
|
||||
if name.find("experts") != -1:
|
||||
n_experts = self.hparams["num_experts"]
|
||||
assert bid is not None
|
||||
|
||||
if self._experts is None:
|
||||
self._experts = [{} for _ in range(self.block_count)]
|
||||
|
||||
self._experts[bid][name] = data_torch
|
||||
|
||||
if len(self._experts[bid]) >= n_experts * 3:
|
||||
tensors: list[tuple[str, Tensor]] = []
|
||||
|
||||
# merge the experts into a single 3d tensor
|
||||
for w_name in ["down_proj", "gate_proj", "up_proj"]:
|
||||
datas: list[Tensor] = []
|
||||
|
||||
for xid in range(n_experts):
|
||||
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
|
||||
datas.append(self._experts[bid][ename])
|
||||
del self._experts[bid][ename]
|
||||
|
||||
data_torch = torch.stack(datas, dim=0)
|
||||
|
||||
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
|
||||
|
||||
new_name = self.map_tensor_name(merged_name)
|
||||
|
||||
tensors.append((new_name, data_torch))
|
||||
return tensors
|
||||
else:
|
||||
return []
|
||||
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
# Copied from: Qwen2MoeModel
|
||||
def prepare_tensors(self):
|
||||
super().prepare_tensors()
|
||||
|
||||
if self._experts is not None:
|
||||
# flatten `list[dict[str, Tensor]]` into `list[str]`
|
||||
experts = [k for d in self._experts for k in d.keys()]
|
||||
if len(experts) > 0:
|
||||
raise ValueError(f"Unprocessed experts: {experts}")
|
||||
|
||||
|
||||
@Model.register("JinaBertModel", "JinaBertForMaskedLM")
|
||||
class JinaBertV2Model(BertModel):
|
||||
model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
|
||||
@ -4080,36 +3955,6 @@ class ExaoneModel(Model):
|
||||
super().prepare_tensors()
|
||||
|
||||
|
||||
@Model.register("GraniteForCausalLM")
|
||||
class GraniteModel(LlamaModel):
|
||||
"""Conversion for IBM's GraniteForCausalLM"""
|
||||
model_arch = gguf.MODEL_ARCH.GRANITE
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
"""Granite uses standard llama parameters with the following differences:
|
||||
|
||||
- No head_dim support
|
||||
- New multiplier params:
|
||||
- attention_scale
|
||||
- embedding_scale
|
||||
- residual_scale
|
||||
- logits_scaling
|
||||
"""
|
||||
if head_dim := self.hparams.pop("head_dim", None):
|
||||
logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
|
||||
super().set_gguf_parameters()
|
||||
# NOTE: Convert _multiplier params to _scale params for naming
|
||||
# consistency
|
||||
if attention_scale := self.hparams.get("attention_multiplier"):
|
||||
self.gguf_writer.add_attention_scale(attention_scale)
|
||||
if embedding_scale := self.hparams.get("embedding_multiplier"):
|
||||
self.gguf_writer.add_embedding_scale(embedding_scale)
|
||||
if residual_scale := self.hparams.get("residual_multiplier"):
|
||||
self.gguf_writer.add_residual_scale(residual_scale)
|
||||
if logits_scaling := self.hparams.get("logits_scaling"):
|
||||
self.gguf_writer.add_logit_scale(logits_scaling)
|
||||
|
||||
|
||||
###### CONVERSION LOGIC ######
|
||||
|
||||
# tree of lazy tensors
|
||||
|
@ -636,14 +636,6 @@ use 1 SYCL GPUs: [0] with Max compute units:512
|
||||
|
||||
It's same for other projects including llama.cpp SYCL backend.
|
||||
|
||||
- Meet issue: `Native API failed. Native API returns: -6 (PI_ERROR_OUT_OF_HOST_MEMORY) -6 (PI_ERROR_OUT_OF_HOST_MEMORY) -999 (UNKNOWN PI error)` or `failed to allocate SYCL0 buffer`
|
||||
|
||||
Device Memory is not enough.
|
||||
|
||||
|Reason|Solution|
|
||||
|-|-|
|
||||
|Default Context is too big. It leads to more memory usage.|Set `-c 8192` or smaller value.|
|
||||
|Model is big and require more memory than device's.|Choose smaller quantized model, like Q5 -> Q4;<br>Use more than one devices to load model.|
|
||||
|
||||
### **GitHub contribution**:
|
||||
Please add the **[SYCL]** prefix/tag in issues/PRs titles to help the SYCL-team check/address them without delay.
|
||||
|
@ -1,6 +1,5 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <algorithm>
|
||||
@ -9,9 +8,9 @@
|
||||
#include <vector>
|
||||
|
||||
static void print_usage(int, char ** argv) {
|
||||
LOG("\nexample usage:\n");
|
||||
LOG("\n %s -m model.gguf -c 2048 -b 2048 -ub 512 -npp 128,256,512 -ntg 128,256 -npl 1,2,4,8,16,32 [-pps]\n", argv[0]);
|
||||
LOG("\n");
|
||||
LOG_TEE("\nexample usage:\n");
|
||||
LOG_TEE("\n %s -m model.gguf -c 2048 -b 2048 -ub 512 -npp 128,256,512 -ntg 128,256 -npl 1,2,4,8,16,32 [-pps]\n", argv[0]);
|
||||
LOG_TEE("\n");
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
@ -21,8 +20,6 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
|
||||
int is_pp_shared = params.is_pp_shared;
|
||||
|
||||
std::vector<int> n_pp = params.n_pp;
|
||||
@ -79,7 +76,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
const int ret = llama_decode(ctx, batch_view);
|
||||
if (ret != 0) {
|
||||
LOG_ERR("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret);
|
||||
LOG_TEE("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret);
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -96,17 +93,17 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
|
||||
LOG_ERR("%s: llama_decode() failed\n", __func__);
|
||||
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
if (!params.batched_bench_output_jsonl) {
|
||||
LOG("\n");
|
||||
LOG("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, flash_attn = %d, is_pp_shared = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.is_pp_shared, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch);
|
||||
LOG("\n");
|
||||
LOG("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s");
|
||||
LOG("|%6s-|-%6s-|-%4s-|-%6s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|\n", "------", "------", "----", "------", "--------", "--------", "--------", "--------", "--------", "--------");
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, flash_attn = %d, is_pp_shared = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.is_pp_shared, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch);
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s");
|
||||
LOG_TEE("|%6s-|-%6s-|-%4s-|-%6s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|\n", "------", "------", "----", "------", "--------", "--------", "--------", "--------", "--------", "--------");
|
||||
}
|
||||
|
||||
for ( int i_pp = 0; i_pp < (int) n_pp.size(); ++i_pp) {
|
||||
@ -136,7 +133,7 @@ int main(int argc, char ** argv) {
|
||||
llama_kv_cache_clear(ctx);
|
||||
|
||||
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
|
||||
LOG_ERR("%s: llama_decode() failed\n", __func__);
|
||||
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -158,7 +155,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
|
||||
LOG_ERR("%s: llama_decode() failed\n", __func__);
|
||||
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
@ -176,21 +173,21 @@ int main(int argc, char ** argv) {
|
||||
const float speed = n_kv / t;
|
||||
|
||||
if(params.batched_bench_output_jsonl) {
|
||||
LOG(
|
||||
LOG_TEE(
|
||||
"{\"n_kv_max\": %d, \"n_batch\": %d, \"n_ubatch\": %d, \"flash_attn\": %d, \"is_pp_shared\": %d, \"n_gpu_layers\": %d, \"n_threads\": %u, \"n_threads_batch\": %u, "
|
||||
"\"pp\": %d, \"tg\": %d, \"pl\": %d, \"n_kv\": %d, \"t_pp\": %f, \"speed_pp\": %f, \"t_tg\": %f, \"speed_tg\": %f, \"t\": %f, \"speed\": %f}\n",
|
||||
n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.is_pp_shared, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch,
|
||||
pp, tg, pl, n_kv, t_pp, speed_pp, t_tg, speed_tg, t, speed
|
||||
);
|
||||
} else {
|
||||
LOG("|%6d | %6d | %4d | %6d | %8.3f | %8.2f | %8.3f | %8.2f | %8.3f | %8.2f |\n", pp, tg, pl, n_kv, t_pp, speed_pp, t_tg, speed_tg, t, speed);
|
||||
LOG_TEE("|%6d | %6d | %4d | %6d | %8.3f | %8.2f | %8.3f | %8.2f | %8.3f | %8.2f |\n", pp, tg, pl, n_kv, t_pp, speed_pp, t_tg, speed_tg, t, speed);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
LOG("\n");
|
||||
llama_perf_context_print(ctx);
|
||||
LOG_TEE("\n");
|
||||
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
|
||||
|
||||
llama_batch_free(batch);
|
||||
|
||||
@ -199,7 +196,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
LOG("\n\n");
|
||||
fprintf(stderr, "\n\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@ -200,8 +200,8 @@ let t_main_end = ggml_time_us()
|
||||
|
||||
print("decoded \(n_decode) tokens in \(String(format: "%.2f", Double(t_main_end - t_main_start) / 1_000_000.0)) s, speed: \(String(format: "%.2f", Double(n_decode) / (Double(t_main_end - t_main_start) / 1_000_000.0))) t/s\n\n")
|
||||
|
||||
llama_perf_sampler_print(smpl)
|
||||
llama_perf_context_print(context)
|
||||
llama_perf_print(UnsafeRawPointer(context), LLAMA_PERF_TYPE_CONTEXT)
|
||||
llama_perf_print(UnsafeRawPointer(smpl), LLAMA_PERF_TYPE_SAMPLER_CHAIN)
|
||||
|
||||
private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
|
||||
let utf8Count = text.utf8.count
|
||||
|
@ -1,6 +1,5 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <algorithm>
|
||||
@ -9,9 +8,9 @@
|
||||
#include <vector>
|
||||
|
||||
static void print_usage(int, char ** argv) {
|
||||
LOG("\nexample usage:\n");
|
||||
LOG("\n %s -m model.gguf -p \"Hello my name is\" -n 32 -np 4\n", argv[0]);
|
||||
LOG("\n");
|
||||
LOG_TEE("\nexample usage:\n");
|
||||
LOG_TEE("\n %s -m model.gguf -p \"Hello my name is\" -n 32 -np 4\n", argv[0]);
|
||||
LOG_TEE("\n");
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
@ -24,7 +23,6 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
|
||||
// number of parallel batches
|
||||
int n_parallel = params.n_parallel;
|
||||
@ -44,7 +42,7 @@ int main(int argc, char ** argv) {
|
||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
||||
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: error: unable to load model\n" , __func__);
|
||||
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -74,29 +72,31 @@ int main(int argc, char ** argv) {
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_dist (params.sparams.seed));
|
||||
|
||||
if (ctx == NULL) {
|
||||
LOG_ERR("%s: error: failed to create the llama_context\n" , __func__);
|
||||
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
LOG_INF("\n%s: n_predict = %d, n_ctx = %d, n_batch = %u, n_parallel = %d, n_kv_req = %d\n", __func__, n_predict, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req);
|
||||
LOG_TEE("\n%s: n_predict = %d, n_ctx = %d, n_batch = %u, n_parallel = %d, n_kv_req = %d\n", __func__, n_predict, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req);
|
||||
|
||||
// make sure the KV cache is big enough to hold all the prompt and generated tokens
|
||||
if (n_kv_req > n_ctx) {
|
||||
LOG_ERR("%s: error: n_kv_req (%d) > n_ctx, the required KV cache size is not big enough\n", __func__, n_kv_req);
|
||||
LOG_ERR("%s: either reduce n_parallel or increase n_ctx\n", __func__);
|
||||
LOG_TEE("%s: error: n_kv_req (%d) > n_ctx, the required KV cache size is not big enough\n", __func__, n_kv_req);
|
||||
LOG_TEE("%s: either reduce n_parallel or increase n_ctx\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// print the prompt token-by-token
|
||||
|
||||
LOG("\n");
|
||||
fprintf(stderr, "\n");
|
||||
|
||||
for (auto id : tokens_list) {
|
||||
LOG("%s", llama_token_to_piece(ctx, id).c_str());
|
||||
fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
|
||||
}
|
||||
|
||||
fflush(stderr);
|
||||
|
||||
// create a llama_batch
|
||||
// we use this object to submit token data for decoding
|
||||
llama_batch batch = llama_batch_init(std::max(tokens_list.size(), (size_t) n_parallel), 0, n_parallel);
|
||||
@ -114,7 +114,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
if (llama_model_has_encoder(model)) {
|
||||
if (llama_encode(ctx, batch)) {
|
||||
LOG_ERR("%s : failed to eval\n", __func__);
|
||||
LOG_TEE("%s : failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -131,7 +131,7 @@ int main(int argc, char ** argv) {
|
||||
batch.logits[batch.n_tokens - 1] = true;
|
||||
|
||||
if (llama_decode(ctx, batch) != 0) {
|
||||
LOG_ERR("%s: llama_decode() failed\n", __func__);
|
||||
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -142,7 +142,7 @@ int main(int argc, char ** argv) {
|
||||
//}
|
||||
|
||||
if (n_parallel > 1) {
|
||||
LOG("\n\n%s: generating %d sequences ...\n", __func__, n_parallel);
|
||||
LOG_TEE("\n\n%s: generating %d sequences ...\n", __func__, n_parallel);
|
||||
}
|
||||
|
||||
// main loop
|
||||
@ -175,9 +175,9 @@ int main(int argc, char ** argv) {
|
||||
// is it an end of generation? -> mark the stream as finished
|
||||
if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) {
|
||||
i_batch[i] = -1;
|
||||
LOG("\n");
|
||||
LOG_TEE("\n");
|
||||
if (n_parallel > 1) {
|
||||
LOG_INF("%s: stream %d finished at n_cur = %d", __func__, i, n_cur);
|
||||
LOG_TEE("%s: stream %d finished at n_cur = %d", __func__, i, n_cur);
|
||||
}
|
||||
|
||||
continue;
|
||||
@ -185,7 +185,8 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// if there is only one stream, we print immediately to stdout
|
||||
if (n_parallel == 1) {
|
||||
LOG("%s", llama_token_to_piece(ctx, new_token_id).c_str());
|
||||
LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str());
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
streams[i] += llama_token_to_piece(ctx, new_token_id);
|
||||
@ -207,27 +208,29 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// evaluate the current batch with the transformer model
|
||||
if (llama_decode(ctx, batch)) {
|
||||
LOG_ERR("%s : failed to eval, return code %d\n", __func__, 1);
|
||||
fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
LOG_TEE("\n");
|
||||
|
||||
if (n_parallel > 1) {
|
||||
LOG("\n");
|
||||
LOG_TEE("\n");
|
||||
|
||||
for (int32_t i = 0; i < n_parallel; ++i) {
|
||||
LOG("sequence %d:\n\n%s%s\n\n", i, params.prompt.c_str(), streams[i].c_str());
|
||||
LOG_TEE("sequence %d:\n\n%s%s\n\n", i, params.prompt.c_str(), streams[i].c_str());
|
||||
}
|
||||
}
|
||||
|
||||
const auto t_main_end = ggml_time_us();
|
||||
|
||||
LOG_INF("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
|
||||
LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
|
||||
__func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
|
||||
|
||||
LOG("\n");
|
||||
llama_perf_sampler_print(smpl);
|
||||
llama_perf_context_print(ctx);
|
||||
LOG_TEE("\n");
|
||||
llama_perf_print(smpl, LLAMA_PERF_TYPE_SAMPLER_CHAIN);
|
||||
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
|
||||
|
@ -9,7 +9,6 @@
|
||||
#include <climits>
|
||||
#include <cstring>
|
||||
#include <cstdarg>
|
||||
#include <cinttypes>
|
||||
#include <ctime>
|
||||
#include <random>
|
||||
#include <stdexcept>
|
||||
@ -106,43 +105,43 @@ static void alloc_weights(TransformerWeights * w, const Config * p, bool shared_
|
||||
const int n_multiqueries = p->n_kv_heads <= 0 || p->n_kv_heads >= p->n_heads ? 1 : p->n_heads / p->n_kv_heads;
|
||||
try {
|
||||
w->token_embedding_table.resize(p->vocab_size * p->dim);
|
||||
LOG_INF("%s: Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
|
||||
LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
|
||||
|
||||
w->rms_att_weight.resize(p->n_layers * p->dim);
|
||||
LOG_INF("%s: Allocating [%d] x [%d] = [%d] float space for w->rms_att_weight\n",__func__,p->n_layers, p->dim, p->n_layers * p->dim);
|
||||
LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->rms_att_weight\n",__func__,p->n_layers, p->dim, p->n_layers * p->dim);
|
||||
|
||||
w->rms_ffn_weight.resize(p->n_layers * p->dim);
|
||||
LOG_INF("%s: Allocating [%d] x [%d] = [%d] float space for w->rms_ffn_weight\n",__func__,p->n_layers , p->dim, p->n_layers * p->dim);
|
||||
LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->rms_ffn_weight\n",__func__,p->n_layers , p->dim, p->n_layers * p->dim);
|
||||
|
||||
w->wq.resize(p->n_layers * p->dim * p->dim);
|
||||
LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wq\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wq\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||
|
||||
w->wk.resize(p->n_layers * p->dim * p->dim / n_multiqueries);
|
||||
LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wk\n",__func__,p->n_layers, p->dim, p->dim / n_multiqueries, p->n_layers * p->dim * p->dim / n_multiqueries);
|
||||
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wk\n",__func__,p->n_layers, p->dim, p->dim / n_multiqueries, p->n_layers * p->dim * p->dim / n_multiqueries);
|
||||
|
||||
w->wv.resize(p->n_layers * p->dim * p->dim / n_multiqueries);
|
||||
LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wv\n",__func__, p->n_layers, p->dim, p->dim / n_multiqueries, p->n_layers * p->dim * p->dim / n_multiqueries);
|
||||
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wv\n",__func__, p->n_layers, p->dim, p->dim / n_multiqueries, p->n_layers * p->dim * p->dim / n_multiqueries);
|
||||
|
||||
w->wo.resize(p->n_layers * p->dim * p->dim);
|
||||
LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wo\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wo\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||
|
||||
w->w1.resize(p->n_layers * p->hidden_dim * p->dim);
|
||||
LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w1\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
|
||||
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w1\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
|
||||
|
||||
w->w2.resize(p->n_layers * p->hidden_dim * p->dim);
|
||||
LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w2\n",__func__,p->n_layers, p->dim, p->hidden_dim, p->n_layers * p->hidden_dim * p->dim);
|
||||
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w2\n",__func__,p->n_layers, p->dim, p->hidden_dim, p->n_layers * p->hidden_dim * p->dim);
|
||||
|
||||
w->w3.resize(p->n_layers * p->hidden_dim * p->dim);
|
||||
LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w3\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
|
||||
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w3\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
|
||||
|
||||
w->rms_final_weight.resize(p->dim);
|
||||
LOG_INF("%s: Allocating [%d] float space for w->rms_final_weight\n",__func__,p->dim);
|
||||
LOG("%s: Allocating [%d] float space for w->rms_final_weight\n",__func__,p->dim);
|
||||
|
||||
if (shared_weights) {
|
||||
w->wcls = {};
|
||||
} else {
|
||||
w->wcls.resize(p->vocab_size * p->dim);
|
||||
LOG_INF("%s: Allocating [%d] x [%d] = [%d] float space for w->wcls\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
|
||||
LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->wcls\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
|
||||
}
|
||||
}
|
||||
catch (std::length_error &) {
|
||||
@ -174,7 +173,7 @@ static int checkpoint_init_weights(TransformerWeights * w, const Config * p, FIL
|
||||
fseek(f, 0, SEEK_END);
|
||||
auto end = ftell(f);
|
||||
if (curr != end) {
|
||||
LOG_ERR("%s: Error: failed to read the checkpoint file to the end (curr = %ld, end = %ld)\n", __func__, curr, end);
|
||||
LOG("%s: Error: failed to read the checkpoint file to the end (curr = %ld, end = %ld)\n", __func__, curr, end);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -182,20 +181,20 @@ static int checkpoint_init_weights(TransformerWeights * w, const Config * p, FIL
|
||||
}
|
||||
|
||||
static void print_sample_weights(TransformerWeights *w){
|
||||
LOG_INF("----- Quick print of first of the weight vales of all the variables\n");
|
||||
LOG_INF("%f\n", w->token_embedding_table[0]);
|
||||
LOG_INF("%f\n", w->rms_att_weight[0]);
|
||||
LOG_INF("%f\n", w->rms_ffn_weight[0]);
|
||||
LOG("----- Quick print of first of the weight vales of all the variables\n");
|
||||
LOG("%f\n", w->token_embedding_table[0]);
|
||||
LOG("%f\n", w->rms_att_weight[0]);
|
||||
LOG("%f\n", w->rms_ffn_weight[0]);
|
||||
|
||||
LOG_INF("%f\n", w->wq[0]);
|
||||
LOG_INF("%f\n", w->wk[0]);
|
||||
LOG_INF("%f\n", w->wv[0]);
|
||||
LOG_INF("%f\n", w->wo[0]);
|
||||
LOG_INF("%f\n", w->w1[0]);
|
||||
LOG_INF("%f\n", w->w2[0]);
|
||||
LOG_INF("%f\n", w->w3[0]);
|
||||
LOG_INF("%f\n", w->rms_att_weight[0]);
|
||||
if (!w->wcls.empty()) LOG_INF("%f\n", w->wcls[0]);
|
||||
LOG("%f\n", w->wq[0]);
|
||||
LOG("%f\n", w->wk[0]);
|
||||
LOG("%f\n", w->wv[0]);
|
||||
LOG("%f\n", w->wo[0]);
|
||||
LOG("%f\n", w->w1[0]);
|
||||
LOG("%f\n", w->w2[0]);
|
||||
LOG("%f\n", w->w3[0]);
|
||||
LOG("%f\n", w->rms_att_weight[0]);
|
||||
if (!w->wcls.empty()) LOG("%f\n", w->wcls[0]);
|
||||
}
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@ -319,20 +318,20 @@ struct train_params {
|
||||
};
|
||||
|
||||
static void print_params(struct my_llama_hparams * params) {
|
||||
LOG_INF("%s: n_vocab: %u\n", __func__, params->n_vocab);
|
||||
LOG_INF("%s: n_ctx: %u\n", __func__, params->n_ctx);
|
||||
LOG_INF("%s: n_embd: %u\n", __func__, params->n_embd);
|
||||
LOG_INF("%s: n_mult: %u\n", __func__, params->n_mult);
|
||||
LOG_INF("%s: n_head: %u\n", __func__, params->n_head);
|
||||
LOG_INF("%s: n_head_kv: %u\n", __func__, params->n_head_kv);
|
||||
LOG_INF("%s: n_ff: %u\n", __func__, params->n_ff);
|
||||
LOG_INF("%s: n_layer: %u\n", __func__, params->n_layer);
|
||||
LOG_INF("%s: n_rot: %u\n", __func__, params->n_rot);
|
||||
LOG("%s: n_vocab: %u\n", __func__, params->n_vocab);
|
||||
LOG("%s: n_ctx: %u\n", __func__, params->n_ctx);
|
||||
LOG("%s: n_embd: %u\n", __func__, params->n_embd);
|
||||
LOG("%s: n_mult: %u\n", __func__, params->n_mult);
|
||||
LOG("%s: n_head: %u\n", __func__, params->n_head);
|
||||
LOG("%s: n_head_kv: %u\n", __func__, params->n_head_kv);
|
||||
LOG("%s: n_ff: %u\n", __func__, params->n_ff);
|
||||
LOG("%s: n_layer: %u\n", __func__, params->n_layer);
|
||||
LOG("%s: n_rot: %u\n", __func__, params->n_rot);
|
||||
}
|
||||
|
||||
static void print_tensor_info(const struct ggml_context * ctx) {
|
||||
for (auto t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
LOG_INF("%s: Allocating ", __func__);
|
||||
LOG("%s: Allocating ", __func__);
|
||||
int64_t total = 1;
|
||||
int i = 0;
|
||||
for (; i < ggml_n_dims(t); ++i) {
|
||||
@ -527,7 +526,7 @@ static std::string llama_escape_whitespaces(const std::string & text) {
|
||||
|
||||
static void load_vocab(const char * filename, const Config * config, struct llama_vocab * vocab) {
|
||||
if (is_ggml_file(filename)) {
|
||||
LOG_INF("%s: Loading vocabulary from gguf file %s\n", __func__, filename);
|
||||
LOG("%s: Loading vocabulary from gguf file %s\n", __func__, filename);
|
||||
struct ggml_context * ctx_data = NULL;
|
||||
|
||||
struct gguf_init_params params = {
|
||||
@ -575,7 +574,7 @@ static void load_vocab(const char * filename, const Config * config, struct llam
|
||||
gguf_free(ctx);
|
||||
} else {
|
||||
// assume llama2.c vocabulary
|
||||
LOG_INF("%s: Assuming llama2.c vocabulary since %s is not a gguf file\n", __func__, filename);
|
||||
LOG("%s: Assuming llama2.c vocabulary since %s is not a gguf file\n", __func__, filename);
|
||||
llama_file file(filename, "rb");
|
||||
if (!file.fp) {
|
||||
die_fmt("%s: %s", strerror(errno), filename);
|
||||
@ -872,25 +871,23 @@ static std::string basename(const std::string &path) {
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_init();
|
||||
|
||||
struct train_params params = get_default_train_params();
|
||||
if (!params_parse(argc, argv, ¶ms)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
log_set_target(stdout);
|
||||
Config config;
|
||||
TransformerWeights weights = {};
|
||||
{
|
||||
LOG_INF("%s: Loading llama2c model from %s\n", __func__, params.fn_llama2c_model);
|
||||
LOG("%s: Loading llama2c model from %s\n", __func__, params.fn_llama2c_model);
|
||||
FILE * file = fopen(params.fn_llama2c_model, "rb");
|
||||
if (!file) {
|
||||
LOG_ERR("%s: Unable to open the checkpoint file %s!\n", __func__, params.fn_llama2c_model);
|
||||
LOG("%s: Unable to open the checkpoint file %s!\n", __func__, params.fn_llama2c_model);
|
||||
return 1;
|
||||
}
|
||||
// read in the config header
|
||||
if (fread(&config, sizeof(Config), 1, file) != 1) {
|
||||
LOG_ERR("%s: Unable to read llama2c config from %s!\n",__func__,params.fn_llama2c_model);
|
||||
LOG("%s: Unable to read llama2c config from %s!\n",__func__,params.fn_llama2c_model);
|
||||
return 1;
|
||||
}
|
||||
auto shared_weights = config.vocab_size > 0;
|
||||
@ -899,7 +896,7 @@ int main(int argc, char ** argv) {
|
||||
// read in the Transformer weights
|
||||
alloc_weights(&weights, &config, shared_weights);
|
||||
if (checkpoint_init_weights(&weights, &config, file, shared_weights)) {
|
||||
LOG_ERR("%s: Unable to initialize transformer weights from %s!",__func__,params.fn_llama2c_model);
|
||||
LOG("%s: Unable to initialize transformer weights from %s!",__func__,params.fn_llama2c_model);
|
||||
return 1;
|
||||
}
|
||||
fclose(file);
|
||||
@ -932,7 +929,7 @@ int main(int argc, char ** argv) {
|
||||
model.name = basename(params.fn_llama2c_model);
|
||||
save_as_llama_model(&vocab, &model, &weights, params.fn_llama2c_output_model);
|
||||
|
||||
LOG_INF("%s: Saving llama.c model file %s in ggml format at %s\n", __func__, params.fn_llama2c_model, params.fn_llama2c_output_model);
|
||||
LOG("%s: Saving llama.c model file %s in ggml format at %s\n", __func__, params.fn_llama2c_model, params.fn_llama2c_output_model);
|
||||
|
||||
ggml_free(model.ctx);
|
||||
return 0;
|
||||
|
@ -13,15 +13,14 @@
|
||||
#include "ggml-metal.h"
|
||||
#endif
|
||||
|
||||
#include <algorithm>
|
||||
#include <climits>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <tuple>
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include <climits>
|
||||
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
|
@ -1,6 +1,5 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <ctime>
|
||||
@ -40,16 +39,16 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
|
||||
llama_kv_cache_clear(ctx);
|
||||
|
||||
// run model
|
||||
LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
|
||||
fprintf(stderr, "%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
|
||||
if (llama_model_has_encoder(model) && !llama_model_has_decoder(model)) {
|
||||
// encoder-only model
|
||||
if (llama_encode(ctx, batch) < 0) {
|
||||
LOG_ERR("%s : failed to encode\n", __func__);
|
||||
fprintf(stderr, "%s : failed to encode\n", __func__);
|
||||
}
|
||||
} else if (!llama_model_has_encoder(model) && llama_model_has_decoder(model)) {
|
||||
// decoder-only model
|
||||
if (llama_decode(ctx, batch) < 0) {
|
||||
LOG_ERR("%s : failed to decode\n", __func__);
|
||||
fprintf(stderr, "%s : failed to decode\n", __func__);
|
||||
}
|
||||
}
|
||||
|
||||
@ -85,12 +84,12 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
|
||||
params.embedding = true;
|
||||
// For non-causal models, batch size must be equal to ubatch size
|
||||
params.n_ubatch = params.n_batch;
|
||||
|
||||
print_build_info();
|
||||
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
@ -100,7 +99,7 @@ int main(int argc, char ** argv) {
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: unable to load model\n", __func__);
|
||||
fprintf(stderr, "%s: error: unable to load model\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -110,19 +109,19 @@ int main(int argc, char ** argv) {
|
||||
const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
|
||||
|
||||
if (llama_model_has_encoder(model) && llama_model_has_decoder(model)) {
|
||||
LOG_ERR("%s: computing embeddings in encoder-decoder models is not supported\n", __func__);
|
||||
fprintf(stderr, "%s: error: computing embeddings in encoder-decoder models is not supported\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (n_ctx > n_ctx_train) {
|
||||
LOG_WRN("%s: warning: model was trained on only %d context tokens (%d specified)\n",
|
||||
fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
|
||||
__func__, n_ctx_train, n_ctx);
|
||||
}
|
||||
|
||||
// print system information
|
||||
{
|
||||
LOG_INF("\n");
|
||||
LOG_INF("%s\n", gpt_params_get_system_info(params).c_str());
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
|
||||
}
|
||||
|
||||
// split the prompt into lines
|
||||
@ -137,7 +136,7 @@ int main(int argc, char ** argv) {
|
||||
for (const auto & prompt : prompts) {
|
||||
auto inp = ::llama_tokenize(ctx, prompt, true, false);
|
||||
if (inp.size() > n_batch) {
|
||||
LOG_ERR("%s: number of tokens in input line (%lld) exceeds batch size (%lld), increase batch size and re-run\n",
|
||||
fprintf(stderr, "%s: error: number of tokens in input line (%lld) exceeds batch size (%lld), increase batch size and re-run\n",
|
||||
__func__, (long long int) inp.size(), (long long int) n_batch);
|
||||
return 1;
|
||||
}
|
||||
@ -148,20 +147,20 @@ int main(int argc, char ** argv) {
|
||||
// it should be automatically added by the tokenizer when 'tokenizer.ggml.add_eos_token' is set to 'true'
|
||||
for (auto & inp : inputs) {
|
||||
if (inp.empty() || inp.back() != llama_token_sep(model)) {
|
||||
LOG_WRN("%s: last token in the prompt is not SEP\n", __func__);
|
||||
LOG_WRN("%s: 'tokenizer.ggml.add_eos_token' should be set to 'true' in the GGUF header\n", __func__);
|
||||
fprintf(stderr, "%s: warning: last token in the prompt is not SEP\n", __func__);
|
||||
fprintf(stderr, "%s: 'tokenizer.ggml.add_eos_token' should be set to 'true' in the GGUF header\n", __func__);
|
||||
}
|
||||
}
|
||||
|
||||
// tokenization stats
|
||||
if (params.verbose_prompt) {
|
||||
for (int i = 0; i < (int) inputs.size(); i++) {
|
||||
LOG_INF("%s: prompt %d: '%s'\n", __func__, i, prompts[i].c_str());
|
||||
LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, inputs[i].size());
|
||||
fprintf(stderr, "%s: prompt %d: '%s'\n", __func__, i, prompts[i].c_str());
|
||||
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, inputs[i].size());
|
||||
for (int j = 0; j < (int) inputs[i].size(); j++) {
|
||||
LOG("%6d -> '%s'\n", inputs[i][j], llama_token_to_piece(ctx, inputs[i][j]).c_str());
|
||||
fprintf(stderr, "%6d -> '%s'\n", inputs[i][j], llama_token_to_piece(ctx, inputs[i][j]).c_str());
|
||||
}
|
||||
LOG("\n\n");
|
||||
fprintf(stderr, "\n\n");
|
||||
}
|
||||
}
|
||||
|
||||
@ -212,57 +211,57 @@ int main(int argc, char ** argv) {
|
||||
batch_decode(ctx, batch, out, s, n_embd, params.embd_normalize);
|
||||
|
||||
if (params.embd_out.empty()) {
|
||||
LOG("\n");
|
||||
fprintf(stdout, "\n");
|
||||
|
||||
if (pooling_type == LLAMA_POOLING_TYPE_NONE) {
|
||||
for (int j = 0; j < n_embd_count; j++) {
|
||||
LOG("embedding %d: ", j);
|
||||
fprintf(stdout, "embedding %d: ", j);
|
||||
for (int i = 0; i < std::min(3, n_embd); i++) {
|
||||
if (params.embd_normalize == 0) {
|
||||
LOG("%6.0f ", emb[j * n_embd + i]);
|
||||
fprintf(stdout, "%6.0f ", emb[j * n_embd + i]);
|
||||
} else {
|
||||
LOG("%9.6f ", emb[j * n_embd + i]);
|
||||
fprintf(stdout, "%9.6f ", emb[j * n_embd + i]);
|
||||
}
|
||||
}
|
||||
LOG(" ... ");
|
||||
fprintf(stdout, " ... ");
|
||||
for (int i = n_embd - 3; i < n_embd; i++) {
|
||||
if (params.embd_normalize == 0) {
|
||||
LOG("%6.0f ", emb[j * n_embd + i]);
|
||||
fprintf(stdout, "%6.0f ", emb[j * n_embd + i]);
|
||||
} else {
|
||||
LOG("%9.6f ", emb[j * n_embd + i]);
|
||||
fprintf(stdout, "%9.6f ", emb[j * n_embd + i]);
|
||||
}
|
||||
}
|
||||
LOG("\n");
|
||||
fprintf(stdout, "\n");
|
||||
}
|
||||
} else {
|
||||
// print the first part of the embeddings or for a single prompt, the full embedding
|
||||
for (int j = 0; j < n_prompts; j++) {
|
||||
LOG("embedding %d: ", j);
|
||||
fprintf(stdout, "embedding %d: ", j);
|
||||
for (int i = 0; i < (n_prompts > 1 ? std::min(16, n_embd) : n_embd); i++) {
|
||||
if (params.embd_normalize == 0) {
|
||||
LOG("%6.0f ", emb[j * n_embd + i]);
|
||||
fprintf(stdout, "%6.0f ", emb[j * n_embd + i]);
|
||||
} else {
|
||||
LOG("%9.6f ", emb[j * n_embd + i]);
|
||||
fprintf(stdout, "%9.6f ", emb[j * n_embd + i]);
|
||||
}
|
||||
}
|
||||
LOG("\n");
|
||||
fprintf(stdout, "\n");
|
||||
}
|
||||
|
||||
// print cosine similarity matrix
|
||||
if (n_prompts > 1) {
|
||||
LOG("\n");
|
||||
LOG("cosine similarity matrix:\n\n");
|
||||
fprintf(stdout, "\n");
|
||||
printf("cosine similarity matrix:\n\n");
|
||||
for (int i = 0; i < n_prompts; i++) {
|
||||
LOG("%6.6s ", prompts[i].c_str());
|
||||
fprintf(stdout, "%6.6s ", prompts[i].c_str());
|
||||
}
|
||||
LOG("\n");
|
||||
fprintf(stdout, "\n");
|
||||
for (int i = 0; i < n_prompts; i++) {
|
||||
for (int j = 0; j < n_prompts; j++) {
|
||||
float sim = llama_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
|
||||
LOG("%6.2f ", sim);
|
||||
fprintf(stdout, "%6.2f ", sim);
|
||||
}
|
||||
LOG("%1.10s", prompts[i].c_str());
|
||||
LOG("\n");
|
||||
fprintf(stdout, "%1.10s", prompts[i].c_str());
|
||||
fprintf(stdout, "\n");
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -271,43 +270,43 @@ int main(int argc, char ** argv) {
|
||||
if (params.embd_out == "json" || params.embd_out == "json+" || params.embd_out == "array") {
|
||||
const bool notArray = params.embd_out != "array";
|
||||
|
||||
LOG(notArray ? "{\n \"object\": \"list\",\n \"data\": [\n" : "[");
|
||||
fprintf(stdout, notArray ? "{\n \"object\": \"list\",\n \"data\": [\n" : "[");
|
||||
for (int j = 0;;) { // at least one iteration (one prompt)
|
||||
if (notArray) LOG(" {\n \"object\": \"embedding\",\n \"index\": %d,\n \"embedding\": ",j);
|
||||
LOG("[");
|
||||
if (notArray) fprintf(stdout, " {\n \"object\": \"embedding\",\n \"index\": %d,\n \"embedding\": ",j);
|
||||
fprintf(stdout, "[");
|
||||
for (int i = 0;;) { // at least one iteration (n_embd > 0)
|
||||
LOG(params.embd_normalize == 0 ? "%1.0f" : "%1.7f", emb[j * n_embd + i]);
|
||||
fprintf(stdout, params.embd_normalize == 0 ? "%1.0f" : "%1.7f", emb[j * n_embd + i]);
|
||||
i++;
|
||||
if (i < n_embd) LOG(","); else break;
|
||||
if (i < n_embd) fprintf(stdout, ","); else break;
|
||||
}
|
||||
LOG(notArray ? "]\n }" : "]");
|
||||
fprintf(stdout, notArray ? "]\n }" : "]");
|
||||
j++;
|
||||
if (j < n_embd_count) LOG(notArray ? ",\n" : ","); else break;
|
||||
if (j < n_embd_count) fprintf(stdout, notArray ? ",\n" : ","); else break;
|
||||
}
|
||||
LOG(notArray ? "\n ]" : "]\n");
|
||||
fprintf(stdout, notArray ? "\n ]" : "]\n");
|
||||
|
||||
if (params.embd_out == "json+" && n_prompts > 1) {
|
||||
LOG(",\n \"cosineSimilarity\": [\n");
|
||||
fprintf(stdout, ",\n \"cosineSimilarity\": [\n");
|
||||
for (int i = 0;;) { // at least two iteration (n_embd_count > 1)
|
||||
LOG(" [");
|
||||
fprintf(stdout, " [");
|
||||
for (int j = 0;;) { // at least two iteration (n_embd_count > 1)
|
||||
float sim = llama_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
|
||||
LOG("%6.2f", sim);
|
||||
fprintf(stdout, "%6.2f", sim);
|
||||
j++;
|
||||
if (j < n_embd_count) LOG(", "); else break;
|
||||
if (j < n_embd_count) fprintf(stdout, ", "); else break;
|
||||
}
|
||||
LOG(" ]");
|
||||
fprintf(stdout, " ]");
|
||||
i++;
|
||||
if (i < n_embd_count) LOG(",\n"); else break;
|
||||
if (i < n_embd_count) fprintf(stdout, ",\n"); else break;
|
||||
}
|
||||
LOG("\n ]");
|
||||
fprintf(stdout, "\n ]");
|
||||
}
|
||||
|
||||
if (notArray) LOG("\n}\n");
|
||||
if (notArray) fprintf(stdout, "\n}\n");
|
||||
}
|
||||
|
||||
LOG("\n");
|
||||
llama_perf_context_print(ctx);
|
||||
LOG_TEE("\n");
|
||||
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
|
||||
|
||||
// clean up
|
||||
llama_batch_free(batch);
|
||||
|
@ -1,11 +1,12 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
#include "llama.h"
|
||||
#include "ggml.h"
|
||||
|
||||
#include <cstdio>
|
||||
#include <random>
|
||||
#include <string>
|
||||
#include <tuple>
|
||||
#include <vector>
|
||||
|
||||
/**
|
||||
@ -31,22 +32,22 @@ static void ggml_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne
|
||||
GGML_ASSERT(n > 0);
|
||||
float sum = 0;
|
||||
for (int64_t i3 = 0; i3 < ne[3]; i3++) {
|
||||
LOG(" [\n");
|
||||
printf(" [\n");
|
||||
for (int64_t i2 = 0; i2 < ne[2]; i2++) {
|
||||
if (i2 == n && ne[2] > 2*n) {
|
||||
LOG(" ..., \n");
|
||||
printf(" ..., \n");
|
||||
i2 = ne[2] - n;
|
||||
}
|
||||
LOG(" [\n");
|
||||
printf(" [\n");
|
||||
for (int64_t i1 = 0; i1 < ne[1]; i1++) {
|
||||
if (i1 == n && ne[1] > 2*n) {
|
||||
LOG(" ..., \n");
|
||||
printf(" ..., \n");
|
||||
i1 = ne[1] - n;
|
||||
}
|
||||
LOG(" [");
|
||||
printf(" [");
|
||||
for (int64_t i0 = 0; i0 < ne[0]; i0++) {
|
||||
if (i0 == n && ne[0] > 2*n) {
|
||||
LOG("..., ");
|
||||
printf("..., ");
|
||||
i0 = ne[0] - n;
|
||||
}
|
||||
size_t i = i3 * nb[3] + i2 * nb[2] + i1 * nb[1] + i0 * nb[0];
|
||||
@ -64,16 +65,16 @@ static void ggml_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne
|
||||
} else {
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
LOG("%12.4f", v);
|
||||
printf("%12.4f", v);
|
||||
sum += v;
|
||||
if (i0 < ne[0] - 1) LOG(", ");
|
||||
if (i0 < ne[0] - 1) printf(", ");
|
||||
}
|
||||
LOG("],\n");
|
||||
printf("],\n");
|
||||
}
|
||||
LOG(" ],\n");
|
||||
printf(" ],\n");
|
||||
}
|
||||
LOG(" ]\n");
|
||||
LOG(" sum = %f\n", sum);
|
||||
printf(" ]\n");
|
||||
printf(" sum = %f\n", sum);
|
||||
}
|
||||
}
|
||||
|
||||
@ -102,11 +103,11 @@ static bool ggml_debug(struct ggml_tensor * t, bool ask, void * user_data) {
|
||||
snprintf(src1_str, sizeof(src1_str), "%s{%s}", src1->name, ggml_ne_string(src1).c_str());
|
||||
}
|
||||
|
||||
LOG("%s: %24s = (%s) %10s(%s{%s}, %s}) = {%s}\n", __func__,
|
||||
t->name, ggml_type_name(t->type), ggml_op_desc(t),
|
||||
src0->name, ggml_ne_string(src0).c_str(),
|
||||
src1 ? src1_str : "",
|
||||
ggml_ne_string(t).c_str());
|
||||
printf("%s: %24s = (%s) %10s(%s{%s}, %s}) = {%s}\n", __func__,
|
||||
t->name, ggml_type_name(t->type), ggml_op_desc(t),
|
||||
src0->name, ggml_ne_string(src0).c_str(),
|
||||
src1 ? src1_str : "",
|
||||
ggml_ne_string(t).c_str());
|
||||
|
||||
|
||||
// copy the data from the GPU memory if needed
|
||||
@ -132,7 +133,7 @@ static bool run(llama_context * ctx, const gpt_params & params) {
|
||||
std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
|
||||
|
||||
if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size(), 0, 0))) {
|
||||
LOG_ERR("%s : failed to eval\n", __func__);
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -148,7 +149,7 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
print_build_info();
|
||||
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
@ -165,15 +166,14 @@ int main(int argc, char ** argv) {
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
if (model == nullptr || ctx == nullptr) {
|
||||
LOG_ERR("%s : failed to init\n", __func__);
|
||||
fprintf(stderr, "%s : failed to init\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// print system information
|
||||
{
|
||||
LOG_INF("\n");
|
||||
LOG_INF("%s\n", gpt_params_get_system_info(params).c_str());
|
||||
LOG_INF("\n");
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
|
||||
}
|
||||
|
||||
bool OK = run(ctx, params);
|
||||
@ -181,8 +181,8 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
LOG("\n");
|
||||
llama_perf_context_print(ctx);
|
||||
LOG_TEE("\n");
|
||||
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
|
||||
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
@ -406,7 +406,7 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
g_verbose = (params.verbosity > 1);
|
||||
g_verbose = (params.verbosity == 1);
|
||||
try {
|
||||
lora_merge_ctx ctx(params.model, params.lora_adapters, params.lora_outfile, params.cpuparams.n_threads);
|
||||
ctx.run_merge();
|
||||
|
@ -152,7 +152,7 @@ static void split_params_parse_ex(int argc, const char ** argv, split_params & p
|
||||
throw std::invalid_argument("error: invalid parameter for argument: " + arg);
|
||||
}
|
||||
|
||||
if (argc - arg_idx != 2) {
|
||||
if (argc - arg_idx < 2) {
|
||||
throw std::invalid_argument("error: bad arguments");
|
||||
}
|
||||
|
||||
@ -389,17 +389,10 @@ static void gguf_merge(const split_params & split_params) {
|
||||
int n_split = 1;
|
||||
int total_tensors = 0;
|
||||
|
||||
// avoid overwriting existing output file
|
||||
if (std::ifstream(split_params.output.c_str())) {
|
||||
fprintf(stderr, "%s: output file %s already exists\n", __func__, split_params.output.c_str());
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
auto * ctx_out = gguf_init_empty();
|
||||
std::ofstream fout(split_params.output.c_str(), std::ios::binary);
|
||||
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
|
||||
|
||||
auto * ctx_out = gguf_init_empty();
|
||||
|
||||
std::vector<uint8_t> read_data;
|
||||
std::vector<ggml_context *> ctx_metas;
|
||||
std::vector<gguf_context *> ctx_ggufs;
|
||||
|
@ -158,8 +158,6 @@ int main(int argc, char * argv[]) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
|
||||
llama_model_params mparams = llama_model_params_from_gpt_params(params);
|
||||
llama_context_params cparams = llama_context_params_from_gpt_params(params);
|
||||
|
||||
|
@ -1,6 +1,5 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cmath>
|
||||
@ -20,12 +19,12 @@
|
||||
#endif
|
||||
|
||||
static void print_usage(int, char ** argv) {
|
||||
LOG("\nexample usage:\n");
|
||||
LOG("\n %s \\\n"
|
||||
" -m model.gguf -f some-text.txt [-o imatrix.dat] [--process-output] \\\n"
|
||||
LOG_TEE("\nexample usage:\n");
|
||||
LOG_TEE("\n %s \\\n"
|
||||
" -m model.gguf -f some-text.txt [-o imatrix.dat] [--process-output] [--verbosity 1] \\\n"
|
||||
" [--no-ppl] [--chunk 123] [--output-frequency 10] [--save-frequency 0] \\\n"
|
||||
" [--in-file imatrix-prev-0.dat --in-file imatrix-prev-1.dat ...]\n" , argv[0]);
|
||||
LOG("\n");
|
||||
LOG_TEE("\n");
|
||||
}
|
||||
|
||||
struct Stats {
|
||||
@ -126,10 +125,12 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
||||
e.counts.resize(src1->ne[0]*n_as, 0);
|
||||
}
|
||||
else if (e.values.size() != (size_t)src1->ne[0]*n_as) {
|
||||
LOG_ERR("%s: inconsistent size for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.values.size(), (int)src1->ne[0]*n_as);
|
||||
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]*n_as);
|
||||
exit(1); //GGML_ABORT("fatal error");
|
||||
}
|
||||
LOG_DBGV(2, "%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[2], (int)src1->type);
|
||||
if (m_params.verbosity > 1) {
|
||||
printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[2], (int)src1->type);
|
||||
}
|
||||
// loop over all possible experts, regardless if they are used or not in the batch
|
||||
for (int ex = 0; ex < n_as; ++ex) {
|
||||
size_t e_start = ex*src1->ne[0];
|
||||
@ -150,8 +151,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
||||
e.values[e_start + j] += x[j]*x[j];
|
||||
e.counts[e_start + j]++;
|
||||
if (!std::isfinite(e.values[e_start + j])) {
|
||||
LOG("\n");
|
||||
LOG_ERR("%f detected in %s\n", e.values[e_start + j], wname.c_str());
|
||||
fprintf(stderr, "%f detected in %s\n", e.values[e_start + j], wname.c_str());
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
@ -174,18 +174,20 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
||||
e.counts.resize(src1->ne[0], 0);
|
||||
}
|
||||
else if (e.values.size() != (size_t)src1->ne[0]) {
|
||||
LOG_ERR("%s: inconsistent size for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.values.size(), (int)src1->ne[0]);
|
||||
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]);
|
||||
exit(1); //GGML_ABORT("fatal error");
|
||||
}
|
||||
++e.ncall;
|
||||
LOG_DBGV(2, "%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type);
|
||||
if (m_params.verbosity > 1) {
|
||||
printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type);
|
||||
}
|
||||
for (int row = 0; row < (int)src1->ne[1]; ++row) {
|
||||
const float * x = data + row * src1->ne[0];
|
||||
for (int j = 0; j < (int)src1->ne[0]; ++j) {
|
||||
e.values[j] += x[j]*x[j];
|
||||
e.counts[j]++;
|
||||
if (!std::isfinite(e.values[j])) {
|
||||
LOG_ERR("%f detected in %s\n", e.values[j], wname.c_str());
|
||||
fprintf(stderr, "%f detected in %s\n", e.values[j], wname.c_str());
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
@ -237,17 +239,17 @@ void IMatrixCollector::save_imatrix(int ncall) const {
|
||||
}
|
||||
|
||||
if (n_zeros != 0 && is_first) {
|
||||
LOG_INF("\n");
|
||||
fprintf(stderr, "\n");
|
||||
is_first = false;
|
||||
}
|
||||
|
||||
if (n_zeros == n_all) {
|
||||
LOG_WRN("%s: entry '%40s' has no data - skipping\n", __func__, kv.first.c_str());
|
||||
fprintf(stderr, "%s: entry '%40s' has no data - skipping\n", __func__, kv.first.c_str());
|
||||
continue;
|
||||
}
|
||||
|
||||
if (n_zeros > 0) {
|
||||
LOG_WRN("%s: entry '%40s' has partial data (%.2f%%) - skipping\n", __func__, kv.first.c_str(), 100.0f * (n_all - n_zeros) / n_all);
|
||||
fprintf(stderr, "%s: entry '%40s' has partial data (%.2f%%) - skipping\n", __func__, kv.first.c_str(), 100.0f * (n_all - n_zeros) / n_all);
|
||||
continue;
|
||||
}
|
||||
|
||||
@ -256,7 +258,7 @@ void IMatrixCollector::save_imatrix(int ncall) const {
|
||||
}
|
||||
|
||||
if (to_store.size() < m_stats.size()) {
|
||||
LOG_WRN("%s: storing only %zu out of %zu entries\n", __func__, to_store.size(), m_stats.size());
|
||||
fprintf(stderr, "%s: warning: storing only %zu out of %zu entries\n", __func__, to_store.size(), m_stats.size());
|
||||
}
|
||||
|
||||
std::ofstream out(fname, std::ios::binary);
|
||||
@ -288,20 +290,21 @@ void IMatrixCollector::save_imatrix(int ncall) const {
|
||||
out.write(m_params.prompt_file.c_str(), len);
|
||||
}
|
||||
|
||||
LOGV(1, "\n");
|
||||
LOG_DBGV(1, "%s: stored collected data after %d chunks in %s\n", __func__, m_last_call, fname.c_str());
|
||||
if (m_params.verbosity > 0) {
|
||||
fprintf(stderr, "\n%s: stored collected data after %d chunks in %s\n", __func__, m_last_call, fname.c_str());
|
||||
}
|
||||
}
|
||||
|
||||
bool IMatrixCollector::load_imatrix(const char * fname) {
|
||||
std::ifstream in(fname, std::ios::binary);
|
||||
if (!in) {
|
||||
LOG_ERR("%s: failed to open %s\n",__func__, fname);
|
||||
printf("%s: failed to open %s\n",__func__, fname);
|
||||
return false;
|
||||
}
|
||||
int n_entries;
|
||||
in.read((char*)&n_entries, sizeof(n_entries));
|
||||
if (in.fail() || n_entries < 1) {
|
||||
LOG_ERR("%s: no data in file %s\n", __func__, fname);
|
||||
printf("%s: no data in file %s\n", __func__, fname);
|
||||
return false;
|
||||
}
|
||||
for (int i = 0; i < n_entries; ++i) {
|
||||
@ -309,7 +312,7 @@ bool IMatrixCollector::load_imatrix(const char * fname) {
|
||||
std::vector<char> name_as_vec(len+1);
|
||||
in.read((char *)name_as_vec.data(), len);
|
||||
if (in.fail()) {
|
||||
LOG_ERR("%s: failed reading name for entry %d from %s\n",__func__,i+1, fname);
|
||||
printf("%s: failed reading name for entry %d from %s\n",__func__,i+1, fname);
|
||||
return false;
|
||||
}
|
||||
name_as_vec[len] = 0;
|
||||
@ -320,7 +323,7 @@ bool IMatrixCollector::load_imatrix(const char * fname) {
|
||||
int nval;
|
||||
in.read((char *)&nval, sizeof(nval));
|
||||
if (in.fail() || nval < 1) {
|
||||
LOG_ERR("%s: failed reading number of values for entry %d\n",__func__,i);
|
||||
printf("%s: failed reading number of values for entry %d\n",__func__,i);
|
||||
m_stats = {};
|
||||
return false;
|
||||
}
|
||||
@ -333,7 +336,7 @@ bool IMatrixCollector::load_imatrix(const char * fname) {
|
||||
std::vector<float> tmp(nval);
|
||||
in.read((char*)tmp.data(), nval*sizeof(float));
|
||||
if (in.fail()) {
|
||||
LOG_ERR("%s: failed reading data for entry %d\n",__func__,i);
|
||||
printf("%s: failed reading data for entry %d\n",__func__,i);
|
||||
m_stats = {};
|
||||
return false;
|
||||
}
|
||||
@ -434,25 +437,26 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params) {
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
auto tim1 = std::chrono::high_resolution_clock::now();
|
||||
LOG_INF("%s: tokenizing the input ..\n", __func__);
|
||||
fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
|
||||
|
||||
std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, true);
|
||||
|
||||
auto tim2 = std::chrono::high_resolution_clock::now();
|
||||
LOG_INF("%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
|
||||
fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
|
||||
|
||||
if (params.i_chunk > 0) {
|
||||
if (size_t((params.i_chunk + 2)*n_ctx) >= tokens.size()) {
|
||||
LOG_ERR("%s: there will be not enough tokens left after removing %d chunks\n", __func__, params.i_chunk);
|
||||
fprintf(stderr, "%s: there will be not enough tokens left after removing %d chunks\n", __func__, params.i_chunk);
|
||||
return false;
|
||||
}
|
||||
LOG_INF("%s: removing initial %d chunks (%d tokens)\n", __func__, params.i_chunk, params.i_chunk*n_ctx);
|
||||
fprintf(stderr, "%s: removing initial %d chunks (%d tokens)\n", __func__, params.i_chunk, params.i_chunk*n_ctx);
|
||||
tokens.erase(tokens.begin(), tokens.begin() + params.i_chunk*n_ctx);
|
||||
}
|
||||
|
||||
if (int(tokens.size()) < 2*n_ctx) {
|
||||
LOG_ERR("%s: you need at least %d tokens for a context of %d tokens\n", __func__, 2*n_ctx, n_ctx);
|
||||
LOG_ERR("%s: the data file you provided tokenizes to only %zu tokens\n", __func__, tokens.size());
|
||||
fprintf(stderr, "%s: you need at least %d tokens for a context of %d tokens\n",__func__,2*n_ctx,
|
||||
n_ctx);
|
||||
fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -474,7 +478,7 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params) {
|
||||
double nll = 0.0;
|
||||
double nll2 = 0.0;
|
||||
|
||||
LOG_INF("%s: computing over %d chunks with batch_size %d\n", __func__, n_chunk, n_batch);
|
||||
fprintf(stderr, "%s: computing over %d chunks with batch_size %d\n", __func__, n_chunk, n_batch);
|
||||
|
||||
std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
|
||||
|
||||
@ -510,7 +514,7 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params) {
|
||||
|
||||
// TODO: use batch.logits to save computations instead of relying on logits_all == true
|
||||
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
|
||||
LOG_ERR("%s : failed to eval\n", __func__);
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -527,29 +531,29 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params) {
|
||||
|
||||
if (i == 0) {
|
||||
const float t_total = std::chrono::duration<float>(t_end - t_start).count();
|
||||
LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total);
|
||||
fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
|
||||
int total_seconds = (int)(t_total * n_chunk);
|
||||
if (total_seconds >= 60*60) {
|
||||
LOG("%d hours ", total_seconds / (60*60));
|
||||
fprintf(stderr, "%d hours ", total_seconds / (60*60));
|
||||
total_seconds = total_seconds % (60*60);
|
||||
}
|
||||
LOG("%.2f minutes\n", total_seconds / 60.0);
|
||||
fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
|
||||
}
|
||||
|
||||
if (params.compute_ppl) {
|
||||
const int first = n_ctx/2;
|
||||
const auto * all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx);
|
||||
const auto all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx);
|
||||
process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
|
||||
workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first);
|
||||
count += n_ctx - first - 1;
|
||||
|
||||
LOG("[%d]%.4lf,", i + 1, std::exp(nll / count));
|
||||
printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
|
||||
fflush(stdout);
|
||||
|
||||
logits.clear();
|
||||
}
|
||||
}
|
||||
LOG("\n");
|
||||
printf("\n");
|
||||
|
||||
if (params.compute_ppl) {
|
||||
nll2 /= count;
|
||||
@ -558,9 +562,9 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params) {
|
||||
nll2 -= nll * nll;
|
||||
if (nll2 > 0) {
|
||||
nll2 = sqrt(nll2/(count-1));
|
||||
LOG("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl);
|
||||
printf("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl);
|
||||
} else {
|
||||
LOG("Unexpected negative standard deviation of log(prob)\n");
|
||||
printf("Unexpected negative standard deviation of log(prob)\n");
|
||||
}
|
||||
}
|
||||
|
||||
@ -572,28 +576,26 @@ int main(int argc, char ** argv) {
|
||||
|
||||
params.n_ctx = 512;
|
||||
params.logits_all = true;
|
||||
params.escape = false;
|
||||
params.verbosity = 1;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_IMATRIX, print_usage)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
|
||||
params.n_batch = std::min(params.n_batch, params.n_ctx);
|
||||
|
||||
g_collector.set_params(params);
|
||||
|
||||
for (const auto & in_file : params.in_files) {
|
||||
LOG_INF("%s : loading imatrix from '%s'\n", __func__, in_file.c_str());
|
||||
printf("%s : loading imatrix from '%s'\n", __func__, in_file.c_str());
|
||||
if (!g_collector.load_imatrix(in_file.c_str())) {
|
||||
LOG_ERR("%s : failed to load %s\n", __func__, in_file.c_str());
|
||||
fprintf(stderr, "%s : failed to load %s\n", __func__, in_file.c_str());
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
if (params.in_files.size() > 1) {
|
||||
LOG_INF("%s : saving combined imatrix to '%s'\n", __func__, params.out_file.c_str());
|
||||
printf("%s : saving combined imatrix to '%s'\n", __func__, params.out_file.c_str());
|
||||
g_collector.save_imatrix();
|
||||
}
|
||||
|
||||
@ -612,20 +614,20 @@ int main(int argc, char ** argv) {
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
if (model == nullptr || ctx == nullptr) {
|
||||
LOG_ERR("%s : failed to init\n", __func__);
|
||||
fprintf(stderr, "%s : failed to init\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
const int n_ctx_train = llama_n_ctx_train(model);
|
||||
if (params.n_ctx > n_ctx_train) {
|
||||
LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n",
|
||||
fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
|
||||
__func__, n_ctx_train, params.n_ctx);
|
||||
}
|
||||
|
||||
// print system information
|
||||
{
|
||||
LOG_INF("\n");
|
||||
LOG_INF("%s\n", gpt_params_get_system_info(params).c_str());
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
|
||||
}
|
||||
|
||||
if (!compute_imatrix(ctx, params)) {
|
||||
@ -634,8 +636,8 @@ int main(int argc, char ** argv) {
|
||||
|
||||
g_collector.save_imatrix();
|
||||
|
||||
LOG("\n");
|
||||
llama_perf_context_print(ctx);
|
||||
LOG_TEE("\n");
|
||||
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
|
||||
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
@ -2,7 +2,6 @@
|
||||
#include "common.h"
|
||||
#include "console.h"
|
||||
#include "sampling.h"
|
||||
#include "log.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cassert>
|
||||
@ -56,7 +55,7 @@ static void write_logfile(
|
||||
|
||||
const bool success = fs_create_directory_with_parents(params.logdir);
|
||||
if (!success) {
|
||||
LOG_ERR("%s: warning: failed to create logdir %s, cannot write logfile\n",
|
||||
fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
|
||||
__func__, params.logdir.c_str());
|
||||
return;
|
||||
}
|
||||
@ -65,7 +64,7 @@ static void write_logfile(
|
||||
FILE * logfile = fopen(logfile_path.c_str(), "w");
|
||||
|
||||
if (logfile == NULL) {
|
||||
LOG_ERR("%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
|
||||
fprintf(stderr, "%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
|
||||
return;
|
||||
}
|
||||
|
||||
@ -94,14 +93,9 @@ static void sigint_handler(int signo) {
|
||||
is_interacting = true;
|
||||
} else {
|
||||
console::cleanup();
|
||||
LOG("\n");
|
||||
printf("\n");
|
||||
gpt_perf_print(*g_ctx, *g_smpl);
|
||||
write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens);
|
||||
|
||||
// make sure all logs are flushed
|
||||
LOG("Interrupted by user\n");
|
||||
gpt_log_pause(gpt_log_main());
|
||||
|
||||
_exit(130);
|
||||
}
|
||||
}
|
||||
@ -116,51 +110,56 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
|
||||
auto & sparams = params.sparams;
|
||||
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
log_set_target(log_filename_generator("infill", "log"));
|
||||
LOG_TEE("Log start\n");
|
||||
log_dump_cmdline(argc, argv);
|
||||
#endif // LOG_DISABLE_LOGS
|
||||
|
||||
console::init(params.simple_io, params.use_color);
|
||||
atexit([]() { console::cleanup(); });
|
||||
|
||||
if (params.logits_all) {
|
||||
LOG_ERR("\n************\n");
|
||||
LOG_ERR("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
|
||||
LOG_ERR("************\n\n");
|
||||
printf("\n************\n");
|
||||
printf("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
|
||||
printf("************\n\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (params.embedding) {
|
||||
LOG_ERR("\n************\n");
|
||||
LOG_ERR("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
|
||||
LOG_ERR("************\n\n");
|
||||
printf("\n************\n");
|
||||
printf("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
|
||||
printf("************\n\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (params.n_ctx != 0 && params.n_ctx < 8) {
|
||||
LOG_WRN("%s: minimum context size is 8, using minimum size.\n", __func__);
|
||||
LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
|
||||
params.n_ctx = 8;
|
||||
}
|
||||
|
||||
if (!params.interactive_first && (params.input_prefix.empty() && params.input_suffix.empty())) {
|
||||
LOG_ERR("\n************\n");
|
||||
LOG_ERR("%s: please use '--interactive_first' or specify '--in_prefix' and/or '--in_suffix'\n", __func__);
|
||||
LOG_ERR("************\n\n");
|
||||
printf("\n************\n");
|
||||
printf("%s: please use '--interactive_first' or specify '--in_prefix' and/or '--in_suffix'\n", __func__);
|
||||
printf("************\n\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (params.rope_freq_base != 0.0) {
|
||||
LOG_WRN("%s: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base);
|
||||
LOG_TEE("%s: warning: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base);
|
||||
}
|
||||
|
||||
if (params.rope_freq_scale != 0.0) {
|
||||
LOG_WRN("%s: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
|
||||
LOG_TEE("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
|
||||
}
|
||||
|
||||
LOG_INF("%s: llama backend init\n", __func__);
|
||||
print_build_info();
|
||||
|
||||
LOG("%s: llama backend init\n", __func__);
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
@ -173,32 +172,34 @@ int main(int argc, char ** argv) {
|
||||
g_smpl = &smpl;
|
||||
|
||||
// load the model and apply lora adapter, if any
|
||||
LOG_INF("%s: load the model and apply lora adapter, if any\n", __func__);
|
||||
LOG("%s: load the model and apply lora adapter, if any\n", __func__);
|
||||
llama_init_result llama_init = llama_init_from_gpt_params(params);
|
||||
|
||||
model = llama_init.model;
|
||||
ctx = llama_init.context;
|
||||
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: unable to load model\n", __func__);
|
||||
LOG_TEE("%s: error: unable to load model\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
const int n_ctx_train = llama_n_ctx_train(model);
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
LOG_DBG("n_ctx: %d\n", n_ctx);
|
||||
LOG("n_ctx: %d\n", n_ctx);
|
||||
|
||||
if (n_ctx > n_ctx_train) {
|
||||
LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, n_ctx);
|
||||
LOG_TEE("%s: warning: model was trained on only %d context tokens (%d specified)\n",
|
||||
__func__, n_ctx_train, n_ctx);
|
||||
}
|
||||
|
||||
// print system information
|
||||
{
|
||||
LOG_INF("\n");
|
||||
LOG_INF("%s\n", gpt_params_get_system_info(params).c_str());
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("%s\n", gpt_params_get_system_info(params).c_str());
|
||||
}
|
||||
const bool add_bos = llama_add_bos_token(model);
|
||||
GGML_ASSERT(!llama_add_eos_token(model));
|
||||
LOG("add_bos: %d\n", add_bos);
|
||||
|
||||
std::vector<llama_token> embd_inp;
|
||||
std::vector<llama_token> embd_end;
|
||||
@ -223,19 +224,18 @@ int main(int argc, char ** argv) {
|
||||
embd_inp.push_back(middle_token);
|
||||
}
|
||||
|
||||
LOG_DBG("add_bos: %d\n", add_bos);
|
||||
LOG_DBG("prefix: \"%s\"\n", params.input_prefix.c_str());
|
||||
LOG_DBG("suffix: \"%s\"\n", params.input_suffix.c_str());
|
||||
LOG_DBG("tokens: %s\n", string_from(ctx, embd_inp).c_str());
|
||||
LOG("prefix: \"%s\"\n", log_tostr(params.input_prefix));
|
||||
LOG("suffix: \"%s\"\n", log_tostr(params.input_suffix));
|
||||
LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
|
||||
|
||||
// Should not run without any tokens
|
||||
if (embd_inp.empty()) {
|
||||
embd_inp.push_back(llama_token_bos(model));
|
||||
LOG_WRN("embd_inp was considered empty and bos was added: %s\n", string_from(ctx, embd_inp).c_str());
|
||||
LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
|
||||
}
|
||||
|
||||
if ((int) embd_inp.size() > n_ctx - 4) {
|
||||
LOG_ERR("%s: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
|
||||
LOG_TEE("%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -244,8 +244,9 @@ int main(int argc, char ** argv) {
|
||||
params.n_keep = (int)embd_inp.size();
|
||||
}
|
||||
|
||||
LOG_INF("inp_pfx: %s\n", string_from(ctx, inp_pfx).c_str());
|
||||
LOG_INF("inp_sfx: %s\n", string_from(ctx, inp_sfx).c_str());
|
||||
LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx).c_str());
|
||||
LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx).c_str());
|
||||
|
||||
|
||||
// enable interactive mode if interactive start is specified
|
||||
if (params.interactive_first) {
|
||||
@ -253,21 +254,21 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
if (params.verbose_prompt) {
|
||||
LOG_INF("\n");
|
||||
LOG_INF("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
|
||||
LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
|
||||
LOG_TEE("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
|
||||
for (int i = 0; i < (int) embd_inp.size(); i++) {
|
||||
LOG_INF("%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||
LOG_TEE("%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||
}
|
||||
|
||||
if (params.n_keep > 0) {
|
||||
LOG_INF("%s: static prompt based on n_keep: '", __func__);
|
||||
LOG_TEE("%s: static prompt based on n_keep: '", __func__);
|
||||
for (int i = 0; i < params.n_keep; i++) {
|
||||
LOG("%s", llama_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||
LOG_TEE("%s", llama_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||
}
|
||||
LOG("'\n");
|
||||
LOG_TEE("'\n");
|
||||
}
|
||||
LOG_INF("\n");
|
||||
LOG_TEE("\n");
|
||||
}
|
||||
|
||||
if (params.interactive) {
|
||||
@ -284,30 +285,28 @@ int main(int argc, char ** argv) {
|
||||
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
|
||||
#endif
|
||||
|
||||
LOG_INF("%s: interactive mode on.\n", __func__);
|
||||
LOG_TEE("%s: interactive mode on.\n", __func__);
|
||||
|
||||
if (params.input_prefix_bos) {
|
||||
LOG_INF("Input prefix with BOS\n");
|
||||
LOG_TEE("Input prefix with BOS\n");
|
||||
}
|
||||
|
||||
if (!params.input_prefix.empty()) {
|
||||
LOG_INF("Input prefix: '%s'\n", params.input_prefix.c_str());
|
||||
LOG_TEE("Input prefix: '%s'\n", params.input_prefix.c_str());
|
||||
}
|
||||
|
||||
if (!params.input_suffix.empty()) {
|
||||
LOG_INF("Input suffix: '%s'\n", params.input_suffix.c_str());
|
||||
LOG_TEE("Input suffix: '%s'\n", params.input_suffix.c_str());
|
||||
}
|
||||
}
|
||||
smpl = gpt_sampler_init(model, sparams);
|
||||
|
||||
LOG_INF("sampler seed: %u\n", gpt_sampler_get_seed(smpl));
|
||||
LOG_INF("sampler params: \n%s\n", sparams.print().c_str());
|
||||
LOG_INF("sampler chain: %s\n", gpt_sampler_print(smpl).c_str());
|
||||
LOG_TEE("sampling seed: %u\n", gpt_sampler_get_seed(smpl));
|
||||
LOG_TEE("sampling: \n%s\n", sparams.print().c_str());
|
||||
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
||||
LOG_TEE("\n\n");
|
||||
|
||||
LOG_INF("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
||||
|
||||
LOG("\n");
|
||||
LOG("\n##### Infill mode #####\n\n");
|
||||
LOG_TEE("\n##### Infill mode #####\n\n");
|
||||
if (params.interactive) {
|
||||
const char *control_message;
|
||||
if (params.multiline_input) {
|
||||
@ -318,11 +317,11 @@ int main(int argc, char ** argv) {
|
||||
" - To return control without starting a new line, end your input with '/'.\n"
|
||||
" - If you want to submit another line, end your input with '\\'.\n";
|
||||
}
|
||||
LOG("== Running in interactive mode. ==\n");
|
||||
LOG_TEE("== Running in interactive mode. ==\n");
|
||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
||||
LOG( " - Press Ctrl+C to interject at any time.\n");
|
||||
LOG_TEE( " - Press Ctrl+C to interject at any time.\n");
|
||||
#endif
|
||||
LOG( "%s\n", control_message);
|
||||
LOG_TEE( "%s\n", control_message);
|
||||
|
||||
is_interacting = params.interactive_first;
|
||||
}
|
||||
@ -355,8 +354,9 @@ int main(int argc, char ** argv) {
|
||||
embd.resize(max_embd_size);
|
||||
|
||||
console::set_display(console::error);
|
||||
LOG_WRN("<<input too long: skipped %d token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
|
||||
printf("<<input too long: skipped %d token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
|
||||
console::set_display(console::reset);
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
// infinite text generation via context swapping
|
||||
@ -365,14 +365,14 @@ int main(int argc, char ** argv) {
|
||||
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
|
||||
if (n_past + (int) embd.size() > n_ctx) {
|
||||
if (params.n_predict == -2) {
|
||||
LOG_DBG("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
|
||||
LOG_TEE("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
|
||||
break;
|
||||
}
|
||||
|
||||
const int n_left = n_past - params.n_keep - 1;
|
||||
const int n_discard = n_left/2;
|
||||
|
||||
LOG_DBG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
|
||||
LOG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
|
||||
n_past, n_left, n_ctx, params.n_keep, n_discard);
|
||||
|
||||
llama_kv_cache_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1);
|
||||
@ -380,9 +380,9 @@ int main(int argc, char ** argv) {
|
||||
|
||||
n_past -= n_discard;
|
||||
|
||||
LOG_DBG("after swap: n_past = %d\n", n_past);
|
||||
LOG("after swap: n_past = %d\n", n_past);
|
||||
|
||||
LOG_DBG("embd: %s\n", string_from(ctx, embd).c_str());
|
||||
LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
|
||||
|
||||
}
|
||||
|
||||
@ -394,16 +394,16 @@ int main(int argc, char ** argv) {
|
||||
n_eval = params.n_batch;
|
||||
}
|
||||
|
||||
LOG_DBG("eval: %s\n", string_from(ctx, embd).c_str());
|
||||
LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
|
||||
|
||||
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) {
|
||||
LOG_ERR("%s : failed to eval\n", __func__);
|
||||
LOG_TEE("%s : failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
n_past += n_eval;
|
||||
|
||||
LOG_DBG("n_past = %d\n", n_past);
|
||||
LOG("n_past = %d\n", n_past);
|
||||
}
|
||||
|
||||
}
|
||||
@ -415,7 +415,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
gpt_sampler_accept(smpl, id, true);
|
||||
|
||||
// LOG_DBG("last: %s\n", string_from(ctx, smpl->prev.to_vector()).c_str());
|
||||
// LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, smpl->prev.to_vector()).c_str());
|
||||
|
||||
embd.push_back(id);
|
||||
|
||||
@ -425,10 +425,10 @@ int main(int argc, char ** argv) {
|
||||
// decrement remaining sampling budget
|
||||
--n_remain;
|
||||
|
||||
LOG_DBG("n_remain: %d\n", n_remain);
|
||||
LOG("n_remain: %d\n", n_remain);
|
||||
} else {
|
||||
// some user input remains from prompt or interaction, forward it to processing
|
||||
LOG_DBG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
|
||||
LOG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
|
||||
while ((int) embd_inp.size() > n_consumed) {
|
||||
embd.push_back(embd_inp[n_consumed]);
|
||||
|
||||
@ -447,7 +447,7 @@ int main(int argc, char ** argv) {
|
||||
if (input_echo) {
|
||||
for (auto id : embd) {
|
||||
const std::string token_str = llama_token_to_piece(ctx, id);
|
||||
LOG("%s", token_str.c_str());
|
||||
printf("%s", token_str.c_str());
|
||||
|
||||
if (embd.size() > 1) {
|
||||
input_tokens.push_back(id);
|
||||
@ -456,6 +456,7 @@ int main(int argc, char ** argv) {
|
||||
output_ss << token_str;
|
||||
}
|
||||
}
|
||||
fflush(stdout);
|
||||
}
|
||||
// reset color to default if we there is no pending user input
|
||||
if (input_echo && (int) embd_inp.size() == n_consumed) {
|
||||
@ -468,9 +469,10 @@ int main(int argc, char ** argv) {
|
||||
if ((gpt_sampler_last(smpl) == llama_token_eot(model) || is_interacting) && params.interactive){
|
||||
if (is_interacting && !params.interactive_first) {
|
||||
// print an eot token
|
||||
LOG("%s", llama_token_to_piece(ctx, llama_token_eot(model)).c_str());
|
||||
printf("%s", llama_token_to_piece(ctx, llama_token_eot(model)).c_str());
|
||||
}
|
||||
LOG("\n");
|
||||
fflush(stdout);
|
||||
printf("\n");
|
||||
console::set_display(console::user_input);
|
||||
std::string buffer;
|
||||
std::string line;
|
||||
@ -526,33 +528,35 @@ int main(int argc, char ** argv) {
|
||||
n_remain = params.n_predict;
|
||||
n_past = 0;
|
||||
n_consumed = 0;
|
||||
// LOG_TEE("took new input\n");
|
||||
is_interacting = false;
|
||||
}
|
||||
// deal with end of generation tokens in interactive mode
|
||||
else if (llama_token_is_eog(model, gpt_sampler_last(smpl))) {
|
||||
LOG_DBG("found EOS token\n");
|
||||
LOG("found EOS token\n");
|
||||
|
||||
if (params.interactive) {
|
||||
|
||||
is_interacting = true;
|
||||
LOG("\n");
|
||||
printf("\n");
|
||||
console::set_display(console::user_input);
|
||||
fflush(stdout);
|
||||
}
|
||||
}
|
||||
|
||||
if (n_past > 0 && is_interacting && !params.interactive) {
|
||||
LOG_DBG("waiting for user input\n");
|
||||
LOG("waiting for user input\n");
|
||||
|
||||
if (params.input_prefix_bos) {
|
||||
LOG_DBG("adding input prefix BOS token\n");
|
||||
LOG("adding input prefix BOS token\n");
|
||||
embd_inp.push_back(llama_token_bos(model));
|
||||
}
|
||||
|
||||
std::string buffer;
|
||||
if (!params.input_prefix.empty()) {
|
||||
LOG_DBG("appending input prefix: '%s'\n", params.input_prefix.c_str());
|
||||
LOG("appending input prefix: '%s'\n", params.input_prefix.c_str());
|
||||
buffer += params.input_prefix;
|
||||
LOG("%s", buffer.c_str());
|
||||
printf("%s", buffer.c_str());
|
||||
}
|
||||
|
||||
std::string line;
|
||||
@ -570,17 +574,17 @@ int main(int argc, char ** argv) {
|
||||
if (buffer.length() > 1) {
|
||||
// append input suffix if any
|
||||
if (!params.input_suffix.empty()) {
|
||||
LOG_DBG("appending input suffix: '%s'\n", params.input_suffix.c_str());
|
||||
LOG("appending input suffix: '%s'\n", params.input_suffix.c_str());
|
||||
buffer += params.input_suffix;
|
||||
LOG("%s", params.input_suffix.c_str());
|
||||
printf("%s", params.input_suffix.c_str());
|
||||
}
|
||||
|
||||
LOG_DBG("buffer: '%s'\n", buffer.c_str());
|
||||
LOG("buffer: '%s'\n", buffer.c_str());
|
||||
|
||||
const size_t original_size = embd_inp.size();
|
||||
|
||||
const auto line_inp = ::llama_tokenize(ctx, buffer, false);
|
||||
LOG_DBG("input tokens: %s\n", string_from(ctx, line_inp).c_str());
|
||||
LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp).c_str());
|
||||
|
||||
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
|
||||
|
||||
@ -591,9 +595,9 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
n_remain -= line_inp.size();
|
||||
LOG_DBG("n_remain: %d\n", n_remain);
|
||||
LOG("n_remain: %d\n", n_remain);
|
||||
} else {
|
||||
LOG_DBG("empty line, passing control back\n");
|
||||
LOG("empty line, passing control back\n");
|
||||
}
|
||||
|
||||
input_echo = false; // do not echo this again
|
||||
@ -620,10 +624,11 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
if (!params.interactive && n_remain <= 0) {
|
||||
LOG("%s", llama_token_to_piece(ctx, llama_token_eot(model)).c_str());
|
||||
printf("%s", llama_token_to_piece(ctx, llama_token_eot(model)).c_str());
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
LOG("\n");
|
||||
LOG_TEE("\n");
|
||||
gpt_perf_print(ctx, smpl);
|
||||
write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens);
|
||||
|
||||
@ -633,5 +638,9 @@ int main(int argc, char ** argv) {
|
||||
gpt_sampler_free(smpl);
|
||||
llama_backend_free();
|
||||
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
LOG_TEE("Log end\n");
|
||||
#endif // LOG_DISABLE_LOGS
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@ -439,9 +439,6 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
||||
}
|
||||
types.push_back(gt);
|
||||
}
|
||||
if (invalid_param) {
|
||||
break;
|
||||
}
|
||||
params.type_k.insert(params.type_k.end(), types.begin(), types.end());
|
||||
} else if (arg == "-ctv" || arg == "--cache-type-v") {
|
||||
if (++i >= argc) {
|
||||
@ -458,9 +455,6 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
||||
}
|
||||
types.push_back(gt);
|
||||
}
|
||||
if (invalid_param) {
|
||||
break;
|
||||
}
|
||||
params.type_v.insert(params.type_v.end(), types.begin(), types.end());
|
||||
} else if (arg == "-t" || arg == "--threads") {
|
||||
if (++i >= argc) {
|
||||
@ -526,9 +520,6 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
||||
}
|
||||
modes.push_back(mode);
|
||||
}
|
||||
if (invalid_param) {
|
||||
break;
|
||||
}
|
||||
params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
|
||||
} else if (arg == "-mg" || arg == "--main-gpu") {
|
||||
if (++i >= argc) {
|
||||
@ -1639,7 +1630,7 @@ int main(int argc, char ** argv) {
|
||||
fflush(p_err->fout);
|
||||
}
|
||||
|
||||
llama_perf_context_print(ctx);
|
||||
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
|
||||
|
||||
llama_free(ctx);
|
||||
|
||||
|
@ -3,6 +3,7 @@
|
||||
// I'll gradually clean and extend it
|
||||
// Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
|
||||
#include "clip.h"
|
||||
#include "log.h"
|
||||
#include "ggml.h"
|
||||
#include "ggml-alloc.h"
|
||||
#include "ggml-backend.h"
|
||||
@ -39,11 +40,6 @@
|
||||
#include <cinttypes>
|
||||
#include <limits>
|
||||
|
||||
#define LOG_INF(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
|
||||
#define LOG_WRN(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
|
||||
#define LOG_ERR(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
|
||||
#define LOG_DBG(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
|
||||
|
||||
//#define CLIP_DEBUG_FUNCTIONS
|
||||
|
||||
// RGB uint8 image
|
||||
@ -169,7 +165,7 @@ static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
|
||||
static int get_key_idx(const gguf_context * ctx, const char * key) {
|
||||
int i = gguf_find_key(ctx, key);
|
||||
if (i == -1) {
|
||||
LOG_ERR("key %s not found in file\n", key);
|
||||
LOG_TEE("key %s not found in file\n", key);
|
||||
throw std::runtime_error(format("Missing required key: %s", key));
|
||||
}
|
||||
|
||||
@ -274,7 +270,7 @@ static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
|
||||
|
||||
static void print_tensor_info(const ggml_tensor * tensor, const char * prefix = "") {
|
||||
size_t tensor_size = ggml_nbytes(tensor);
|
||||
LOG_INF("%s: n_dims = %d, name = %s, tensor_size=%zu, shape:[%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "], type = %s\n",
|
||||
LOG_TEE("%s: n_dims = %d, name = %s, tensor_size=%zu, shape:[%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "], type = %s\n",
|
||||
prefix, ggml_n_dims(tensor), tensor->name, tensor_size,
|
||||
tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], ggml_type_name(tensor->type));
|
||||
}
|
||||
@ -292,7 +288,7 @@ static projector_type clip_projector_type_from_string(const std::string & name)
|
||||
static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
|
||||
std::ofstream file(filename, std::ios::binary);
|
||||
if (!file.is_open()) {
|
||||
LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
|
||||
LOG_TEE("Failed to open file for writing: %s\n", filename.c_str());
|
||||
return;
|
||||
}
|
||||
|
||||
@ -311,7 +307,7 @@ static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::s
|
||||
static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
|
||||
std::ofstream file(filename, std::ios::binary);
|
||||
if (!file.is_open()) {
|
||||
LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
|
||||
LOG_TEE("Failed to open file for writing: %s\n", filename.c_str());
|
||||
return;
|
||||
}
|
||||
|
||||
@ -572,7 +568,7 @@ struct clip_ctx {
|
||||
|
||||
static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs, struct clip_image_size * load_image_size, bool is_inf = false) {
|
||||
if (!ctx->has_vision_encoder) {
|
||||
LOG_ERR("This gguf file seems to have no vision encoder\n");
|
||||
LOG_TEE("This gguf file seems to have no vision encoder\n");
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
@ -586,7 +582,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
if (load_image_size == nullptr) {
|
||||
load_image_size = clip_image_size_init();
|
||||
}
|
||||
LOG_DBG("%s: %d %d\n", __func__, load_image_size->width, load_image_size->height);
|
||||
LOG_TEE("%s: %d %d\n", __func__, load_image_size->width, load_image_size->height);
|
||||
image_size_width = load_image_size->width;
|
||||
image_size_height = load_image_size->height;
|
||||
if (is_inf) {
|
||||
@ -1051,21 +1047,21 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
const int idx_name = gguf_find_key(ctx, KEY_NAME);
|
||||
if (idx_name != -1) { // make name optional temporarily as some of the uploaded models missing it due to a bug
|
||||
const std::string name = gguf_get_val_str(ctx, idx_name);
|
||||
LOG_INF("%s: model name: %s\n", __func__, name.c_str());
|
||||
LOG_TEE("%s: model name: %s\n", __func__, name.c_str());
|
||||
}
|
||||
LOG_INF("%s: description: %s\n", __func__, description.c_str());
|
||||
LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx));
|
||||
LOG_INF("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx));
|
||||
LOG_INF("%s: n_tensors: %d\n", __func__, n_tensors);
|
||||
LOG_INF("%s: n_kv: %d\n", __func__, n_kv);
|
||||
LOG_INF("%s: ftype: %s\n", __func__, ftype_str.c_str());
|
||||
LOG_INF("\n");
|
||||
LOG_TEE("%s: description: %s\n", __func__, description.c_str());
|
||||
LOG_TEE("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx));
|
||||
LOG_TEE("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx));
|
||||
LOG_TEE("%s: n_tensors: %d\n", __func__, n_tensors);
|
||||
LOG_TEE("%s: n_kv: %d\n", __func__, n_kv);
|
||||
LOG_TEE("%s: ftype: %s\n", __func__, ftype_str.c_str());
|
||||
LOG_TEE("\n");
|
||||
}
|
||||
const int n_tensors = gguf_get_n_tensors(ctx);
|
||||
|
||||
// kv
|
||||
const int n_kv = gguf_get_n_kv(ctx);
|
||||
LOG_INF("%s: loaded meta data with %d key-value pairs and %d tensors from %s\n",
|
||||
LOG_TEE("%s: loaded meta data with %d key-value pairs and %d tensors from %s\n",
|
||||
__func__, n_kv, n_tensors, fname);
|
||||
{
|
||||
std::map<enum ggml_type, uint32_t> n_type;
|
||||
@ -1076,7 +1072,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
n_type[type]++;
|
||||
}
|
||||
|
||||
LOG_INF("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
|
||||
LOG_TEE("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
|
||||
for (int i = 0; i < n_kv; i++) {
|
||||
const char * name = gguf_get_key(ctx, i);
|
||||
const enum gguf_type type = gguf_get_kv_type(ctx, i);
|
||||
@ -1092,7 +1088,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
}
|
||||
replace_all(value, "\n", "\\n");
|
||||
|
||||
LOG_INF("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
|
||||
LOG_TEE("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
|
||||
}
|
||||
|
||||
// print type counts
|
||||
@ -1101,7 +1097,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
continue;
|
||||
}
|
||||
|
||||
LOG_INF("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
|
||||
LOG_TEE("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1116,7 +1112,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
size_t tensor_size = ggml_nbytes(cur);
|
||||
model_size += tensor_size;
|
||||
if (verbosity >= 3) {
|
||||
LOG_INF("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
|
||||
LOG_TEE("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
|
||||
__func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
|
||||
}
|
||||
}
|
||||
@ -1143,27 +1139,27 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
|
||||
#ifdef GGML_USE_CUDA
|
||||
new_clip->backend = ggml_backend_cuda_init(0);
|
||||
LOG_INF("%s: CLIP using CUDA backend\n", __func__);
|
||||
LOG_TEE("%s: CLIP using CUDA backend\n", __func__);
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_METAL
|
||||
new_clip->backend = ggml_backend_metal_init();
|
||||
LOG_INF("%s: CLIP using Metal backend\n", __func__);
|
||||
LOG_TEE("%s: CLIP using Metal backend\n", __func__);
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CANN
|
||||
new_clip->backend = ggml_backend_cann_init(0);
|
||||
LOG_INF("%s: CLIP using CANN backend\n", __func__);
|
||||
LOG_TEE("%s: CLIP using CANN backend\n", __func__);
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_VULKAN
|
||||
new_clip->backend = ggml_backend_vk_init(0);
|
||||
LOG_INF("%s: CLIP using Vulkan backend\n", __func__);
|
||||
LOG_TEE("%s: CLIP using Vulkan backend\n", __func__);
|
||||
#endif
|
||||
|
||||
if (!new_clip->backend) {
|
||||
new_clip->backend = ggml_backend_cpu_init();
|
||||
LOG_INF("%s: CLIP using CPU backend\n", __func__);
|
||||
LOG_TEE("%s: CLIP using CPU backend\n", __func__);
|
||||
}
|
||||
|
||||
// model size and capabilities
|
||||
@ -1198,16 +1194,16 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
new_clip->use_gelu = gguf_get_val_bool(ctx, idx);
|
||||
|
||||
if (verbosity >= 1) {
|
||||
LOG_INF("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder);
|
||||
LOG_INF("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
|
||||
LOG_INF("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector);
|
||||
LOG_INF("%s: minicpmv_projector: %d\n", __func__, new_clip->has_minicpmv_projector);
|
||||
LOG_INF("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0);
|
||||
LOG_INF("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);
|
||||
LOG_TEE("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder);
|
||||
LOG_TEE("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
|
||||
LOG_TEE("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector);
|
||||
LOG_TEE("%s: minicpmv_projector: %d\n", __func__, new_clip->has_minicpmv_projector);
|
||||
LOG_TEE("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0);
|
||||
LOG_TEE("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);
|
||||
}
|
||||
}
|
||||
|
||||
LOG_INF("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, model_size / (1024.0 * 1024.0), n_tensors);
|
||||
LOG_TEE("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, model_size / (1024.0 * 1024.0), n_tensors);
|
||||
|
||||
// load tensors
|
||||
{
|
||||
@ -1220,7 +1216,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
|
||||
new_clip->ctx_data = ggml_init(params);
|
||||
if (!new_clip->ctx_data) {
|
||||
LOG_ERR("%s: ggml_init() failed\n", __func__);
|
||||
LOG_TEE("%s: ggml_init() failed\n", __func__);
|
||||
clip_free(new_clip);
|
||||
gguf_free(ctx);
|
||||
return nullptr;
|
||||
@ -1228,7 +1224,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
|
||||
auto fin = std::ifstream(fname, std::ios::binary);
|
||||
if (!fin) {
|
||||
LOG_ERR("cannot open model file for loading tensors\n");
|
||||
LOG_TEE("cannot open model file for loading tensors\n");
|
||||
clip_free(new_clip);
|
||||
gguf_free(ctx);
|
||||
return nullptr;
|
||||
@ -1250,7 +1246,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i);
|
||||
fin.seekg(offset, std::ios::beg);
|
||||
if (!fin) {
|
||||
LOG_ERR("%s: failed to seek for tensor %s\n", __func__, name);
|
||||
LOG_TEE("%s: failed to seek for tensor %s\n", __func__, name);
|
||||
clip_free(new_clip);
|
||||
gguf_free(ctx);
|
||||
return nullptr;
|
||||
@ -1321,23 +1317,23 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
}
|
||||
|
||||
if (verbosity >= 2) {
|
||||
LOG_INF("\n%s: vision model hparams\n", __func__);
|
||||
LOG_INF("image_size %d\n", hparams.image_size);
|
||||
LOG_INF("patch_size %d\n", hparams.patch_size);
|
||||
LOG_INF("v_hidden_size %d\n", hparams.hidden_size);
|
||||
LOG_INF("v_n_intermediate %d\n", hparams.n_intermediate);
|
||||
LOG_INF("v_projection_dim %d\n", hparams.projection_dim);
|
||||
LOG_INF("v_n_head %d\n", hparams.n_head);
|
||||
LOG_INF("v_n_layer %d\n", hparams.n_layer);
|
||||
LOG_INF("v_eps %f\n", hparams.eps);
|
||||
LOG_INF("v_image_mean %f %f %f\n", new_clip->image_mean[0], new_clip->image_mean[1], new_clip->image_mean[2]);
|
||||
LOG_INF("v_image_std %f %f %f\n", new_clip->image_std[0], new_clip->image_std[1], new_clip->image_std[2]);
|
||||
LOG_INF("v_image_grid_pinpoints: ");
|
||||
LOG_TEE("\n%s: vision model hparams\n", __func__);
|
||||
LOG_TEE("image_size %d\n", hparams.image_size);
|
||||
LOG_TEE("patch_size %d\n", hparams.patch_size);
|
||||
LOG_TEE("v_hidden_size %d\n", hparams.hidden_size);
|
||||
LOG_TEE("v_n_intermediate %d\n", hparams.n_intermediate);
|
||||
LOG_TEE("v_projection_dim %d\n", hparams.projection_dim);
|
||||
LOG_TEE("v_n_head %d\n", hparams.n_head);
|
||||
LOG_TEE("v_n_layer %d\n", hparams.n_layer);
|
||||
LOG_TEE("v_eps %f\n", hparams.eps);
|
||||
LOG_TEE("v_image_mean %f %f %f\n", new_clip->image_mean[0], new_clip->image_mean[1], new_clip->image_mean[2]);
|
||||
LOG_TEE("v_image_std %f %f %f\n", new_clip->image_std[0], new_clip->image_std[1], new_clip->image_std[2]);
|
||||
LOG_TEE("v_image_grid_pinpoints: ");
|
||||
for (int i = 0; i < 32 && (hparams.image_grid_pinpoints[i] != 0); ++i) {
|
||||
LOG_INF("%d ", hparams.image_grid_pinpoints[i]);
|
||||
LOG_TEE("%d ", hparams.image_grid_pinpoints[i]);
|
||||
}
|
||||
LOG_INF("\n");
|
||||
LOG_INF("v_mm_patch_merge_type: %s\n", hparams.mm_patch_merge_type);
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("v_mm_patch_merge_type: %s\n", hparams.mm_patch_merge_type);
|
||||
|
||||
}
|
||||
|
||||
@ -1375,7 +1371,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
vision_model.patch_embeddings = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD);
|
||||
vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v"));
|
||||
} catch(const std::exception& /*e*/) {
|
||||
LOG_ERR("%s: failed to load vision model tensors\n", __func__);
|
||||
LOG_TEE("%s: failed to load vision model tensors\n", __func__);
|
||||
}
|
||||
|
||||
// LLaVA projection
|
||||
@ -1404,7 +1400,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
} catch (std::runtime_error & /*e*/) { }
|
||||
try {
|
||||
vision_model.image_newline = get_tensor(new_clip->ctx_data, TN_IMAGE_NEWLINE);
|
||||
// LOG_INF("%s: image_newline tensor (llava-1.6) found\n", __func__);
|
||||
// LOG_TEE("%s: image_newline tensor (llava-1.6) found\n", __func__);
|
||||
} catch (std::runtime_error & /*e*/) { }
|
||||
} else if (new_clip->proj_type == PROJECTOR_TYPE_LDP) {
|
||||
// MobileVLM projection
|
||||
@ -1505,7 +1501,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch, nullptr, false);
|
||||
ggml_gallocr_reserve(new_clip->compute_alloc, gf);
|
||||
size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_clip->compute_alloc, 0);
|
||||
LOG_INF("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0);
|
||||
LOG_TEE("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0);
|
||||
}
|
||||
|
||||
return new_clip;
|
||||
@ -1556,7 +1552,7 @@ bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
|
||||
int nx, ny, nc;
|
||||
auto * data = stbi_load(fname, &nx, &ny, &nc, 3);
|
||||
if (!data) {
|
||||
LOG_ERR("%s: failed to load image '%s'\n", __func__, fname);
|
||||
LOG_TEE("%s: failed to load image '%s'\n", __func__, fname);
|
||||
return false;
|
||||
}
|
||||
build_clip_img_from_data(data, nx, ny, img);
|
||||
@ -1568,7 +1564,7 @@ bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length
|
||||
int nx, ny, nc;
|
||||
auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3);
|
||||
if (!data) {
|
||||
LOG_ERR("%s: failed to decode image bytes\n", __func__);
|
||||
LOG_TEE("%s: failed to decode image bytes\n", __func__);
|
||||
return false;
|
||||
}
|
||||
build_clip_img_from_data(data, nx, ny, img);
|
||||
@ -1758,7 +1754,7 @@ static std::pair<int, int> select_best_resolution(const std::pair<int, int> & or
|
||||
int downscaled_height = static_cast<int>(original_height * scale);
|
||||
int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
|
||||
int wasted_resolution = (width * height) - effective_resolution;
|
||||
// LOG_INF("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
|
||||
// LOG_TEE("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
|
||||
if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
|
||||
max_effective_resolution = effective_resolution;
|
||||
min_wasted_resolution = wasted_resolution;
|
||||
@ -1876,7 +1872,7 @@ static std::vector<std::vector<clip_image_u8 *>> uhd_slice_image(const clip_imag
|
||||
const int multiple = fmin(ceil(ratio), max_slice_nums);
|
||||
|
||||
std::vector<std::vector<clip_image_u8 *>> images;
|
||||
LOG_INF("%s: multiple %d\n", __func__, multiple);
|
||||
LOG_TEE("%s: multiple %d\n", __func__, multiple);
|
||||
images.push_back(std::vector<clip_image_u8 *>());
|
||||
|
||||
if (multiple <= 1) {
|
||||
@ -1891,17 +1887,17 @@ static std::vector<std::vector<clip_image_u8 *>> uhd_slice_image(const clip_imag
|
||||
clip_image_u8 * source_image = clip_image_u8_init();
|
||||
bicubic_resize(*img, *source_image, best_size.first, best_size.second);
|
||||
// source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
|
||||
LOG_INF("%s: image_size: %d %d; source_image size: %d %d\n", __func__, img->nx, img->ny, best_size.first, best_size.second);
|
||||
LOG_TEE("%s: image_size: %d %d; source_image size: %d %d\n", __func__, img->nx, img->ny, best_size.first, best_size.second);
|
||||
images[images.size()-1].push_back(source_image);
|
||||
|
||||
std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio);
|
||||
LOG_INF("%s: image_size: %d %d; best_grid: %d %d\n", __func__, img->nx, img->ny, best_grid.first, best_grid.second);
|
||||
LOG_TEE("%s: image_size: %d %d; best_grid: %d %d\n", __func__, img->nx, img->ny, best_grid.first, best_grid.second);
|
||||
|
||||
auto refine_size = uhd_get_refine_size(original_size, best_grid, scale_resolution, patch_size, true);
|
||||
clip_image_u8 * refine_image = clip_image_u8_init();
|
||||
bicubic_resize(*img, *refine_image, refine_size.first, refine_size.second);
|
||||
|
||||
LOG_INF("%s: refine_image_size: %d %d; refine_size: %d %d\n", __func__, refine_image->nx, refine_image->ny, refine_size.first, refine_size.second);
|
||||
LOG_TEE("%s: refine_image_size: %d %d; refine_size: %d %d\n", __func__, refine_image->nx, refine_image->ny, refine_size.first, refine_size.second);
|
||||
|
||||
// split_to_patches
|
||||
int width = refine_image->nx;
|
||||
@ -1958,7 +1954,7 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
|
||||
int idx = 0;
|
||||
for (size_t i = 0; i < imgs.size(); ++i) {
|
||||
for (size_t j = 0; j < imgs[i].size(); ++j) {
|
||||
LOG_DBG("%s: %d %d\n", __func__,imgs[i][j]->nx,imgs[i][j]->ny);
|
||||
LOG_TEE("%s: %d %d\n", __func__,imgs[i][j]->nx,imgs[i][j]->ny);
|
||||
clip_image_f32 * res = clip_image_f32_init();
|
||||
normalize_image_u8_to_f32(imgs[i][j], res, ctx->image_mean, ctx->image_std);
|
||||
res_imgs->data[idx++] = *res;
|
||||
@ -1970,7 +1966,7 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
|
||||
|
||||
bool pad_to_square = true;
|
||||
if (!ctx->has_vision_encoder) {
|
||||
LOG_ERR("This gguf file seems to have no vision encoder\n");
|
||||
LOG_TEE("This gguf file seems to have no vision encoder\n");
|
||||
return false;
|
||||
}
|
||||
auto & params = ctx->vision_model.hparams;
|
||||
@ -2047,7 +2043,7 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < patches.size(); i++) {
|
||||
// LOG_DBG("patch %d: %d %d\n", i, patches[i]->nx, patches[i]->ny);
|
||||
// LOG_TEE("patch %d: %d %d\n", i, patches[i]->nx, patches[i]->ny);
|
||||
clip_image_u8_free(patches[i]);
|
||||
}
|
||||
|
||||
@ -2283,7 +2279,7 @@ static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, co
|
||||
|
||||
bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
|
||||
if (!ctx->has_vision_encoder) {
|
||||
LOG_ERR("This gguf file seems to have no vision encoder\n");
|
||||
LOG_TEE("This gguf file seems to have no vision encoder\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -2295,7 +2291,7 @@ bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f3
|
||||
|
||||
bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec) {
|
||||
if (!ctx->has_vision_encoder) {
|
||||
LOG_ERR("This gguf file seems to have no vision encoder\n");
|
||||
LOG_TEE("This gguf file seems to have no vision encoder\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -2525,7 +2521,7 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
|
||||
new_type = type;
|
||||
if (new_type >= GGML_TYPE_Q2_K && name.find("embd") != std::string::npos) {
|
||||
new_type = GGML_TYPE_Q8_0; // ggml_get_rows needs non K type
|
||||
// LOG_ERR("%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type));
|
||||
// LOG_TEE("%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type));
|
||||
}
|
||||
const size_t n_elms = ggml_nelements(cur);
|
||||
float * f32_data;
|
||||
@ -2544,7 +2540,7 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
|
||||
f32_data = (float *)conv_buf.data();
|
||||
break;
|
||||
default:
|
||||
LOG_ERR("Please use an input file in f32 or f16\n");
|
||||
LOG_TEE("Please use an input file in f32 or f16\n");
|
||||
gguf_free(ctx_out);
|
||||
return false;
|
||||
}
|
||||
@ -2571,7 +2567,7 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
|
||||
fout.put(0);
|
||||
}
|
||||
|
||||
LOG_INF("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize,
|
||||
LOG_TEE("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize,
|
||||
orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
|
||||
}
|
||||
|
||||
@ -2587,8 +2583,8 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
|
||||
gguf_free(ctx_out);
|
||||
|
||||
{
|
||||
LOG_INF("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
|
||||
LOG_INF("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
|
||||
LOG_TEE("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
|
||||
LOG_TEE("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
|
||||
}
|
||||
|
||||
return true;
|
||||
|
@ -10,7 +10,6 @@
|
||||
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <vector>
|
||||
|
||||
static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past) {
|
||||
@ -21,7 +20,7 @@ static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_toke
|
||||
n_eval = n_batch;
|
||||
}
|
||||
if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) {
|
||||
LOG_ERR("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
|
||||
LOG_TEE("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
|
||||
return false;
|
||||
}
|
||||
*n_past += n_eval;
|
||||
@ -76,7 +75,7 @@ static llava_image_embed * llava_image_embed_make_with_prompt_base64(struct clip
|
||||
size_t img_base64_str_start, img_base64_str_end;
|
||||
find_image_tag_in_prompt(prompt, img_base64_str_start, img_base64_str_end);
|
||||
if (img_base64_str_start == std::string::npos || img_base64_str_end == std::string::npos) {
|
||||
LOG_ERR("%s: invalid base64 image tag. must be %s<base64 byte string>%s\n", __func__, IMG_BASE64_TAG_BEGIN, IMG_BASE64_TAG_END);
|
||||
LOG_TEE("%s: invalid base64 image tag. must be %s<base64 byte string>%s\n", __func__, IMG_BASE64_TAG_BEGIN, IMG_BASE64_TAG_END);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
@ -90,7 +89,7 @@ static llava_image_embed * llava_image_embed_make_with_prompt_base64(struct clip
|
||||
|
||||
auto embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, img_bytes.data(), img_bytes.size());
|
||||
if (!embed) {
|
||||
LOG_ERR("%s: could not load image from base64 string.\n", __func__);
|
||||
LOG_TEE("%s: could not load image from base64 string.\n", __func__);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
@ -115,9 +114,9 @@ struct llava_context {
|
||||
};
|
||||
|
||||
static void print_usage(int, char ** argv) {
|
||||
LOG("\n example usage:\n");
|
||||
LOG("\n %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
|
||||
LOG("\n note: a lower temperature value like 0.1 is recommended for better quality.\n");
|
||||
LOG_TEE("\n example usage:\n");
|
||||
LOG_TEE("\n %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
|
||||
LOG_TEE("\n note: a lower temperature value like 0.1 is recommended for better quality.\n");
|
||||
}
|
||||
|
||||
static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_params * params, const std::string & fname) {
|
||||
@ -127,11 +126,11 @@ static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_para
|
||||
auto prompt = params->prompt;
|
||||
if (prompt_contains_image(prompt)) {
|
||||
if (!params->image.empty()) {
|
||||
LOG_INF("using base64 encoded image instead of command line image path\n");
|
||||
LOG_TEE("using base64 encoded image instead of command line image path\n");
|
||||
}
|
||||
embed = llava_image_embed_make_with_prompt_base64(ctx_llava->ctx_clip, params->cpuparams.n_threads, prompt);
|
||||
if (!embed) {
|
||||
LOG_ERR("%s: can't load image from prompt\n", __func__);
|
||||
LOG_TEE("%s: can't load image from prompt\n", __func__);
|
||||
return NULL;
|
||||
}
|
||||
params->prompt = remove_image_from_prompt(prompt);
|
||||
@ -157,18 +156,18 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
|
||||
// new templating mode: Provide the full prompt including system message and use <image> as a placeholder for the image
|
||||
system_prompt = prompt.substr(0, image_pos);
|
||||
user_prompt = prompt.substr(image_pos + std::string("<image>").length());
|
||||
LOG_INF("system_prompt: %s\n", system_prompt.c_str());
|
||||
LOG_TEE("system_prompt: %s\n", system_prompt.c_str());
|
||||
if (params->verbose_prompt) {
|
||||
auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, system_prompt, true, true);
|
||||
for (int i = 0; i < (int) tmp.size(); i++) {
|
||||
LOG_INF("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
|
||||
LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
|
||||
}
|
||||
}
|
||||
LOG_INF("user_prompt: %s\n", user_prompt.c_str());
|
||||
LOG_TEE("user_prompt: %s\n", user_prompt.c_str());
|
||||
if (params->verbose_prompt) {
|
||||
auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
|
||||
for (int i = 0; i < (int) tmp.size(); i++) {
|
||||
LOG_INF("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
|
||||
LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
|
||||
}
|
||||
}
|
||||
} else {
|
||||
@ -178,7 +177,7 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
|
||||
if (params->verbose_prompt) {
|
||||
auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
|
||||
for (int i = 0; i < (int) tmp.size(); i++) {
|
||||
LOG_INF("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
|
||||
LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -189,11 +188,11 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
|
||||
|
||||
// generate the response
|
||||
|
||||
LOG("\n");
|
||||
LOG_TEE("\n");
|
||||
|
||||
struct gpt_sampler * smpl = gpt_sampler_init(ctx_llava->model, params->sparams);
|
||||
if (!smpl) {
|
||||
LOG_ERR("%s: failed to initialize sampling subsystem\n", __func__);
|
||||
fprintf(stderr, "%s: failed to initialize sampling subsystem\n", __func__);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
@ -203,7 +202,7 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
|
||||
response += tmp;
|
||||
if (strcmp(tmp, "</s>") == 0) break;
|
||||
if (strstr(tmp, "###")) break; // Yi-VL behavior
|
||||
LOG("%s", tmp);
|
||||
printf("%s", tmp);
|
||||
if (strstr(response.c_str(), "<|im_end|>")) break; // Yi-34B llava-1.6 - for some reason those decode not as the correct token (tokenizer works)
|
||||
if (strstr(response.c_str(), "<|im_start|>")) break; // Yi-34B llava-1.6
|
||||
if (strstr(response.c_str(), "USER:")) break; // mistral llava-1.6
|
||||
@ -212,7 +211,7 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
|
||||
}
|
||||
|
||||
gpt_sampler_free(smpl);
|
||||
LOG("\n");
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
static struct llama_model * llava_init(gpt_params * params) {
|
||||
@ -223,7 +222,7 @@ static struct llama_model * llava_init(gpt_params * params) {
|
||||
|
||||
llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params);
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: unable to load model\n" , __func__);
|
||||
LOG_TEE("%s: error: unable to load model\n" , __func__);
|
||||
return NULL;
|
||||
}
|
||||
return model;
|
||||
@ -246,11 +245,11 @@ static struct llava_context * llava_init_context(gpt_params * params, llama_mode
|
||||
llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
|
||||
|
||||
if (ctx_llama == NULL) {
|
||||
LOG_ERR("%s: failed to create the llama_context\n" , __func__);
|
||||
LOG_TEE("%s: error: failed to create the llama_context\n" , __func__);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
auto * ctx_llava = (struct llava_context *)malloc(sizeof(llava_context));
|
||||
auto ctx_llava = (struct llava_context *)malloc(sizeof(llava_context));
|
||||
|
||||
ctx_llava->ctx_llama = ctx_llama;
|
||||
ctx_llava->ctx_clip = ctx_clip;
|
||||
@ -269,6 +268,12 @@ static void llava_free(struct llava_context * ctx_llava) {
|
||||
llama_backend_free();
|
||||
}
|
||||
|
||||
static void llama_log_callback_logTee(ggml_log_level level, const char * text, void * user_data) {
|
||||
(void) level;
|
||||
(void) user_data;
|
||||
LOG_TEE("%s", text);
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
ggml_time_init();
|
||||
|
||||
@ -278,45 +283,49 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
log_set_target(log_filename_generator("llava", "log"));
|
||||
LOG_TEE("Log start\n");
|
||||
log_dump_cmdline(argc, argv);
|
||||
llama_log_set(llama_log_callback_logTee, nullptr);
|
||||
#endif // LOG_DISABLE_LOGS
|
||||
|
||||
if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
|
||||
print_usage(argc, argv);
|
||||
return 1;
|
||||
}
|
||||
|
||||
auto * model = llava_init(¶ms);
|
||||
auto model = llava_init(¶ms);
|
||||
if (model == NULL) {
|
||||
fprintf(stderr, "%s: error: failed to init llava model\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (prompt_contains_image(params.prompt)) {
|
||||
auto * ctx_llava = llava_init_context(¶ms, model);
|
||||
auto ctx_llava = llava_init_context(¶ms, model);
|
||||
|
||||
auto * image_embed = load_image(ctx_llava, ¶ms, "");
|
||||
auto image_embed = load_image(ctx_llava, ¶ms, "");
|
||||
|
||||
// process the prompt
|
||||
process_prompt(ctx_llava, image_embed, ¶ms, params.prompt);
|
||||
|
||||
llama_perf_context_print(ctx_llava->ctx_llama);
|
||||
llama_perf_print(ctx_llava->ctx_llama, LLAMA_PERF_TYPE_CONTEXT);
|
||||
llava_image_embed_free(image_embed);
|
||||
ctx_llava->model = NULL;
|
||||
llava_free(ctx_llava);
|
||||
} else {
|
||||
for (auto & image : params.image) {
|
||||
auto * ctx_llava = llava_init_context(¶ms, model);
|
||||
auto ctx_llava = llava_init_context(¶ms, model);
|
||||
|
||||
auto * image_embed = load_image(ctx_llava, ¶ms, image);
|
||||
auto image_embed = load_image(ctx_llava, ¶ms, image);
|
||||
if (!image_embed) {
|
||||
LOG_ERR("%s: failed to load image %s. Terminating\n\n", __func__, image.c_str());
|
||||
std::cerr << "error: failed to load image " << image << ". Terminating\n\n";
|
||||
return 1;
|
||||
}
|
||||
|
||||
// process the prompt
|
||||
process_prompt(ctx_llava, image_embed, ¶ms, params.prompt);
|
||||
|
||||
llama_perf_context_print(ctx_llava->ctx_llama);
|
||||
llama_perf_print(ctx_llava->ctx_llama, LLAMA_PERF_TYPE_CONTEXT);
|
||||
llava_image_embed_free(image_embed);
|
||||
ctx_llava->model = NULL;
|
||||
llava_free(ctx_llava);
|
||||
|
@ -1,23 +1,13 @@
|
||||
#include "clip.h"
|
||||
#include "llava.h"
|
||||
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
#include "llava.h"
|
||||
#include "base64.hpp"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cerrno>
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <limits>
|
||||
#include <vector>
|
||||
|
||||
#define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
|
||||
#define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
|
||||
|
||||
#define LOG_INF(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
|
||||
#define LOG_WRN(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
|
||||
#define LOG_ERR(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
|
||||
#define LOG_DBG(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
|
||||
#include <numeric>
|
||||
|
||||
// RGB uint8 image
|
||||
struct clip_image_u8 {
|
||||
@ -64,7 +54,7 @@ static std::pair<int, int> select_best_resolution(const std::pair<int, int>& ori
|
||||
int downscaled_height = static_cast<int>(original_height * scale);
|
||||
int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
|
||||
int wasted_resolution = (width * height) - effective_resolution;
|
||||
// LOG_DBG("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
|
||||
// LOG_TEE("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
|
||||
if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
|
||||
max_effective_resolution = effective_resolution;
|
||||
min_wasted_resolution = wasted_resolution;
|
||||
@ -246,7 +236,7 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
|
||||
img_res_v.size = 0;
|
||||
img_res_v.data = nullptr;
|
||||
if (!clip_image_preprocess(ctx_clip, img, &img_res_v)) {
|
||||
LOG_ERR("%s: unable to preprocess image\n", __func__);
|
||||
LOG_TEE("%s: unable to preprocess image\n", __func__);
|
||||
delete[] img_res_v.data;
|
||||
return false;
|
||||
}
|
||||
@ -275,14 +265,14 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
|
||||
encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]);
|
||||
}
|
||||
if (!encoded) {
|
||||
LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
|
||||
LOG_TEE("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
|
||||
return false;
|
||||
}
|
||||
const int64_t t_img_enc_steop_batch_us = ggml_time_us();
|
||||
LOG_INF("%s: step %d of %d encoded in %8.2f ms\n", __func__, (int)i+1, (int)img_res_v.size, (t_img_enc_steop_batch_us - t_img_enc_step_start_us) / 1000.0);
|
||||
LOG_TEE("%s: step %d of %d encoded in %8.2f ms\n", __func__, (int)i+1, (int)img_res_v.size, (t_img_enc_steop_batch_us - t_img_enc_step_start_us) / 1000.0);
|
||||
}
|
||||
const int64_t t_img_enc_batch_us = ggml_time_us();
|
||||
LOG_INF("%s: all %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
|
||||
LOG_TEE("%s: all %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
|
||||
|
||||
int n_img_pos_out = 0;
|
||||
for (size_t i = 0; i < image_embd_v.size(); i++) {
|
||||
@ -297,7 +287,7 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
|
||||
load_image_size->width = img->nx;
|
||||
load_image_size->height = img->ny;
|
||||
clip_add_load_image_size(ctx_clip, load_image_size);
|
||||
LOG_INF("%s: load_image_size %d %d\n", __func__, load_image_size->width, load_image_size->height);
|
||||
LOG_TEE("%s: load_image_size %d %d\n", __func__, load_image_size->width, load_image_size->height);
|
||||
}
|
||||
else if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
|
||||
// flat / default llava-1.5 type embedding
|
||||
@ -305,7 +295,7 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
|
||||
bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd); // image_embd shape is 576 x 4096
|
||||
delete[] img_res_v.data;
|
||||
if (!encoded) {
|
||||
LOG_ERR("Unable to encode image\n");
|
||||
LOG_TEE("Unable to encode image\n");
|
||||
|
||||
return false;
|
||||
}
|
||||
@ -319,12 +309,12 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
|
||||
image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip)); // 576 patches * 4096 embeddings * 4 bytes = 9437184
|
||||
const bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]); // image data is in 3x336x336 format and will be converted to 336x336x3 inside
|
||||
if (!encoded) {
|
||||
LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
|
||||
LOG_TEE("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
const int64_t t_img_enc_batch_us = ggml_time_us();
|
||||
LOG_INF("%s: %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
|
||||
LOG_TEE("%s: %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
|
||||
|
||||
const int32_t * image_grid = clip_image_grid(ctx_clip);
|
||||
|
||||
@ -357,12 +347,12 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
|
||||
// clip_image_save_to_bmp(*tmp, "image_feature.bmp");
|
||||
}
|
||||
|
||||
LOG_INF("%s: image embedding created: %d tokens\n", __func__, *n_img_pos);
|
||||
LOG_TEE("%s: image embedding created: %d tokens\n", __func__, *n_img_pos);
|
||||
|
||||
const int64_t t_img_enc_end_us = ggml_time_us();
|
||||
float t_img_enc_ms = (t_img_enc_end_us - t_img_enc_start_us) / 1000.0;
|
||||
|
||||
LOG_INF("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / *n_img_pos);
|
||||
LOG_TEE("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / *n_img_pos);
|
||||
|
||||
return true;
|
||||
}
|
||||
@ -372,7 +362,7 @@ bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx *
|
||||
int n_llama_embd = llama_n_embd(llama_get_model(ctx_llama));
|
||||
auto n_image_embd = clip_n_mmproj_embd(ctx_clip);
|
||||
if (n_image_embd != n_llama_embd) {
|
||||
LOG_ERR("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_image_embd, n_llama_embd);
|
||||
LOG_TEE("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_image_embd, n_llama_embd);
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
@ -385,13 +375,13 @@ bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, co
|
||||
}
|
||||
float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*num_max_patches); // TODO: base on gridsize/llava model
|
||||
if (!image_embd) {
|
||||
LOG_ERR("Unable to allocate memory for image embeddings\n");
|
||||
LOG_TEE("Unable to allocate memory for image embeddings\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
int n_img_pos;
|
||||
if (!encode_image_with_clip(ctx_clip, n_threads, img, image_embd, &n_img_pos)) {
|
||||
LOG_ERR("%s: cannot encode image, aborting\n", __func__);
|
||||
LOG_TEE("%s: cannot encode image, aborting\n", __func__);
|
||||
free(image_embd);
|
||||
return false;
|
||||
}
|
||||
@ -411,7 +401,7 @@ bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_
|
||||
}
|
||||
llama_batch batch = {int32_t(n_eval), nullptr, (image_embed->embed+i*n_embd), nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, };
|
||||
if (llama_decode(ctx_llama, batch)) {
|
||||
LOG_ERR("%s : failed to eval\n", __func__);
|
||||
LOG_TEE("%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
}
|
||||
*n_past += n_eval;
|
||||
@ -423,7 +413,7 @@ struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * c
|
||||
clip_image_u8 * img = clip_image_u8_init();
|
||||
if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img)) {
|
||||
clip_image_u8_free(img);
|
||||
LOG_ERR("%s: can't load image from bytes, is it a valid image?", __func__);
|
||||
LOG_TEE("%s: can't load image from bytes, is it a valid image?", __func__);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
@ -432,7 +422,7 @@ struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * c
|
||||
bool image_embed_result = llava_image_embed_make_with_clip_img(ctx_clip, n_threads, img, &image_embed, &n_image_pos);
|
||||
if (!image_embed_result) {
|
||||
clip_image_u8_free(img);
|
||||
LOG_ERR("%s: coulnd't embed the image\n", __func__);
|
||||
LOG_TEE("%s: coulnd't embed the image\n", __func__);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
@ -446,7 +436,7 @@ struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * c
|
||||
static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long *sizeOut) {
|
||||
auto file = fopen(path, "rb");
|
||||
if (file == NULL) {
|
||||
LOG_ERR("%s: can't read file %s\n", __func__, path);
|
||||
LOG_TEE("%s: can't read file %s\n", __func__, path);
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -456,7 +446,7 @@ static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long
|
||||
|
||||
auto buffer = (unsigned char *)malloc(fileSize); // Allocate memory to hold the file data
|
||||
if (buffer == NULL) {
|
||||
LOG_ERR("%s: failed to alloc %ld bytes for file %s\n", __func__, fileSize, path);
|
||||
LOG_TEE("%s: failed to alloc %ld bytes for file %s\n", __func__, fileSize, path);
|
||||
perror("Memory allocation error");
|
||||
fclose(file);
|
||||
return false;
|
||||
@ -481,7 +471,7 @@ struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx
|
||||
long image_bytes_length;
|
||||
auto loaded = load_file_to_bytes(image_path, &image_bytes, &image_bytes_length);
|
||||
if (!loaded) {
|
||||
LOG_ERR("%s: failed to load %s\n", __func__, image_path);
|
||||
LOG_TEE("%s: failed to load %s\n", __func__, image_path);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
@ -7,12 +7,9 @@
|
||||
#include "llama.h"
|
||||
#include "ggml.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <vector>
|
||||
#include <iostream> // TODO: remove me
|
||||
|
||||
struct llava_context {
|
||||
struct clip_ctx * ctx_clip = NULL;
|
||||
@ -21,8 +18,14 @@ struct llava_context {
|
||||
};
|
||||
|
||||
static void show_additional_info(int /*argc*/, char ** argv) {
|
||||
LOG("\nexample usage:\n\n%s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
|
||||
LOG("\nnote: a lower temperature value like 0.1 is recommended for better quality.\n");
|
||||
LOG_TEE("\nexample usage:\n\n%s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
|
||||
LOG_TEE("\nnote: a lower temperature value like 0.1 is recommended for better quality.\n");
|
||||
}
|
||||
|
||||
static void llama_log_callback_logTee(ggml_log_level level, const char * text, void * user_data) {
|
||||
(void) level;
|
||||
(void) user_data;
|
||||
LOG_TEE("%s", text);
|
||||
}
|
||||
|
||||
static struct llama_model * llava_init(gpt_params * params) {
|
||||
@ -33,7 +36,7 @@ static struct llama_model * llava_init(gpt_params * params) {
|
||||
|
||||
llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params);
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: unable to load model\n" , __func__);
|
||||
LOG_TEE("%s: error: unable to load model\n" , __func__);
|
||||
return NULL;
|
||||
}
|
||||
return model;
|
||||
@ -48,7 +51,7 @@ static struct llava_context * llava_init_context(gpt_params * params, llama_mode
|
||||
llama_context_params ctx_params = llama_context_params_from_gpt_params(*params);
|
||||
if (params->n_ctx < 2048) {
|
||||
// warn user here, "Image processing requires at least 2048 context, setting context to 2048"
|
||||
LOG_WRN("%s: Image processing requires at least 2048 context, setting context to 2048\n" , __func__);
|
||||
LOG_TEE("%s: warn: Image processing requires at least 2048 context, setting context to 2048\n" , __func__);
|
||||
ctx_params.n_ctx = 2048;
|
||||
} else {
|
||||
ctx_params.n_ctx = params->n_ctx;
|
||||
@ -57,11 +60,11 @@ static struct llava_context * llava_init_context(gpt_params * params, llama_mode
|
||||
llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
|
||||
|
||||
if (ctx_llama == NULL) {
|
||||
LOG_ERR("%s: failed to create the llama_context\n" , __func__);
|
||||
LOG_TEE("%s: error: failed to create the llama_context\n" , __func__);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
auto * ctx_llava = (struct llava_context *)malloc(sizeof(llava_context));
|
||||
auto ctx_llava = (struct llava_context *)malloc(sizeof(llava_context));
|
||||
|
||||
ctx_llava->ctx_llama = ctx_llama;
|
||||
ctx_llava->model = model;
|
||||
@ -86,7 +89,7 @@ static struct clip_ctx * clip_init_context(gpt_params * params) {
|
||||
if (prompt.empty()) {
|
||||
prompt = "describe the image in detail.";
|
||||
}
|
||||
auto * ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
|
||||
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
|
||||
return ctx_clip;
|
||||
}
|
||||
|
||||
@ -98,7 +101,7 @@ static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_toke
|
||||
n_eval = n_batch;
|
||||
}
|
||||
if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) {
|
||||
LOG_ERR("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
|
||||
LOG_TEE("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
|
||||
return false;
|
||||
}
|
||||
*n_past += n_eval;
|
||||
@ -122,7 +125,7 @@ static void process_eval_image_embed(struct llava_context * ctx_llava, const str
|
||||
float * image_embed = (float *)malloc(clip_embd_nbytes(ctx_llava->ctx_clip));
|
||||
std::memcpy(image_embed, embeds->embed + idx * clip_n_patches(ctx_llava->ctx_clip) * clip_n_mmproj_embd(ctx_llava->ctx_clip), clip_embd_nbytes(ctx_llava->ctx_clip));
|
||||
|
||||
auto * slice_embed = (llava_image_embed*)malloc(sizeof(llava_image_embed));
|
||||
auto slice_embed = (llava_image_embed*)malloc(sizeof(llava_image_embed));
|
||||
slice_embed->embed = image_embed;
|
||||
slice_embed->n_image_pos = clip_n_patches(ctx_llava->ctx_clip);
|
||||
llava_eval_image_embed(ctx_llava->ctx_llama, slice_embed, n_batch, n_past);
|
||||
@ -140,7 +143,7 @@ static void process_image(struct llava_context * ctx_llava, struct llava_image_e
|
||||
else if (has_minicpmv_projector == 3) {
|
||||
system_prompt = "<|im_start|>user\n";
|
||||
}
|
||||
LOG_INF("%s: image token past: %d\n", __func__, n_past);
|
||||
LOG_TEE("%s: image token past: %d\n", __func__, n_past);
|
||||
eval_string(ctx_llava->ctx_llama, (system_prompt+"<image>").c_str(), params->n_batch, &n_past, false);
|
||||
process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
|
||||
eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
|
||||
@ -159,7 +162,7 @@ static void process_image(struct llava_context * ctx_llava, struct llava_image_e
|
||||
}
|
||||
eval_string(ctx_llava->ctx_llama, std::string("</slice>").c_str(), params->n_batch, &n_past, false);
|
||||
}
|
||||
LOG_INF("%s: image token past: %d\n", __func__, n_past);
|
||||
LOG_TEE("%s: image token past: %d\n", __func__, n_past);
|
||||
}
|
||||
|
||||
static const char * sample(struct gpt_sampler * smpl,
|
||||
@ -178,42 +181,42 @@ static const char * sample(struct gpt_sampler * smpl,
|
||||
}
|
||||
|
||||
static struct llava_context * minicpmv_init(gpt_params * params, const std::string & fname, int &n_past){
|
||||
auto * ctx_clip = clip_init_context(params);
|
||||
auto * embeds = llava_image_embed_make_with_filename(ctx_clip, params->cpuparams.n_threads, fname.c_str());
|
||||
auto ctx_clip = clip_init_context(params);
|
||||
auto embeds = llava_image_embed_make_with_filename(ctx_clip, params->cpuparams.n_threads, fname.c_str());
|
||||
if (!embeds) {
|
||||
LOG_ERR("failed to load image %s. Terminating\n\n", fname.c_str());
|
||||
std::cerr << "error: failed to load image " << fname << ". Terminating\n\n";
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// process the prompt
|
||||
if (params->prompt.empty() && params->interactive == false) {
|
||||
LOG_ERR("prompt should be given or interactive mode should be on");
|
||||
LOG_TEE("prompt should be given or interactive mode should be on");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
auto * model = llava_init(params);
|
||||
auto model = llava_init(params);
|
||||
if (model == NULL) {
|
||||
fprintf(stderr, "%s: error: failed to init minicpmv model\n", __func__);
|
||||
return NULL;
|
||||
}
|
||||
const int64_t t_llava_init_start_us = ggml_time_us();
|
||||
auto * ctx_llava = llava_init_context(params, model);
|
||||
auto ctx_llava = llava_init_context(params, model);
|
||||
ctx_llava->ctx_clip = ctx_clip;
|
||||
const int64_t t_llava_init_end_us = ggml_time_us();
|
||||
float t_llava_init_ms = (t_llava_init_end_us - t_llava_init_start_us) / 1000.0;
|
||||
LOG_INF("%s: llava init in %8.2f ms.\n", __func__, t_llava_init_ms);
|
||||
LOG_TEE("\n%s: llava init in %8.2f ms.\n", __func__, t_llava_init_ms);
|
||||
|
||||
const int64_t t_process_image_start_us = ggml_time_us();
|
||||
process_image(ctx_llava, embeds, params, n_past);
|
||||
const int64_t t_process_image_end_us = ggml_time_us();
|
||||
float t_process_image_ms = (t_process_image_end_us - t_process_image_start_us) / 1000.0;
|
||||
LOG_INF("%s: llama process image in %8.2f ms.\n", __func__, t_process_image_ms);
|
||||
LOG_TEE("\n%s: llama process image in %8.2f ms.\n", __func__, t_process_image_ms);
|
||||
|
||||
llava_image_embed_free(embeds);
|
||||
return ctx_llava;
|
||||
}
|
||||
|
||||
static struct gpt_sampler * llama_init(struct llava_context * ctx_llava, gpt_params * params, const std::string & prompt, int & n_past, bool is_first = false){
|
||||
static struct gpt_sampler * llama_init(struct llava_context * ctx_llava, gpt_params * params, std::string prompt, int &n_past, bool is_first = false){
|
||||
std::string user_prompt = prompt;
|
||||
int has_minicpmv_projector = clip_is_minicpmv(ctx_llava->ctx_clip);
|
||||
if (!is_first) {
|
||||
@ -235,7 +238,7 @@ static struct gpt_sampler * llama_init(struct llava_context * ctx_llava, gpt_par
|
||||
|
||||
// generate the response
|
||||
|
||||
LOG_INF("\n");
|
||||
LOG_TEE("\n");
|
||||
|
||||
struct gpt_sampler * smpl = gpt_sampler_init(ctx_llava->model, params->sparams);
|
||||
return smpl;
|
||||
@ -256,7 +259,12 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
log_set_target(log_filename_generator("llava", "log"));
|
||||
LOG_TEE("Log start\n");
|
||||
log_dump_cmdline(argc, argv);
|
||||
llama_log_set(llama_log_callback_logTee, nullptr);
|
||||
#endif // LOG_DISABLE_LOGS
|
||||
|
||||
if (params.mmproj.empty() || (params.image.empty())) {
|
||||
show_additional_info(argc, argv);
|
||||
@ -265,23 +273,21 @@ int main(int argc, char ** argv) {
|
||||
|
||||
for (auto & image : params.image) {
|
||||
int n_past = 0;
|
||||
auto * ctx_llava = minicpmv_init(¶ms, image, n_past);
|
||||
auto ctx_llava = minicpmv_init(¶ms, image, n_past);
|
||||
|
||||
if (!params.prompt.empty()) {
|
||||
LOG("<user>%s\n", params.prompt.c_str());
|
||||
LOG("<assistant>");
|
||||
auto * smpl = llama_init(ctx_llava, ¶ms, params.prompt, n_past, true);
|
||||
LOG_TEE("<user>%s\n", params.prompt.c_str());
|
||||
LOG_TEE("<assistant>");
|
||||
auto smpl = llama_init(ctx_llava, ¶ms, params.prompt.c_str(), n_past, true);
|
||||
const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict;
|
||||
std::string response;
|
||||
std::string response = "";
|
||||
bool have_tmp = false;
|
||||
for (int i = 0; i < max_tgt_len; i++) {
|
||||
const auto * tmp = llama_loop(ctx_llava, smpl, n_past);
|
||||
auto tmp = llama_loop(ctx_llava, smpl, n_past);
|
||||
response += tmp;
|
||||
if (strcmp(tmp, "</s>") == 0){
|
||||
if (!have_tmp) {
|
||||
continue;
|
||||
}
|
||||
break;
|
||||
if(!have_tmp)continue;
|
||||
else break;
|
||||
}
|
||||
if (strstr(tmp, "###")) break; // Yi-VL behavior
|
||||
have_tmp = true;
|
||||
@ -293,15 +299,15 @@ int main(int argc, char ** argv) {
|
||||
gpt_sampler_free(smpl);
|
||||
}else {
|
||||
while (true) {
|
||||
LOG("<user>");
|
||||
LOG_TEE("<user>");
|
||||
std::string prompt;
|
||||
std::getline(std::cin, prompt);
|
||||
LOG("<assistant>");
|
||||
auto * smpl = llama_init(ctx_llava, ¶ms, prompt, n_past, true);
|
||||
LOG_TEE("<assistant>");
|
||||
auto smpl = llama_init(ctx_llava, ¶ms, prompt, n_past, true);
|
||||
const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict;
|
||||
std::string response;
|
||||
std::string response = "";
|
||||
for (int i = 0; i < max_tgt_len; i++) {
|
||||
const auto * tmp = llama_loop(ctx_llava, smpl, n_past);
|
||||
auto tmp = llama_loop(ctx_llava, smpl, n_past);
|
||||
response += tmp;
|
||||
if (strcmp(tmp, "</s>") == 0) break;
|
||||
if (strstr(tmp, "###")) break; // Yi-VL behavior
|
||||
@ -313,7 +319,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
printf("\n");
|
||||
llama_perf_context_print(ctx_llava->ctx_llama);
|
||||
llama_perf_print(ctx_llava->ctx_llama, LLAMA_PERF_TYPE_CONTEXT);
|
||||
|
||||
ctx_llava->model = NULL;
|
||||
llava_free(ctx_llava);
|
||||
|
@ -1,7 +1,6 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "sampling.h"
|
||||
#include "log.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cstdio>
|
||||
@ -43,14 +42,18 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
|
||||
const int W = 15; // lookahead window
|
||||
const int N = 5; // n-gram size
|
||||
const int G = 15; // max verification n-grams
|
||||
|
||||
const bool dump_kv_cache = params.dump_kv_cache;
|
||||
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
log_set_target(log_filename_generator("lookahead", "log"));
|
||||
LOG_TEE("Log start\n");
|
||||
log_dump_cmdline(argc, argv);
|
||||
#endif // LOG_DISABLE_LOGS
|
||||
|
||||
// init llama.cpp
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
@ -72,14 +75,14 @@ int main(int argc, char ** argv) {
|
||||
const int max_tokens_list_size = max_context_size - 4;
|
||||
|
||||
if ((int) inp.size() > max_tokens_list_size) {
|
||||
LOG_ERR("%s: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
|
||||
fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
|
||||
return 1;
|
||||
}
|
||||
|
||||
LOG("\n\n");
|
||||
fprintf(stderr, "\n\n");
|
||||
|
||||
for (auto id : inp) {
|
||||
LOG("%s", llama_token_to_piece(ctx, id).c_str());
|
||||
fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
|
||||
}
|
||||
|
||||
fflush(stderr);
|
||||
@ -163,7 +166,7 @@ int main(int argc, char ** argv) {
|
||||
{
|
||||
const std::string token_str = llama_token_to_piece(ctx, id);
|
||||
|
||||
LOG("%s", token_str.c_str());
|
||||
printf("%s", token_str.c_str());
|
||||
fflush(stdout);
|
||||
}
|
||||
}
|
||||
@ -253,7 +256,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
if (llama_decode(ctx, batch) != 0) {
|
||||
LOG_ERR("\n\n%s: llama_decode failed - increase KV cache size\n", __func__);
|
||||
fprintf(stderr, "\n\n%s: error: llama_decode failed - increase KV cache size\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -290,10 +293,10 @@ int main(int argc, char ** argv) {
|
||||
const std::string token_str = llama_token_to_piece(ctx, id);
|
||||
|
||||
if (v == 0) {
|
||||
LOG("%s", token_str.c_str());
|
||||
printf("%s", token_str.c_str());
|
||||
} else {
|
||||
// print light cyan
|
||||
LOG("\033[0;96m%s\033[0m", token_str.c_str());
|
||||
printf("\033[0;96m%s\033[0m", token_str.c_str());
|
||||
}
|
||||
fflush(stdout);
|
||||
|
||||
@ -327,21 +330,21 @@ int main(int argc, char ** argv) {
|
||||
// print known n-grams starting with token id (debug)
|
||||
if (0 && v == 0) {
|
||||
if (ngrams_observed.cnt[id] > 0) {
|
||||
LOG("\n - %d n-grams starting with '%s'\n", ngrams_observed.cnt[id], llama_token_to_piece(ctx, id).c_str());
|
||||
printf("\n - %d n-grams starting with '%s'\n", ngrams_observed.cnt[id], llama_token_to_piece(ctx, id).c_str());
|
||||
}
|
||||
|
||||
for (int i = 0; i < ngrams_observed.cnt[id]; i++) {
|
||||
LOG(" - ngram %2d: ", i);
|
||||
printf(" - ngram %2d: ", i);
|
||||
|
||||
const int idx = id*(N - 1)*G + i*(N - 1);
|
||||
|
||||
for (int j = 0; j < N - 1; j++) {
|
||||
const std::string token_str = llama_token_to_piece(ctx, ngrams_observed.tokens[idx + j]);
|
||||
|
||||
LOG("%s", token_str.c_str());
|
||||
printf("%s", token_str.c_str());
|
||||
}
|
||||
|
||||
LOG("\n");
|
||||
printf("\n");
|
||||
}
|
||||
}
|
||||
|
||||
@ -452,20 +455,20 @@ int main(int argc, char ** argv) {
|
||||
|
||||
auto t_dec_end = ggml_time_us();
|
||||
|
||||
LOG("\n\n");
|
||||
LOG_TEE("\n\n");
|
||||
|
||||
LOG_INF("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
|
||||
LOG_INF("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
|
||||
LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
|
||||
LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
|
||||
|
||||
LOG_INF("\n");
|
||||
LOG_INF("W = %2d\n", W);
|
||||
LOG_INF("N = %2d\n", N);
|
||||
LOG_INF("G = %2d\n", G);
|
||||
LOG_INF("\n");
|
||||
LOG_INF("n_predict = %d\n", n_predict);
|
||||
LOG_INF("n_accept = %d\n", n_accept);
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("W = %2d\n", W);
|
||||
LOG_TEE("N = %2d\n", N);
|
||||
LOG_TEE("G = %2d\n", G);
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("n_predict = %d\n", n_predict);
|
||||
LOG_TEE("n_accept = %d\n", n_accept);
|
||||
|
||||
LOG_INF("\n");
|
||||
LOG_TEE("\n");
|
||||
gpt_perf_print(ctx, smpl);
|
||||
|
||||
gpt_sampler_free(smpl);
|
||||
@ -479,7 +482,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
LOG("\n\n");
|
||||
fprintf(stderr, "\n\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@ -5,12 +5,13 @@
|
||||
#include "llama.h"
|
||||
#include "ggml.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
#include <cstdio>
|
||||
#include <cinttypes>
|
||||
#include <fstream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <unordered_map>
|
||||
|
||||
int main(int argc, char ** argv){
|
||||
gpt_params params;
|
||||
@ -19,8 +20,6 @@ int main(int argc, char ** argv){
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
|
||||
const int n_draft = params.n_draft;
|
||||
|
||||
// init llama.cpp
|
||||
@ -50,7 +49,7 @@ int main(int argc, char ** argv){
|
||||
try {
|
||||
ngram_cache_static = llama_ngram_cache_load(params.lookup_cache_static);
|
||||
} catch (std::ifstream::failure const &) {
|
||||
LOG_ERR("failed to open static lookup cache: %s", params.lookup_cache_static.c_str());
|
||||
fprintf(stderr, "error: failed to open static lookup cache: %s", params.lookup_cache_static.c_str());
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
@ -129,7 +128,7 @@ int main(int argc, char ** argv){
|
||||
const int64_t eta_min = eta_ms / (60*1000);
|
||||
const int64_t eta_s = (eta_ms - 60*1000*eta_min) / 1000;
|
||||
|
||||
LOG_INF("lookup-stats: %d/%d done, ETA: %02" PRId64 ":%02" PRId64 "\n", i_start, n_input, eta_min, eta_s);
|
||||
LOG_TEE("lookup-stats: %d/%d done, ETA: %02" PRId64 ":%02" PRId64 "\n", i_start, n_input, eta_min, eta_s);
|
||||
}
|
||||
|
||||
// After each chunk, update the dynamic ngram cache with the context ngram cache:
|
||||
@ -137,24 +136,24 @@ int main(int argc, char ** argv){
|
||||
ngram_cache_context.clear();
|
||||
}
|
||||
|
||||
LOG("\n");
|
||||
LOG_TEE("\n");
|
||||
|
||||
LOG_INF("\n");
|
||||
LOG_INF("n_draft = %d\n", n_draft);
|
||||
LOG_INF("n_predict = %d\n", n_input - n_input % n_ctx);
|
||||
LOG_INF("n_drafted = %d\n", n_drafted);
|
||||
LOG_INF("t_draft_flat = %.2f ms\n", t_draft_flat_us*1e-3);
|
||||
LOG_INF("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n",
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("n_draft = %d\n", n_draft);
|
||||
LOG_TEE("n_predict = %d\n", n_input - n_input % n_ctx);
|
||||
LOG_TEE("n_drafted = %d\n", n_drafted);
|
||||
LOG_TEE("t_draft_flat = %.2f ms\n", t_draft_flat_us*1e-3);
|
||||
LOG_TEE("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n",
|
||||
t_draft_us*1e-3, 1.0f*t_draft_us/n_drafted, n_drafted/(1e-6*t_draft_us));
|
||||
LOG_INF("n_accept = %d\n", n_accept);
|
||||
LOG_INF("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
|
||||
LOG_TEE("n_accept = %d\n", n_accept);
|
||||
LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
|
||||
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
LOG("\n\n");
|
||||
fprintf(stderr, "\n\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@ -3,7 +3,6 @@
|
||||
#include "common.h"
|
||||
#include "ngram-cache.h"
|
||||
#include "sampling.h"
|
||||
#include "log.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cstdint>
|
||||
@ -19,13 +18,17 @@ int main(int argc, char ** argv){
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
|
||||
// max. number of additional tokens to draft if match is found
|
||||
const int n_draft = params.n_draft;
|
||||
|
||||
const bool dump_kv_cache = params.dump_kv_cache;
|
||||
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
log_set_target(log_filename_generator("lookup", "log"));
|
||||
LOG_TEE("Log start\n");
|
||||
log_dump_cmdline(argc, argv);
|
||||
#endif // LOG_DISABLE_LOGS
|
||||
|
||||
// init llama.cpp
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
@ -55,7 +58,7 @@ int main(int argc, char ** argv){
|
||||
try {
|
||||
ngram_cache_static = llama_ngram_cache_load(params.lookup_cache_static);
|
||||
} catch (std::ifstream::failure const &) {
|
||||
LOG_ERR("failed to open static lookup cache: %s", params.lookup_cache_static.c_str());
|
||||
fprintf(stderr, "error: failed to open static lookup cache: %s", params.lookup_cache_static.c_str());
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
@ -73,14 +76,14 @@ int main(int argc, char ** argv){
|
||||
const int max_tokens_list_size = max_context_size - 4;
|
||||
|
||||
if ((int) inp.size() > max_tokens_list_size) {
|
||||
LOG_ERR("%s: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
|
||||
fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
|
||||
return 1;
|
||||
}
|
||||
|
||||
LOG("\n\n");
|
||||
fprintf(stderr, "\n\n");
|
||||
|
||||
for (auto id : inp) {
|
||||
LOG("%s", llama_token_to_piece(ctx, id).c_str());
|
||||
fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
|
||||
}
|
||||
|
||||
fflush(stderr);
|
||||
@ -121,7 +124,7 @@ int main(int argc, char ** argv){
|
||||
}
|
||||
|
||||
// print current draft sequence
|
||||
LOG_DBG("drafted %s\n", string_from(ctx, draft).c_str());
|
||||
LOG("drafted %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, draft).c_str());
|
||||
|
||||
int i_dft = 0;
|
||||
while (true) {
|
||||
@ -133,7 +136,7 @@ int main(int argc, char ** argv){
|
||||
const std::string token_str = llama_token_to_piece(ctx, id);
|
||||
|
||||
if (!params.use_color) {
|
||||
LOG("%s", token_str.c_str());
|
||||
printf("%s", token_str.c_str());
|
||||
}
|
||||
|
||||
if (llama_token_is_eog(model, id)) {
|
||||
@ -144,7 +147,7 @@ int main(int argc, char ** argv){
|
||||
|
||||
// check if the target token matches the draft
|
||||
if (i_dft < (int) draft.size() && id == draft[i_dft]) {
|
||||
LOG_DBG("the sampled target token matches the %dth drafted token (%d, '%s') - accepted\n", i_dft, id, token_str.c_str());
|
||||
LOG("the sampled target token matches the %dth drafted token (%d, '%s') - accepted\n", i_dft, id, token_str.c_str());
|
||||
++n_accept;
|
||||
++n_past;
|
||||
++i_dft;
|
||||
@ -158,19 +161,19 @@ int main(int argc, char ** argv){
|
||||
|
||||
if (params.use_color) {
|
||||
// color accepted draft token
|
||||
LOG("\033[34m%s\033[0m", token_str.c_str());
|
||||
printf("\033[34m%s\033[0m", token_str.c_str());
|
||||
fflush(stdout);
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
if (params.use_color) {
|
||||
LOG("%s", token_str.c_str());
|
||||
printf("%s", token_str.c_str());
|
||||
}
|
||||
fflush(stdout);
|
||||
|
||||
|
||||
LOG_DBG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", id, token_str.c_str());
|
||||
LOG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", id, token_str.c_str());
|
||||
|
||||
draft.clear();
|
||||
draft.push_back(id);
|
||||
@ -221,23 +224,24 @@ int main(int argc, char ** argv){
|
||||
llama_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context);
|
||||
llama_ngram_cache_save(ngram_cache_dynamic, params.lookup_cache_dynamic);
|
||||
|
||||
LOG("\n\n");
|
||||
LOG_TEE("\n\n");
|
||||
|
||||
LOG_INF("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
|
||||
LOG_INF("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
|
||||
LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
|
||||
LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
|
||||
|
||||
LOG_INF("\n");
|
||||
LOG_INF("n_draft = %d\n", n_draft);
|
||||
LOG_INF("n_predict = %d\n", n_predict);
|
||||
LOG_INF("n_drafted = %d\n", n_drafted);
|
||||
LOG_INF("t_draft_flat = %.2f ms\n", t_draft_flat_us*1e-3);
|
||||
LOG_INF("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n",
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("n_draft = %d\n", n_draft);
|
||||
LOG_TEE("n_predict = %d\n", n_predict);
|
||||
LOG_TEE("n_drafted = %d\n", n_drafted);
|
||||
LOG_TEE("t_draft_flat = %.2f ms\n", t_draft_flat_us*1e-3);
|
||||
LOG_TEE("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n",
|
||||
t_draft_us*1e-3, 1.0f*t_draft_us/n_drafted, n_drafted/(1e-6*t_draft_us));
|
||||
LOG_INF("n_accept = %d\n", n_accept);
|
||||
LOG_INF("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
|
||||
LOG_TEE("n_accept = %d\n", n_accept);
|
||||
LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
|
||||
|
||||
LOG_INF("\ntarget:\n\n");
|
||||
gpt_perf_print(ctx, smpl);
|
||||
LOG_TEE("\ntarget:\n\n");
|
||||
llama_perf_print(smpl, LLAMA_PERF_TYPE_SAMPLER_CHAIN);
|
||||
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
|
||||
|
||||
gpt_sampler_free(smpl);
|
||||
|
||||
@ -248,7 +252,7 @@ int main(int argc, char ** argv){
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
LOG("\n\n");
|
||||
fprintf(stderr, "\n\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@ -161,8 +161,6 @@ A value of -1 will enable infinite text generation, even though we have a finite
|
||||
|
||||
If the pause is undesirable, a value of -2 will stop generation immediately when the context is filled.
|
||||
|
||||
The `--no-context-shift` option allows you to stop the infinite text generation once the finite context window is full.
|
||||
|
||||
It is important to note that the generated text may be shorter than the specified number of tokens if an End-of-Sequence (EOS) token or a reverse prompt is encountered. In interactive mode, text generation will pause and control will be returned to the user. In non-interactive mode, the program will end. In both cases, the text generation may stop before reaching the specified `--predict` value. If you want the model to keep going without ever producing End-of-Sequence on its own, you can use the `--ignore-eos` parameter.
|
||||
|
||||
### Temperature
|
||||
|
@ -1,11 +1,12 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "console.h"
|
||||
#include "log.h"
|
||||
#include "sampling.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cassert>
|
||||
#include <cinttypes>
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <ctime>
|
||||
@ -41,13 +42,11 @@ static std::vector<llama_token> * g_output_tokens;
|
||||
static bool is_interacting = false;
|
||||
static bool need_insert_eot = false;
|
||||
|
||||
static void print_usage(int argc, char ** argv) {
|
||||
(void) argc;
|
||||
|
||||
LOG("\nexample usage:\n");
|
||||
LOG("\n text generation: %s -m your_model.gguf -p \"I believe the meaning of life is\" -n 128\n", argv[0]);
|
||||
LOG("\n chat (conversation): %s -m your_model.gguf -p \"You are a helpful assistant\" -cnv\n", argv[0]);
|
||||
LOG("\n");
|
||||
static void print_usage(int, char ** argv) {
|
||||
printf("\nexample usage:\n");
|
||||
printf("\n text generation: %s -m your_model.gguf -p \"I believe the meaning of life is\" -n 128\n", argv[0]);
|
||||
printf("\n chat (conversation): %s -m your_model.gguf -p \"You are a helpful assistant\" -cnv\n", argv[0]);
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
static bool file_exists(const std::string & path) {
|
||||
@ -75,7 +74,8 @@ static void write_logfile(
|
||||
|
||||
const bool success = fs_create_directory_with_parents(params.logdir);
|
||||
if (!success) {
|
||||
LOG_ERR("%s: failed to create logdir %s, cannot write logfile\n", __func__, params.logdir.c_str());
|
||||
fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
|
||||
__func__, params.logdir.c_str());
|
||||
return;
|
||||
}
|
||||
|
||||
@ -83,7 +83,7 @@ static void write_logfile(
|
||||
FILE * logfile = fopen(logfile_path.c_str(), "w");
|
||||
|
||||
if (logfile == NULL) {
|
||||
LOG_ERR("%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
|
||||
fprintf(stderr, "%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
|
||||
return;
|
||||
}
|
||||
|
||||
@ -113,25 +113,26 @@ static void sigint_handler(int signo) {
|
||||
need_insert_eot = true;
|
||||
} else {
|
||||
console::cleanup();
|
||||
LOG("\n");
|
||||
printf("\n");
|
||||
gpt_perf_print(*g_ctx, *g_smpl);
|
||||
write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens);
|
||||
|
||||
// make sure all logs are flushed
|
||||
LOG("Interrupted by user\n");
|
||||
gpt_log_pause(gpt_log_main());
|
||||
|
||||
_exit(130);
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
static std::string chat_add_and_format(struct llama_model * model, std::vector<llama_chat_msg> & chat_msgs, const std::string & role, const std::string & content) {
|
||||
static void llama_log_callback_logTee(ggml_log_level level, const char * text, void * user_data) {
|
||||
(void) level;
|
||||
(void) user_data;
|
||||
LOG_TEE("%s", text);
|
||||
}
|
||||
|
||||
static std::string chat_add_and_format(struct llama_model * model, std::vector<llama_chat_msg> & chat_msgs, std::string role, std::string content) {
|
||||
llama_chat_msg new_msg{role, content};
|
||||
auto formatted = llama_chat_format_single(model, g_params->chat_template, chat_msgs, new_msg, role == "user");
|
||||
chat_msgs.push_back({role, content});
|
||||
LOG_DBG("formatted: '%s'\n", formatted.c_str());
|
||||
LOG("formatted: %s\n", formatted.c_str());
|
||||
return formatted;
|
||||
}
|
||||
|
||||
@ -142,46 +143,55 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
|
||||
auto & sparams = params.sparams;
|
||||
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
log_set_target(log_filename_generator("main", "log"));
|
||||
LOG_TEE("Log start\n");
|
||||
log_dump_cmdline(argc, argv);
|
||||
llama_log_set(llama_log_callback_logTee, nullptr);
|
||||
#endif // LOG_DISABLE_LOGS
|
||||
|
||||
// TODO: Dump params ?
|
||||
//LOG("Params perplexity: %s\n", LOG_TOSTR(params.perplexity));
|
||||
|
||||
// save choice to use color for later
|
||||
// (note for later: this is a slightly awkward choice)
|
||||
console::init(params.simple_io, params.use_color);
|
||||
atexit([]() { console::cleanup(); });
|
||||
|
||||
if (params.logits_all) {
|
||||
LOG_ERR("************\n");
|
||||
LOG_ERR("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
|
||||
LOG_ERR("************\n\n");
|
||||
printf("\n************\n");
|
||||
printf("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
|
||||
printf("************\n\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (params.embedding) {
|
||||
LOG_ERR("************\n");
|
||||
LOG_ERR("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
|
||||
LOG_ERR("************\n\n");
|
||||
printf("\n************\n");
|
||||
printf("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
|
||||
printf("************\n\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (params.n_ctx != 0 && params.n_ctx < 8) {
|
||||
LOG_WRN("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
|
||||
LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
|
||||
params.n_ctx = 8;
|
||||
}
|
||||
|
||||
if (params.rope_freq_base != 0.0) {
|
||||
LOG_WRN("%s: warning: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base);
|
||||
LOG_TEE("%s: warning: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base);
|
||||
}
|
||||
|
||||
if (params.rope_freq_scale != 0.0) {
|
||||
LOG_WRN("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
|
||||
LOG_TEE("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
|
||||
}
|
||||
|
||||
LOG_INF("%s: llama backend init\n", __func__);
|
||||
print_build_info();
|
||||
|
||||
LOG("%s: llama backend init\n", __func__);
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
@ -196,19 +206,21 @@ int main(int argc, char ** argv) {
|
||||
g_smpl = &smpl;
|
||||
|
||||
// load the model and apply lora adapter, if any
|
||||
LOG_INF("%s: load the model and apply lora adapter, if any\n", __func__);
|
||||
LOG("%s: load the model and apply lora adapter, if any\n", __func__);
|
||||
llama_init_result llama_init = llama_init_from_gpt_params(params);
|
||||
|
||||
model = llama_init.model;
|
||||
ctx = llama_init.context;
|
||||
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: error: unable to load model\n", __func__);
|
||||
LOG_TEE("%s: error: unable to load model\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
LOG_INF("%s: llama threadpool init, n_threads = %d\n", __func__, (int) params.cpuparams.n_threads);
|
||||
|
||||
LOG("%s: llama threadpool init = n_threads = %d\n",
|
||||
__func__,
|
||||
(int) params.cpuparams.n_threads
|
||||
);
|
||||
struct ggml_threadpool_params tpp_batch =
|
||||
ggml_threadpool_params_from_cpu_params(params.cpuparams_batch);
|
||||
struct ggml_threadpool_params tpp =
|
||||
@ -220,8 +232,8 @@ int main(int argc, char ** argv) {
|
||||
if (!ggml_threadpool_params_match(&tpp, &tpp_batch)) {
|
||||
threadpool_batch = ggml_threadpool_new(&tpp_batch);
|
||||
if (!threadpool_batch) {
|
||||
LOG_ERR("%s: batch threadpool create failed : n_threads %d\n", __func__, tpp_batch.n_threads);
|
||||
return 1;
|
||||
LOG_TEE("%s: batch threadpool create failed : n_threads %d\n", __func__, tpp_batch.n_threads);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
// Start the non-batch threadpool in the paused state
|
||||
@ -230,54 +242,55 @@ int main(int argc, char ** argv) {
|
||||
|
||||
struct ggml_threadpool * threadpool = ggml_threadpool_new(&tpp);
|
||||
if (!threadpool) {
|
||||
LOG_ERR("%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads);
|
||||
return 1;
|
||||
LOG_TEE("%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
llama_attach_threadpool(ctx, threadpool, threadpool_batch);
|
||||
|
||||
const int n_ctx_train = llama_n_ctx_train(model);
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
LOG("n_ctx: %d\n", n_ctx);
|
||||
|
||||
if (n_ctx > n_ctx_train) {
|
||||
LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, n_ctx);
|
||||
LOG_TEE("%s: warning: model was trained on only %d context tokens (%d specified)\n",
|
||||
__func__, n_ctx_train, n_ctx);
|
||||
}
|
||||
|
||||
// print chat template example in conversation mode
|
||||
if (params.conversation) {
|
||||
if (params.enable_chat_template) {
|
||||
LOG_INF("%s: chat template example:\n%s\n", __func__, llama_chat_format_example(model, params.chat_template).c_str());
|
||||
LOG_TEE("%s: chat template example: %s\n", __func__, llama_chat_format_example(model, params.chat_template).c_str());
|
||||
} else {
|
||||
LOG_INF("%s: in-suffix/prefix is specified, chat template will be disabled\n", __func__);
|
||||
LOG_TEE("%s: in-suffix/prefix is specified, chat template will be disabled\n", __func__);
|
||||
}
|
||||
}
|
||||
|
||||
// print system information
|
||||
{
|
||||
LOG_INF("\n");
|
||||
LOG_INF("%s\n", gpt_params_get_system_info(params).c_str());
|
||||
LOG_INF("\n");
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("%s\n", gpt_params_get_system_info(params).c_str());
|
||||
}
|
||||
|
||||
std::string path_session = params.path_prompt_cache;
|
||||
std::vector<llama_token> session_tokens;
|
||||
|
||||
if (!path_session.empty()) {
|
||||
LOG_INF("%s: attempting to load saved session from '%s'\n", __func__, path_session.c_str());
|
||||
LOG_TEE("%s: attempting to load saved session from '%s'\n", __func__, path_session.c_str());
|
||||
if (!file_exists(path_session)) {
|
||||
LOG_INF("%s: session file does not exist, will create.\n", __func__);
|
||||
LOG_TEE("%s: session file does not exist, will create.\n", __func__);
|
||||
} else if (file_is_empty(path_session)) {
|
||||
LOG_INF("%s: The session file is empty. A new session will be initialized.\n", __func__);
|
||||
LOG_TEE("%s: The session file is empty. A new session will be initialized.\n", __func__);
|
||||
} else {
|
||||
// The file exists and is not empty
|
||||
session_tokens.resize(n_ctx);
|
||||
size_t n_token_count_out = 0;
|
||||
if (!llama_state_load_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) {
|
||||
LOG_ERR("%s: failed to load session file '%s'\n", __func__, path_session.c_str());
|
||||
LOG_TEE("%s: error: failed to load session file '%s'\n", __func__, path_session.c_str());
|
||||
return 1;
|
||||
}
|
||||
session_tokens.resize(n_token_count_out);
|
||||
LOG_INF("%s: loaded a session with prompt size of %d tokens\n", __func__, (int)session_tokens.size());
|
||||
LOG_TEE("%s: loaded a session with prompt size of %d tokens\n", __func__, (int)session_tokens.size());
|
||||
}
|
||||
}
|
||||
|
||||
@ -285,8 +298,7 @@ int main(int argc, char ** argv) {
|
||||
if (!llama_model_has_encoder(model)) {
|
||||
GGML_ASSERT(!llama_add_eos_token(model));
|
||||
}
|
||||
|
||||
LOG_DBG("n_ctx: %d, add_bos: %d\n", n_ctx, add_bos);
|
||||
LOG("add_bos: %d\n", add_bos);
|
||||
|
||||
std::vector<llama_token> embd_inp;
|
||||
|
||||
@ -295,31 +307,31 @@ int main(int argc, char ** argv) {
|
||||
? chat_add_and_format(model, chat_msgs, "system", params.prompt) // format the system prompt in conversation mode
|
||||
: params.prompt;
|
||||
if (params.interactive_first || !params.prompt.empty() || session_tokens.empty()) {
|
||||
LOG_DBG("tokenize the prompt\n");
|
||||
LOG("tokenize the prompt\n");
|
||||
embd_inp = ::llama_tokenize(ctx, prompt, true, true);
|
||||
} else {
|
||||
LOG_DBG("use session tokens\n");
|
||||
LOG("use session tokens\n");
|
||||
embd_inp = session_tokens;
|
||||
}
|
||||
|
||||
LOG_DBG("prompt: \"%s\"\n", prompt.c_str());
|
||||
LOG_DBG("tokens: %s\n", string_from(ctx, embd_inp).c_str());
|
||||
LOG("prompt: \"%s\"\n", log_tostr(prompt));
|
||||
LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
|
||||
}
|
||||
|
||||
// Should not run without any tokens
|
||||
if (embd_inp.empty()) {
|
||||
if (add_bos) {
|
||||
embd_inp.push_back(llama_token_bos(model));
|
||||
LOG_WRN("embd_inp was considered empty and bos was added: %s\n", string_from(ctx, embd_inp).c_str());
|
||||
LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
|
||||
} else {
|
||||
LOG_ERR("input is empty\n");
|
||||
LOG_TEE("error: input is empty\n");
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
// Tokenize negative prompt
|
||||
if ((int) embd_inp.size() > n_ctx - 4) {
|
||||
LOG_ERR("%s: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
|
||||
LOG_TEE("%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -333,28 +345,29 @@ int main(int argc, char ** argv) {
|
||||
n_matching_session_tokens++;
|
||||
}
|
||||
if (params.prompt.empty() && n_matching_session_tokens == embd_inp.size()) {
|
||||
LOG_INF("%s: using full prompt from session file\n", __func__);
|
||||
LOG_TEE("%s: using full prompt from session file\n", __func__);
|
||||
} else if (n_matching_session_tokens >= embd_inp.size()) {
|
||||
LOG_INF("%s: session file has exact match for prompt!\n", __func__);
|
||||
LOG_TEE("%s: session file has exact match for prompt!\n", __func__);
|
||||
} else if (n_matching_session_tokens < (embd_inp.size() / 2)) {
|
||||
LOG_WRN("%s: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n",
|
||||
__func__, n_matching_session_tokens, embd_inp.size());
|
||||
LOG_TEE("%s: warning: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n",
|
||||
__func__, n_matching_session_tokens, embd_inp.size());
|
||||
} else {
|
||||
LOG_INF("%s: session file matches %zu / %zu tokens of prompt\n",
|
||||
__func__, n_matching_session_tokens, embd_inp.size());
|
||||
LOG_TEE("%s: session file matches %zu / %zu tokens of prompt\n",
|
||||
__func__, n_matching_session_tokens, embd_inp.size());
|
||||
}
|
||||
|
||||
// remove any "future" tokens that we might have inherited from the previous session
|
||||
llama_kv_cache_seq_rm(ctx, -1, n_matching_session_tokens, -1);
|
||||
}
|
||||
|
||||
LOG_DBG("recalculate the cached logits (check): embd_inp.size() %zu, n_matching_session_tokens %zu, embd_inp.size() %zu, session_tokens.size() %zu\n",
|
||||
embd_inp.size(), n_matching_session_tokens, embd_inp.size(), session_tokens.size());
|
||||
LOGLN(
|
||||
"recalculate the cached logits (check): embd_inp.empty() %s, n_matching_session_tokens %zu, embd_inp.size() %zu, session_tokens.size() %zu",
|
||||
log_tostr(embd_inp.empty()), n_matching_session_tokens, embd_inp.size(), session_tokens.size());
|
||||
|
||||
// if we will use the cache for the full prompt without reaching the end of the cache, force
|
||||
// reevaluation of the last token to recalculate the cached logits
|
||||
if (!embd_inp.empty() && n_matching_session_tokens == embd_inp.size() && session_tokens.size() > embd_inp.size()) {
|
||||
LOG_DBG("recalculate the cached logits (do): session_tokens.resize( %zu )\n", embd_inp.size() - 1);
|
||||
LOGLN("recalculate the cached logits (do): session_tokens.resize( %zu )", embd_inp.size() - 1);
|
||||
|
||||
session_tokens.resize(embd_inp.size() - 1);
|
||||
}
|
||||
@ -376,20 +389,21 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
if (params.verbose_prompt) {
|
||||
LOG_INF("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
|
||||
LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
|
||||
LOG_TEE("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
|
||||
for (int i = 0; i < (int) embd_inp.size(); i++) {
|
||||
LOG_INF("%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||
LOG_TEE("%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||
}
|
||||
|
||||
if (params.n_keep > add_bos) {
|
||||
LOG_INF("%s: static prompt based on n_keep: '", __func__);
|
||||
LOG_TEE("%s: static prompt based on n_keep: '", __func__);
|
||||
for (int i = 0; i < params.n_keep; i++) {
|
||||
LOG("%s", llama_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||
LOG_TEE("%s", llama_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||
}
|
||||
LOG("'\n");
|
||||
LOG_TEE("'\n");
|
||||
}
|
||||
LOG_INF("\n");
|
||||
LOG_TEE("\n");
|
||||
}
|
||||
|
||||
// ctrl+C handling
|
||||
@ -409,40 +423,40 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
if (params.interactive) {
|
||||
LOG("%s: interactive mode on.\n", __func__);
|
||||
LOG_TEE("%s: interactive mode on.\n", __func__);
|
||||
|
||||
if (!params.antiprompt.empty()) {
|
||||
for (const auto & antiprompt : params.antiprompt) {
|
||||
LOG("Reverse prompt: '%s'\n", antiprompt.c_str());
|
||||
LOG_TEE("Reverse prompt: '%s'\n", antiprompt.c_str());
|
||||
if (params.verbose_prompt) {
|
||||
auto tmp = ::llama_tokenize(ctx, antiprompt, false, true);
|
||||
for (int i = 0; i < (int) tmp.size(); i++) {
|
||||
LOG("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str());
|
||||
LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (params.input_prefix_bos) {
|
||||
LOG("Input prefix with BOS\n");
|
||||
LOG_TEE("Input prefix with BOS\n");
|
||||
}
|
||||
|
||||
if (!params.input_prefix.empty()) {
|
||||
LOG("Input prefix: '%s'\n", params.input_prefix.c_str());
|
||||
LOG_TEE("Input prefix: '%s'\n", params.input_prefix.c_str());
|
||||
if (params.verbose_prompt) {
|
||||
auto tmp = ::llama_tokenize(ctx, params.input_prefix, true, true);
|
||||
for (int i = 0; i < (int) tmp.size(); i++) {
|
||||
LOG("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str());
|
||||
LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (!params.input_suffix.empty()) {
|
||||
LOG("Input suffix: '%s'\n", params.input_suffix.c_str());
|
||||
LOG_TEE("Input suffix: '%s'\n", params.input_suffix.c_str());
|
||||
if (params.verbose_prompt) {
|
||||
auto tmp = ::llama_tokenize(ctx, params.input_suffix, false, true);
|
||||
for (int i = 0; i < (int) tmp.size(); i++) {
|
||||
LOG("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str());
|
||||
LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -450,15 +464,15 @@ int main(int argc, char ** argv) {
|
||||
|
||||
smpl = gpt_sampler_init(model, sparams);
|
||||
if (!smpl) {
|
||||
LOG_ERR("%s: failed to initialize sampling subsystem\n", __func__);
|
||||
return 1;
|
||||
fprintf(stderr, "%s: failed to initialize sampling subsystem\n", __func__);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
LOG_INF("sampler seed: %u\n", gpt_sampler_get_seed(smpl));
|
||||
LOG_INF("sampler params: \n%s\n", sparams.print().c_str());
|
||||
LOG_INF("sampler chain: %s\n", gpt_sampler_print(smpl).c_str());
|
||||
LOG_TEE("sampling seed: %u\n", gpt_sampler_get_seed(smpl));
|
||||
LOG_TEE("sampling params: \n%s\n", sparams.print().c_str());
|
||||
LOG_TEE("sampler constr: \n%s\n", gpt_sampler_print(smpl).c_str());
|
||||
|
||||
LOG_INF("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
||||
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
||||
|
||||
// group-attention state
|
||||
// number of grouped KV tokens so far (used only if params.grp_attn_n > 1)
|
||||
@ -472,9 +486,9 @@ int main(int argc, char ** argv) {
|
||||
GGML_ASSERT(ga_w % ga_n == 0 && "grp_attn_w must be a multiple of grp_attn_n"); // NOLINT
|
||||
//GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of grp_attn_w"); // NOLINT
|
||||
//GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * grp_attn_n"); // NOLINT
|
||||
LOG_INF("self-extend: n_ctx_train = %d, grp_attn_n = %d, grp_attn_w = %d\n", n_ctx_train, ga_n, ga_w);
|
||||
LOG_TEE("self-extend: n_ctx_train = %d, grp_attn_n = %d, grp_attn_w = %d\n", n_ctx_train, ga_n, ga_w);
|
||||
}
|
||||
LOG("\n");
|
||||
LOG_TEE("\n\n");
|
||||
|
||||
if (params.interactive) {
|
||||
const char * control_message;
|
||||
@ -486,11 +500,11 @@ int main(int argc, char ** argv) {
|
||||
" - To return control without starting a new line, end your input with '/'.\n"
|
||||
" - If you want to submit another line, end your input with '\\'.\n";
|
||||
}
|
||||
LOG("== Running in interactive mode. ==\n");
|
||||
LOG_TEE("== Running in interactive mode. ==\n");
|
||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
||||
LOG( " - Press Ctrl+C to interject at any time.\n");
|
||||
LOG_TEE( " - Press Ctrl+C to interject at any time.\n");
|
||||
#endif
|
||||
LOG( "%s\n", control_message);
|
||||
LOG_TEE( "%s\n", control_message);
|
||||
|
||||
is_interacting = params.interactive_first;
|
||||
}
|
||||
@ -529,7 +543,7 @@ int main(int argc, char ** argv) {
|
||||
llama_token * enc_input_buf = embd_inp.data();
|
||||
|
||||
if (llama_encode(ctx, llama_batch_get_one(enc_input_buf, enc_input_size, 0, 0))) {
|
||||
LOG_ERR("%s : failed to eval\n", __func__);
|
||||
LOG_TEE("%s : failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -555,8 +569,9 @@ int main(int argc, char ** argv) {
|
||||
embd.resize(max_embd_size);
|
||||
|
||||
console::set_display(console::error);
|
||||
LOG_WRN("<<input too long: skipped %d token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
|
||||
printf("<<input too long: skipped %d token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
|
||||
console::set_display(console::reset);
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
if (ga_n == 1) {
|
||||
@ -564,35 +579,29 @@ int main(int argc, char ** argv) {
|
||||
// if we run out of context:
|
||||
// - take the n_keep first tokens from the original prompt (via n_past)
|
||||
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
|
||||
|
||||
if (n_past + (int) embd.size() >= n_ctx) {
|
||||
if (!params.ctx_shift){
|
||||
LOG_DBG("\n\n%s: context full and context shift is disabled => stopping\n", __func__);
|
||||
if (params.n_predict == -2) {
|
||||
LOG_TEE("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
|
||||
break;
|
||||
} else {
|
||||
if (params.n_predict == -2) {
|
||||
LOG_DBG("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
|
||||
break;
|
||||
}
|
||||
|
||||
const int n_left = n_past - params.n_keep;
|
||||
const int n_discard = n_left/2;
|
||||
|
||||
LOG_DBG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
|
||||
n_past, n_left, n_ctx, params.n_keep, n_discard);
|
||||
|
||||
llama_kv_cache_seq_rm (ctx, 0, params.n_keep , params.n_keep + n_discard);
|
||||
llama_kv_cache_seq_add(ctx, 0, params.n_keep + n_discard, n_past, -n_discard);
|
||||
|
||||
n_past -= n_discard;
|
||||
|
||||
LOG_DBG("after swap: n_past = %d\n", n_past);
|
||||
|
||||
LOG_DBG("embd: %s\n", string_from(ctx, embd).c_str());
|
||||
|
||||
LOG_DBG("clear session path\n");
|
||||
path_session.clear();
|
||||
}
|
||||
|
||||
const int n_left = n_past - params.n_keep;
|
||||
const int n_discard = n_left/2;
|
||||
|
||||
LOG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
|
||||
n_past, n_left, n_ctx, params.n_keep, n_discard);
|
||||
|
||||
llama_kv_cache_seq_rm (ctx, 0, params.n_keep , params.n_keep + n_discard);
|
||||
llama_kv_cache_seq_add(ctx, 0, params.n_keep + n_discard, n_past, -n_discard);
|
||||
|
||||
n_past -= n_discard;
|
||||
|
||||
LOG("after swap: n_past = %d\n", n_past);
|
||||
|
||||
LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
|
||||
|
||||
LOG("clear session path\n");
|
||||
path_session.clear();
|
||||
}
|
||||
} else {
|
||||
// context extension via Self-Extend
|
||||
@ -601,10 +610,10 @@ int main(int argc, char ** argv) {
|
||||
const int bd = (ga_w/ga_n)*(ga_n - 1);
|
||||
const int dd = (ga_w/ga_n) - ib*bd - ga_w;
|
||||
|
||||
LOG_DBG("\n");
|
||||
LOG_DBG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i, n_past, ib*bd, ga_i + ib*bd, n_past + ib*bd);
|
||||
LOG_DBG("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n, (ga_i + ib*bd)/ga_n, (ga_i + ib*bd + ga_w)/ga_n);
|
||||
LOG_DBG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i + ib*bd + ga_w, n_past + ib*bd, dd, ga_i + ib*bd + ga_w + dd, n_past + ib*bd + dd);
|
||||
LOG("\n");
|
||||
LOG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i, n_past, ib*bd, ga_i + ib*bd, n_past + ib*bd);
|
||||
LOG("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n, (ga_i + ib*bd)/ga_n, (ga_i + ib*bd + ga_w)/ga_n);
|
||||
LOG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i + ib*bd + ga_w, n_past + ib*bd, dd, ga_i + ib*bd + ga_w + dd, n_past + ib*bd + dd);
|
||||
|
||||
llama_kv_cache_seq_add(ctx, 0, ga_i, n_past, ib*bd);
|
||||
llama_kv_cache_seq_div(ctx, 0, ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n);
|
||||
@ -614,7 +623,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
ga_i += ga_w/ga_n;
|
||||
|
||||
LOG_DBG("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", n_past + bd, n_past, ga_i);
|
||||
LOG("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", n_past + bd, n_past, ga_i);
|
||||
}
|
||||
}
|
||||
|
||||
@ -646,19 +655,19 @@ int main(int argc, char ** argv) {
|
||||
n_eval = params.n_batch;
|
||||
}
|
||||
|
||||
LOG_DBG("eval: %s\n", string_from(ctx, embd).c_str());
|
||||
LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
|
||||
|
||||
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) {
|
||||
LOG_ERR("%s : failed to eval\n", __func__);
|
||||
LOG_TEE("%s : failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
n_past += n_eval;
|
||||
|
||||
LOG_DBG("n_past = %d\n", n_past);
|
||||
LOG("n_past = %d\n", n_past);
|
||||
// Display total tokens alongside total time
|
||||
if (params.n_print > 0 && n_past % params.n_print == 0) {
|
||||
LOG_DBG("\n\033[31mTokens consumed so far = %d / %d \033[0m\n", n_past, n_ctx);
|
||||
LOG_TEE("\n\033[31mTokens consumed so far = %d / %d \033[0m\n", n_past, n_ctx);
|
||||
}
|
||||
}
|
||||
|
||||
@ -676,14 +685,14 @@ int main(int argc, char ** argv) {
|
||||
need_to_save_session = false;
|
||||
llama_state_save_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
|
||||
|
||||
LOG_DBG("saved session to %s\n", path_session.c_str());
|
||||
LOG("saved session to %s\n", path_session.c_str());
|
||||
}
|
||||
|
||||
const llama_token id = gpt_sampler_sample(smpl, ctx, -1);
|
||||
|
||||
gpt_sampler_accept(smpl, id, /* accept_grammar= */ true);
|
||||
gpt_sampler_accept(smpl, id, /* apply_grammar= */ true);
|
||||
|
||||
// LOG_DBG("last: %s\n", string_from(ctx, smpl->prev.to_vector()).c_str());
|
||||
// LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, smpl->prev.to_vector()).c_str());
|
||||
|
||||
embd.push_back(id);
|
||||
|
||||
@ -693,16 +702,16 @@ int main(int argc, char ** argv) {
|
||||
// decrement remaining sampling budget
|
||||
--n_remain;
|
||||
|
||||
LOG_DBG("n_remain: %d\n", n_remain);
|
||||
LOG("n_remain: %d\n", n_remain);
|
||||
} else {
|
||||
// some user input remains from prompt or interaction, forward it to processing
|
||||
LOG_DBG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
|
||||
LOG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
|
||||
while ((int) embd_inp.size() > n_consumed) {
|
||||
embd.push_back(embd_inp[n_consumed]);
|
||||
|
||||
// push the prompt in the sampling context in order to apply repetition penalties later
|
||||
// for the prompt, we don't apply grammar rules
|
||||
gpt_sampler_accept(smpl, embd_inp[n_consumed], /* accept_grammar= */ false);
|
||||
gpt_sampler_accept(smpl, embd_inp[n_consumed], /* apply_grammar= */ false);
|
||||
|
||||
++n_consumed;
|
||||
if ((int) embd.size() >= params.n_batch) {
|
||||
@ -717,7 +726,7 @@ int main(int argc, char ** argv) {
|
||||
const std::string token_str = llama_token_to_piece(ctx, id, params.special);
|
||||
|
||||
// Console/Stream Output
|
||||
LOG("%s", token_str.c_str());
|
||||
fprintf(stdout, "%s", token_str.c_str());
|
||||
|
||||
// Record Displayed Tokens To Log
|
||||
// Note: Generated tokens are created one by one hence this check
|
||||
@ -729,6 +738,8 @@ int main(int argc, char ** argv) {
|
||||
output_tokens.push_back(id);
|
||||
output_ss << token_str;
|
||||
}
|
||||
|
||||
fflush(stdout);
|
||||
}
|
||||
}
|
||||
|
||||
@ -777,13 +788,13 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
if (is_antiprompt) {
|
||||
LOG_DBG("found antiprompt: %s\n", last_output.c_str());
|
||||
LOG("found antiprompt: %s\n", last_output.c_str());
|
||||
}
|
||||
}
|
||||
|
||||
// deal with end of generation tokens in interactive mode
|
||||
if (llama_token_is_eog(model, gpt_sampler_last(smpl))) {
|
||||
LOG_DBG("found an EOG token\n");
|
||||
LOG("found an EOG token\n");
|
||||
|
||||
if (params.interactive) {
|
||||
if (!params.antiprompt.empty()) {
|
||||
@ -797,7 +808,7 @@ int main(int argc, char ** argv) {
|
||||
chat_add_and_format(model, chat_msgs, "assistant", assistant_ss.str());
|
||||
}
|
||||
is_interacting = true;
|
||||
LOG("\n");
|
||||
printf("\n");
|
||||
}
|
||||
}
|
||||
|
||||
@ -808,21 +819,21 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
if (n_past > 0 && is_interacting) {
|
||||
LOG_DBG("waiting for user input\n");
|
||||
LOG("waiting for user input\n");
|
||||
|
||||
if (params.conversation) {
|
||||
LOG("\n> ");
|
||||
printf("\n> ");
|
||||
}
|
||||
|
||||
if (params.input_prefix_bos) {
|
||||
LOG_DBG("adding input prefix BOS token\n");
|
||||
LOG("adding input prefix BOS token\n");
|
||||
embd_inp.push_back(llama_token_bos(model));
|
||||
}
|
||||
|
||||
std::string buffer;
|
||||
if (!params.input_prefix.empty() && !params.conversation) {
|
||||
LOG_DBG("appending input prefix: '%s'\n", params.input_prefix.c_str());
|
||||
LOG("%s", params.input_prefix.c_str());
|
||||
LOG("appending input prefix: '%s'\n", params.input_prefix.c_str());
|
||||
printf("%s", params.input_prefix.c_str());
|
||||
}
|
||||
|
||||
// color user input only
|
||||
@ -845,11 +856,11 @@ int main(int argc, char ** argv) {
|
||||
if (buffer.length() > 1) {
|
||||
// append input suffix if any
|
||||
if (!params.input_suffix.empty() && !params.conversation) {
|
||||
LOG_DBG("appending input suffix: '%s'\n", params.input_suffix.c_str());
|
||||
LOG("%s", params.input_suffix.c_str());
|
||||
LOG("appending input suffix: '%s'\n", params.input_suffix.c_str());
|
||||
printf("%s", params.input_suffix.c_str());
|
||||
}
|
||||
|
||||
LOG_DBG("buffer: '%s'\n", buffer.c_str());
|
||||
LOG("buffer: '%s'\n", buffer.c_str());
|
||||
|
||||
const size_t original_size = embd_inp.size();
|
||||
|
||||
@ -866,7 +877,7 @@ int main(int argc, char ** argv) {
|
||||
const auto line_inp = ::llama_tokenize(ctx, user_inp, false, format_chat);
|
||||
const auto line_sfx = ::llama_tokenize(ctx, params.input_suffix, false, true);
|
||||
|
||||
LOG_DBG("input tokens: %s\n", string_from(ctx, line_inp).c_str());
|
||||
LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp).c_str());
|
||||
|
||||
// if user stop generation mid-way, we must add EOT to finish model's last response
|
||||
if (need_insert_eot && format_chat) {
|
||||
@ -889,9 +900,9 @@ int main(int argc, char ** argv) {
|
||||
assistant_ss.str("");
|
||||
|
||||
n_remain -= line_inp.size();
|
||||
LOG_DBG("n_remain: %d\n", n_remain);
|
||||
LOG("n_remain: %d\n", n_remain);
|
||||
} else {
|
||||
LOG_DBG("empty line, passing control back\n");
|
||||
LOG("empty line, passing control back\n");
|
||||
}
|
||||
|
||||
input_echo = false; // do not echo this again
|
||||
@ -907,7 +918,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// end of generation
|
||||
if (!embd.empty() && llama_token_is_eog(model, embd.back()) && !(params.interactive)) {
|
||||
LOG(" [end of text]\n");
|
||||
LOG_TEE(" [end of text]\n");
|
||||
break;
|
||||
}
|
||||
|
||||
@ -920,11 +931,11 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
if (!path_session.empty() && params.prompt_cache_all && !params.prompt_cache_ro) {
|
||||
LOG("\n%s: saving final output to session file '%s'\n", __func__, path_session.c_str());
|
||||
LOG_TEE("\n%s: saving final output to session file '%s'\n", __func__, path_session.c_str());
|
||||
llama_state_save_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
|
||||
}
|
||||
|
||||
LOG("\n\n");
|
||||
LOG_TEE("\n");
|
||||
gpt_perf_print(ctx, smpl);
|
||||
write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens);
|
||||
|
||||
@ -938,5 +949,9 @@ int main(int argc, char ** argv) {
|
||||
ggml_threadpool_free(threadpool);
|
||||
ggml_threadpool_free(threadpool_batch);
|
||||
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
LOG_TEE("Log end\n");
|
||||
#endif // LOG_DISABLE_LOGS
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@ -4,7 +4,6 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "sampling.h"
|
||||
#include "log.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cmath>
|
||||
@ -84,9 +83,7 @@ static void print_date_time() {
|
||||
char buffer[80];
|
||||
strftime(buffer, sizeof(buffer), "%Y-%m-%d %H:%M:%S", local_time);
|
||||
|
||||
LOG_INF("\n");
|
||||
LOG_INF("\033[35mrun parameters as of %s\033[0m\n", buffer);
|
||||
LOG_INF("\n");
|
||||
printf("\n\033[35mrun parameters as at %s\033[0m\n", buffer);
|
||||
}
|
||||
|
||||
// Define a split string function to ...
|
||||
@ -109,8 +106,6 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
|
||||
// number of simultaneous "clients" to simulate
|
||||
const int32_t n_clients = params.n_parallel;
|
||||
|
||||
@ -125,6 +120,12 @@ int main(int argc, char ** argv) {
|
||||
|
||||
const bool dump_kv_cache = params.dump_kv_cache;
|
||||
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
log_set_target(log_filename_generator("parallel", "log"));
|
||||
LOG_TEE("Log start\n");
|
||||
log_dump_cmdline(argc, argv);
|
||||
#endif // LOG_DISABLE_LOGS
|
||||
|
||||
// init llama.cpp
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
@ -137,22 +138,23 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// load the prompts from an external file if there are any
|
||||
if (params.prompt.empty()) {
|
||||
LOG_INF("\033[32mNo new questions so proceed with build-in defaults.\033[0m\n");
|
||||
printf("\n\033[32mNo new questions so proceed with build-in defaults.\033[0m\n");
|
||||
} else {
|
||||
// Output each line of the input params.prompts vector and copy to k_prompts
|
||||
int index = 0;
|
||||
LOG_INF("\033[32mNow printing the external prompt file %s\033[0m\n\n", params.prompt_file.c_str());
|
||||
printf("\n\033[32mNow printing the external prompt file %s\033[0m\n\n", params.prompt_file.c_str());
|
||||
|
||||
std::vector<std::string> prompts = split_string(params.prompt, '\n');
|
||||
for (const auto& prompt : prompts) {
|
||||
k_prompts.resize(index + 1);
|
||||
k_prompts[index] = prompt;
|
||||
index++;
|
||||
LOG_INF("%3d prompt: %s\n", index, prompt.c_str());
|
||||
printf("%3d prompt: %s\n", index, prompt.c_str());
|
||||
}
|
||||
}
|
||||
|
||||
LOG_INF("\n\n");
|
||||
fprintf(stderr, "\n\n");
|
||||
fflush(stderr);
|
||||
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
@ -181,19 +183,19 @@ int main(int argc, char ** argv) {
|
||||
|
||||
const auto t_main_start = ggml_time_us();
|
||||
|
||||
LOG_INF("%s: Simulating parallel requests from clients:\n", __func__);
|
||||
LOG_INF("%s: n_parallel = %d, n_sequences = %d, cont_batching = %d, system tokens = %d\n", __func__, n_clients, n_seq, cont_batching, n_tokens_system);
|
||||
LOG_INF("\n");
|
||||
LOG_TEE("%s: Simulating parallel requests from clients:\n", __func__);
|
||||
LOG_TEE("%s: n_parallel = %d, n_sequences = %d, cont_batching = %d, system tokens = %d\n", __func__, n_clients, n_seq, cont_batching, n_tokens_system);
|
||||
LOG_TEE("\n");
|
||||
|
||||
{
|
||||
LOG_INF("%s: Evaluating the system prompt ...\n", __func__);
|
||||
LOG_TEE("%s: Evaluating the system prompt ...\n", __func__);
|
||||
|
||||
for (int32_t i = 0; i < n_tokens_system; ++i) {
|
||||
llama_batch_add(batch, tokens_system[i], i, { 0 }, false);
|
||||
}
|
||||
|
||||
if (llama_decode(ctx, batch) != 0) {
|
||||
LOG_ERR("%s: llama_decode() failed\n", __func__);
|
||||
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -202,10 +204,10 @@ int main(int argc, char ** argv) {
|
||||
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
|
||||
}
|
||||
|
||||
LOG_INF("\n");
|
||||
LOG_TEE("\n");
|
||||
}
|
||||
|
||||
LOG_INF("Processing requests ...\n\n");
|
||||
LOG_TEE("Processing requests ...\n\n");
|
||||
|
||||
while (true) {
|
||||
if (dump_kv_cache) {
|
||||
@ -236,7 +238,7 @@ int main(int argc, char ** argv) {
|
||||
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
|
||||
}
|
||||
|
||||
LOG_INF("%s: clearing the KV cache\n", __func__);
|
||||
LOG_TEE("%s: clearing the KV cache\n", __func__);
|
||||
}
|
||||
|
||||
// insert new sequences for decoding
|
||||
@ -271,7 +273,7 @@ int main(int argc, char ** argv) {
|
||||
client.n_decoded = 0;
|
||||
client.i_batch = batch.n_tokens - 1;
|
||||
|
||||
LOG_INF("\033[31mClient %3d, seq %4d, started decoding ...\033[0m\n", client.id, client.seq_id);
|
||||
LOG_TEE("\033[31mClient %3d, seq %4d, started decoding ...\033[0m\n", client.id, client.seq_id);
|
||||
|
||||
g_seq_id += 1;
|
||||
|
||||
@ -315,11 +317,11 @@ int main(int argc, char ** argv) {
|
||||
if (ret != 0) {
|
||||
if (n_batch == 1 || ret < 0) {
|
||||
// if you get here, it means the KV cache is full - try increasing it via the context size
|
||||
LOG_ERR("%s : failed to decode the batch, n_batch = %d, ret = %d\n", __func__, n_batch, ret);
|
||||
LOG_TEE("%s : failed to decode the batch, n_batch = %d, ret = %d\n", __func__, n_batch, ret);
|
||||
return 1;
|
||||
}
|
||||
|
||||
LOG_ERR("%s : failed to decode the batch, retrying with n_batch = %d\n", __func__, n_batch / 2);
|
||||
LOG("%s : failed to decode the batch, retrying with n_batch = %d\n", __func__, n_batch / 2);
|
||||
|
||||
n_cache_miss += 1;
|
||||
|
||||
@ -330,7 +332,7 @@ int main(int argc, char ** argv) {
|
||||
continue;
|
||||
}
|
||||
|
||||
LOG_DBG("%s : decoded batch of %d tokens\n", __func__, n_tokens);
|
||||
LOG("%s : decoded batch of %d tokens\n", __func__, n_tokens);
|
||||
|
||||
for (auto & client : clients) {
|
||||
if (client.i_batch < (int) i || client.i_batch >= (int) (i + n_tokens)) {
|
||||
@ -375,7 +377,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
const auto t_main_end = ggml_time_us();
|
||||
|
||||
LOG_INF("\033[31mClient %3d, seq %3d/%3d, prompt %4d t, response %4d t, time %5.2f s, speed %5.2f t/s, cache miss %d \033[0m \n\nInput: %s\n\033[35mResponse: %s\033[0m\n\n",
|
||||
LOG_TEE("\033[31mClient %3d, seq %3d/%3d, prompt %4d t, response %4d t, time %5.2f s, speed %5.2f t/s, cache miss %d \033[0m \nInput: %s\n\033[35mResponse: %s\033[0m\n\n",
|
||||
client.id, client.seq_id, n_seq, client.n_prompt, client.n_decoded,
|
||||
(t_main_end - client.t_start_prompt) / 1e6,
|
||||
(double) (client.n_prompt + client.n_decoded) / (t_main_end - client.t_start_prompt) * 1e6,
|
||||
@ -398,22 +400,22 @@ int main(int argc, char ** argv) {
|
||||
|
||||
print_date_time();
|
||||
|
||||
LOG_INF("%s: n_parallel = %d, n_sequences = %d, cont_batching = %d, system tokens = %d\n", __func__, n_clients, n_seq, cont_batching, n_tokens_system);
|
||||
LOG_TEE("\n%s: n_parallel = %d, n_sequences = %d, cont_batching = %d, system tokens = %d\n", __func__, n_clients, n_seq, cont_batching, n_tokens_system);
|
||||
if (params.prompt_file.empty()) {
|
||||
params.prompt_file = "used built-in defaults";
|
||||
}
|
||||
LOG_INF("External prompt file: \033[32m%s\033[0m\n", params.prompt_file.c_str());
|
||||
LOG_INF("Model and path used: \033[32m%s\033[0m\n\n", params.model.c_str());
|
||||
LOG_TEE("External prompt file: \033[32m%s\033[0m\n", params.prompt_file.c_str());
|
||||
LOG_TEE("Model and path used: \033[32m%s\033[0m\n\n", params.model.c_str());
|
||||
|
||||
LOG_INF("Total prompt tokens: %6d, speed: %5.2f t/s\n", n_total_prompt, (double) (n_total_prompt ) / (t_main_end - t_main_start) * 1e6);
|
||||
LOG_INF("Total gen tokens: %6d, speed: %5.2f t/s\n", n_total_gen, (double) (n_total_gen ) / (t_main_end - t_main_start) * 1e6);
|
||||
LOG_INF("Total speed (AVG): %6s speed: %5.2f t/s\n", "", (double) (n_total_prompt + n_total_gen) / (t_main_end - t_main_start) * 1e6);
|
||||
LOG_INF("Cache misses: %6d\n", n_cache_miss);
|
||||
LOG_TEE("Total prompt tokens: %6d, speed: %5.2f t/s\n", n_total_prompt, (double) (n_total_prompt ) / (t_main_end - t_main_start) * 1e6);
|
||||
LOG_TEE("Total gen tokens: %6d, speed: %5.2f t/s\n", n_total_gen, (double) (n_total_gen ) / (t_main_end - t_main_start) * 1e6);
|
||||
LOG_TEE("Total speed (AVG): %6s speed: %5.2f t/s\n", "", (double) (n_total_prompt + n_total_gen) / (t_main_end - t_main_start) * 1e6);
|
||||
LOG_TEE("Cache misses: %6d\n", n_cache_miss);
|
||||
|
||||
LOG_INF("\n");
|
||||
LOG_TEE("\n");
|
||||
|
||||
// TODO: print sampling/grammar timings for all clients
|
||||
llama_perf_context_print(ctx);
|
||||
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
|
||||
|
||||
llama_batch_free(batch);
|
||||
|
||||
@ -422,7 +424,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
LOG("\n\n");
|
||||
fprintf(stderr, "\n\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@ -1,6 +1,5 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cmath>
|
||||
@ -9,9 +8,9 @@
|
||||
#include <vector>
|
||||
|
||||
static void print_usage(int, char ** argv) {
|
||||
LOG("\nexample usage:\n");
|
||||
LOG("\n %s -m model.gguf --junk 250 --pos 90 --keep 32 --grp-attn-n 2 [--seed 1234]\n", argv[0]);
|
||||
LOG("\n");
|
||||
LOG_TEE("\nexample usage:\n");
|
||||
LOG_TEE("\n %s -m model.gguf --junk 250 --pos 90 --keep 32 --grp-attn-n 2 [--seed 1234]\n", argv[0]);
|
||||
LOG_TEE("\n");
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
@ -25,8 +24,6 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
|
||||
int n_junk = params.n_junk;
|
||||
int n_keep = params.n_keep;
|
||||
int n_grp = params.grp_attn_n;
|
||||
@ -66,7 +63,7 @@ int main(int argc, char ** argv) {
|
||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
||||
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: unable to load model\n" , __func__);
|
||||
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -80,7 +77,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
||||
if (ctx == NULL) {
|
||||
LOG_ERR("%s: failed to create the llama_context\n" , __func__);
|
||||
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -110,14 +107,14 @@ int main(int argc, char ** argv) {
|
||||
const int n_batch = ctx_params.n_batch;
|
||||
const int n_batch_grp = ctx_params.n_batch/n_grp;
|
||||
|
||||
LOG_INF("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d, n_grp = %d, n_batch = %d, n_junk = %d, i_pos = %d\n", __func__, n_len, n_ctx, n_kv_req, n_grp, n_batch, n_junk, i_pos);
|
||||
LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d, n_grp = %d, n_batch = %d, n_junk = %d, i_pos = %d\n", __func__, n_len, n_ctx, n_kv_req, n_grp, n_batch, n_junk, i_pos);
|
||||
|
||||
// print the prompt token-by-token
|
||||
|
||||
LOG_INF("\n");
|
||||
LOG_INF("prefix tokens: %d\n", n_tokens_prefix);
|
||||
LOG_INF("prompt tokens: %d\n", n_tokens_all);
|
||||
//LOG_INF("prompt: %s\n", params.prompt.c_str());
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("prefix tokens: %d\n", n_tokens_prefix);
|
||||
LOG_TEE("prompt tokens: %d\n", n_tokens_all);
|
||||
//LOG_TEE("prompt: %s\n", params.prompt.c_str());
|
||||
|
||||
llama_batch batch = llama_batch_init(params.n_batch, 0, 1);
|
||||
|
||||
@ -148,11 +145,11 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
if (llama_decode(ctx, batch) != 0) {
|
||||
LOG_INF("%s: llama_decode() failed\n", __func__);
|
||||
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
LOG_INF("%s: processed: [%6d, %6d)\n", __func__, i, std::min(i + n_batch, n_tokens_all));
|
||||
LOG_TEE("%s: processed: [%6d, %6d)\n", __func__, i, std::min(i + n_batch, n_tokens_all));
|
||||
|
||||
if (i + n_batch >= n_tokens_all) {
|
||||
break;
|
||||
@ -162,7 +159,7 @@ int main(int argc, char ** argv) {
|
||||
for (int i = n_ctx; i < n_tokens_all; i += n_batch) {
|
||||
const int n_discard = n_batch;
|
||||
|
||||
LOG_INF("%s: shifting KV cache with %d\n", __func__, n_discard);
|
||||
LOG_TEE("%s: shifting KV cache with %d\n", __func__, n_discard);
|
||||
|
||||
llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
|
||||
llama_kv_cache_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
|
||||
@ -182,18 +179,18 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
if (llama_decode(ctx, batch) != 0) {
|
||||
LOG_ERR("%s: llama_decode() failed\n", __func__);
|
||||
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
LOG_INF("%s: processed: [%6d, %6d)\n", __func__, i, std::min(i + n_batch, n_tokens_all));
|
||||
LOG_TEE("%s: processed: [%6d, %6d)\n", __func__, i, std::min(i + n_batch, n_tokens_all));
|
||||
}
|
||||
|
||||
{
|
||||
const int n_discard = n_past - n_ctx + n_predict;
|
||||
|
||||
if (n_discard > 0) {
|
||||
LOG_INF("%s: shifting KV cache with %d to free space for the answer\n", __func__, n_discard);
|
||||
LOG_TEE("%s: shifting KV cache with %d to free space for the answer\n", __func__, n_discard);
|
||||
|
||||
llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
|
||||
llama_kv_cache_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
|
||||
@ -204,16 +201,17 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
LOG_INF("\n");
|
||||
LOG_INF("%s: passkey = %d, inserted at position %d / %d (token pos: ~%d)\n", __func__, passkey, i_pos, n_junk, (i_pos * n_tokens_all) / n_junk);
|
||||
LOG_INF("\n");
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("%s: passkey = %d, inserted at position %d / %d (token pos: ~%d)\n", __func__, passkey, i_pos, n_junk, (i_pos * n_tokens_all) / n_junk);
|
||||
LOG_TEE("\n");
|
||||
|
||||
// main loop
|
||||
|
||||
int n_cur = n_tokens_all;
|
||||
int n_decode = 0;
|
||||
|
||||
LOG_INF("%s", prompt_suffix.c_str());
|
||||
LOG_TEE("%s", prompt_suffix.c_str());
|
||||
fflush(stdout);
|
||||
|
||||
const auto t_main_start = ggml_time_us();
|
||||
|
||||
@ -224,12 +222,13 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// is it an end of generation?
|
||||
if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) {
|
||||
LOG("\n");
|
||||
LOG_TEE("\n");
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
LOG("%s", llama_token_to_piece(ctx, new_token_id).c_str());
|
||||
LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str());
|
||||
fflush(stdout);
|
||||
|
||||
n_decode += 1;
|
||||
|
||||
@ -244,22 +243,22 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// evaluate the current batch with the transformer model
|
||||
if (llama_decode(ctx, batch)) {
|
||||
LOG_ERR("%s : failed to eval, return code %d\n", __func__, 1);
|
||||
fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
LOG("\n");
|
||||
LOG_TEE("\n");
|
||||
|
||||
const auto t_main_end = ggml_time_us();
|
||||
|
||||
LOG_INF("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
|
||||
LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
|
||||
__func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
|
||||
|
||||
LOG("\n");
|
||||
llama_perf_context_print(ctx);
|
||||
LOG_TEE("\n");
|
||||
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
|
||||
|
||||
LOG("\n");
|
||||
fprintf(stderr, "\n");
|
||||
|
||||
llama_sampler_free(smpl);
|
||||
|
||||
|
@ -1,9 +1,7 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <atomic>
|
||||
#include <cmath>
|
||||
@ -43,7 +41,7 @@ static void write_logfile(
|
||||
}
|
||||
|
||||
if (params.hellaswag) {
|
||||
LOG_WRN("%s: logging results is not implemented for HellaSwag. No files will be written.\n", __func__);
|
||||
fprintf(stderr, "%s: warning: logging results is not implemented for HellaSwag. No files will be written.\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
@ -51,7 +49,7 @@ static void write_logfile(
|
||||
|
||||
const bool success = fs_create_directory_with_parents(params.logdir);
|
||||
if (!success) {
|
||||
LOG_WRN("%s: failed to create logdir %s, cannot write logfile\n",
|
||||
fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
|
||||
__func__, params.logdir.c_str());
|
||||
return;
|
||||
}
|
||||
@ -60,7 +58,7 @@ static void write_logfile(
|
||||
FILE * logfile = fopen(logfile_path.c_str(), "w");
|
||||
|
||||
if (logfile == NULL) {
|
||||
LOG_ERR("%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
|
||||
fprintf(stderr, "%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
|
||||
return;
|
||||
}
|
||||
|
||||
@ -346,16 +344,16 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
|
||||
const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
|
||||
GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
|
||||
|
||||
LOG_INF("%s: tokenizing the input ..\n", __func__);
|
||||
fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
|
||||
|
||||
std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, true);
|
||||
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
if (int(tokens.size()) < 2*n_ctx) {
|
||||
LOG_ERR("%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx,
|
||||
fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx,
|
||||
n_ctx);
|
||||
LOG_ERR("%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
|
||||
fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
|
||||
return {std::move(tokens), 0., {}, {}};
|
||||
}
|
||||
|
||||
@ -366,16 +364,16 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
|
||||
prob_history.resize(tokens.size());
|
||||
|
||||
if (params.ppl_stride <= 0) {
|
||||
LOG_ERR("%s: stride is %d but must be greater than zero!\n",__func__,params.ppl_stride);
|
||||
fprintf(stderr, "%s: stride is %d but must be greater than zero!\n",__func__,params.ppl_stride);
|
||||
return {tokens, -1, logit_history, prob_history};
|
||||
}
|
||||
|
||||
const int calc_chunk = n_ctx;
|
||||
|
||||
LOG_INF("%s: have %zu tokens. Calculation chunk = %d\n", __func__, tokens.size(), calc_chunk);
|
||||
fprintf(stderr, "%s: have %zu tokens. Calculation chunk = %d\n", __func__, tokens.size(), calc_chunk);
|
||||
|
||||
if (int(tokens.size()) <= calc_chunk) {
|
||||
LOG_ERR("%s: there are only %zu tokens, this is not enough for a context size of %d and stride %d\n",__func__,
|
||||
fprintf(stderr, "%s: there are only %zu tokens, this is not enough for a context size of %d and stride %d\n",__func__,
|
||||
tokens.size(), n_ctx, params.ppl_stride);
|
||||
return {tokens, -1, logit_history, prob_history};
|
||||
}
|
||||
@ -389,14 +387,14 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
|
||||
int count = 0;
|
||||
double nll = 0.0;
|
||||
|
||||
LOG_INF("%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
|
||||
fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
|
||||
|
||||
for (int i = 0; i < n_chunk; ++i) {
|
||||
const int start = i * params.ppl_stride;
|
||||
const int end = start + calc_chunk;
|
||||
|
||||
const int num_batches = (calc_chunk + n_batch - 1) / n_batch;
|
||||
//LOG_DBG("%s: evaluating %d...%d using %d batches\n", __func__, start, end, num_batches);
|
||||
//fprintf(stderr, "%s: evaluating %d...%d using %d batches\n", __func__, start, end, num_batches);
|
||||
|
||||
std::vector<float> logits;
|
||||
|
||||
@ -409,10 +407,10 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
|
||||
const int batch_start = start + j * n_batch;
|
||||
const int batch_size = std::min(end - batch_start, n_batch);
|
||||
|
||||
//LOG_DBG(" Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch);
|
||||
//fprintf(stderr, " Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch);
|
||||
// TODO: use llama_batch.logits instead of relying on logits_all == true
|
||||
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
|
||||
//LOG_ERR("%s : failed to eval\n", __func__);
|
||||
//fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return {tokens, -1, logit_history, prob_history};
|
||||
}
|
||||
|
||||
@ -436,17 +434,16 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
|
||||
|
||||
if (i == 0) {
|
||||
const float t_total = std::chrono::duration<float>(t_end - t_start).count();
|
||||
LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total);
|
||||
fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
|
||||
int total_seconds = (int)(t_total * n_chunk);
|
||||
if (total_seconds >= 60*60) {
|
||||
LOG("%d hours ", total_seconds / (60*60));
|
||||
fprintf(stderr, "%d hours ", total_seconds / (60*60));
|
||||
total_seconds = total_seconds % (60*60);
|
||||
}
|
||||
LOG("%.2f minutes\n", total_seconds / 60.0);
|
||||
fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
|
||||
}
|
||||
LOG("\n");
|
||||
|
||||
//LOG_DBG("%s: using tokens %d...%d\n",__func__,params.n_ctx - params.ppl_stride + start, params.n_ctx + start);
|
||||
//fprintf(stderr, "%s: using tokens %d...%d\n",__func__,params.n_ctx - params.ppl_stride + start, params.n_ctx + start);
|
||||
for (int j = n_ctx - params.ppl_stride - 1; j < n_ctx - 1; ++j) {
|
||||
|
||||
// Calculate probability of next token, given the previous ones.
|
||||
@ -463,12 +460,13 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
|
||||
}
|
||||
// perplexity is e^(average negative log-likelihood)
|
||||
if (params.ppl_output_type == 0) {
|
||||
LOG("[%d]%.4lf,", i + 1, std::exp(nll / count));
|
||||
printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
|
||||
} else {
|
||||
LOG("%8d %.4lf\n", i*params.ppl_stride, std::exp(nll / count));
|
||||
printf("%8d %.4lf\n", i*params.ppl_stride, std::exp(nll / count));
|
||||
}
|
||||
fflush(stdout);
|
||||
}
|
||||
LOG("\n");
|
||||
printf("\n");
|
||||
|
||||
return {tokens, std::exp(nll / count), logit_history, prob_history};
|
||||
}
|
||||
@ -490,26 +488,26 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
||||
if (!params.logits_file.empty()) {
|
||||
logits_stream.open(params.logits_file.c_str(), std::ios::binary);
|
||||
if (!logits_stream.is_open()) {
|
||||
LOG_ERR("%s: failed to open %s for writing\n", __func__, params.logits_file.c_str());
|
||||
fprintf(stderr, "%s: failed to open %s for writing\n", __func__, params.logits_file.c_str());
|
||||
return {};
|
||||
}
|
||||
LOG_INF("%s: saving all logits to %s\n", __func__, params.logits_file.c_str());
|
||||
fprintf(stderr, "%s: saving all logits to %s\n", __func__, params.logits_file.c_str());
|
||||
logits_stream.write("_logits_", 8);
|
||||
logits_stream.write(reinterpret_cast<const char *>(&n_ctx), sizeof(n_ctx));
|
||||
}
|
||||
|
||||
auto tim1 = std::chrono::high_resolution_clock::now();
|
||||
LOG_INF("%s: tokenizing the input ..\n", __func__);
|
||||
fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
|
||||
|
||||
std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, true);
|
||||
|
||||
auto tim2 = std::chrono::high_resolution_clock::now();
|
||||
LOG_INF("%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
|
||||
fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
|
||||
|
||||
if (int(tokens.size()) < 2*n_ctx) {
|
||||
LOG_ERR("%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx,
|
||||
fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx,
|
||||
n_ctx);
|
||||
LOG_ERR("%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
|
||||
fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
|
||||
return {std::move(tokens), 0., {}, {}};
|
||||
}
|
||||
|
||||
@ -542,7 +540,7 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
||||
logits.reserve((size_t)n_ctx * n_vocab);
|
||||
}
|
||||
|
||||
LOG_INF("%s: calculating perplexity over %d chunks, n_ctx=%d, batch_size=%d, n_seq=%d\n", __func__, n_chunk, n_ctx, n_batch, n_seq);
|
||||
fprintf(stderr, "%s: calculating perplexity over %d chunks, n_ctx=%d, batch_size=%d, n_seq=%d\n", __func__, n_chunk, n_ctx, n_batch, n_seq);
|
||||
|
||||
std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
|
||||
|
||||
@ -615,7 +613,7 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
||||
}
|
||||
|
||||
if (llama_decode(ctx, batch)) {
|
||||
LOG_INF("%s : failed to eval\n", __func__);
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return {tokens, -1, logit_history, prob_history};
|
||||
}
|
||||
|
||||
@ -630,15 +628,14 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
||||
llama_synchronize(ctx);
|
||||
const auto t_end = std::chrono::high_resolution_clock::now();
|
||||
const float t_total = std::chrono::duration<float>(t_end - t_start).count();
|
||||
LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total);
|
||||
fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
|
||||
int total_seconds = (int)(t_total*n_chunk/n_seq);
|
||||
if (total_seconds >= 60*60) {
|
||||
LOG("%d hours ", total_seconds / (60*60));
|
||||
fprintf(stderr, "%d hours ", total_seconds / (60*60));
|
||||
total_seconds = total_seconds % (60*60);
|
||||
}
|
||||
LOG("%.2f minutes\n", total_seconds / 60.0);
|
||||
fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
|
||||
}
|
||||
LOG("\n");
|
||||
|
||||
for (int seq = 0; seq < n_seq_batch; seq++) {
|
||||
const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits_ith(ctx, seq*n_ctx + first);
|
||||
@ -659,18 +656,19 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
||||
|
||||
// perplexity is e^(average negative log-likelihood)
|
||||
if (params.ppl_output_type == 0) {
|
||||
LOG("[%d]%.4lf,", i + seq + 1, std::exp(nll / count));
|
||||
printf("[%d]%.4lf,", i + seq + 1, std::exp(nll / count));
|
||||
} else {
|
||||
double av = nll/count;
|
||||
double av2 = nll2/count - av*av;
|
||||
if (av2 > 0) av2 = sqrt(av2/(count-1));
|
||||
LOG("%8d %.4lf %4lf %4lf\n", i*n_ctx, std::exp(nll / count), av, av2);
|
||||
printf("%8d %.4lf %4lf %4lf\n", i*n_ctx, std::exp(nll / count), av, av2);
|
||||
}
|
||||
}
|
||||
fflush(stdout);
|
||||
|
||||
logits.clear();
|
||||
}
|
||||
LOG("\n");
|
||||
printf("\n");
|
||||
|
||||
nll2 /= count;
|
||||
nll /= count;
|
||||
@ -678,9 +676,9 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
||||
nll2 -= nll * nll;
|
||||
if (nll2 > 0) {
|
||||
nll2 = sqrt(nll2/(count-1));
|
||||
LOG_INF("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl);
|
||||
printf("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl);
|
||||
} else {
|
||||
LOG_ERR("Unexpected negative standard deviation of log(prob)\n");
|
||||
printf("Unexpected negative standard deviation of log(prob)\n");
|
||||
}
|
||||
|
||||
llama_batch_free(batch);
|
||||
@ -706,7 +704,7 @@ static bool decode_helper(llama_context * ctx, llama_batch & batch, std::vector<
|
||||
|
||||
const int ret = llama_decode(ctx, batch_view);
|
||||
if (ret != 0) {
|
||||
LOG_ERR("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret);
|
||||
LOG_TEE("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret);
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -792,15 +790,15 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||
}
|
||||
|
||||
if (prompt_lines.size() % 6 != 0) {
|
||||
LOG_ERR("%s : number of lines in prompt not a multiple of 6.\n", __func__);
|
||||
fprintf(stderr, "%s : number of lines in prompt not a multiple of 6.\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
size_t hs_task_count = prompt_lines.size()/6;
|
||||
LOG_INF("%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count);
|
||||
fprintf(stderr, "%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count);
|
||||
|
||||
const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM;
|
||||
LOG_INF("================================= is_spm = %d\n", is_spm);
|
||||
fprintf(stderr, "================================= is_spm = %d\n", is_spm);
|
||||
|
||||
// The tasks should be randomized so the score stabilizes quickly.
|
||||
bool randomize_tasks = true;
|
||||
@ -827,7 +825,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||
std::vector<llama_token> seq_tokens[4];
|
||||
};
|
||||
|
||||
LOG_INF("%s : selecting %zu %s tasks.\n", __func__, hs_task_count, (randomize_tasks?"randomized":"the first") );
|
||||
fprintf(stderr, "%s : selecting %zu %s tasks.\n", __func__, hs_task_count, (randomize_tasks?"randomized":"the first") );
|
||||
|
||||
// Select and read data from prompt lines
|
||||
std::vector<hs_data_t> hs_data(hs_task_count);
|
||||
@ -873,9 +871,9 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||
}
|
||||
}
|
||||
|
||||
LOG_INF("%s : calculating hellaswag score over selected tasks.\n", __func__);
|
||||
fprintf(stderr, "%s : calculating hellaswag score over selected tasks.\n", __func__);
|
||||
|
||||
LOG("\ntask\tacc_norm\n");
|
||||
printf("\ntask\tacc_norm\n");
|
||||
|
||||
double acc = 0.0f;
|
||||
|
||||
@ -943,7 +941,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||
}
|
||||
|
||||
if (i0 == i1) {
|
||||
LOG_ERR("%s : task %zu does not fit in the context window\n", __func__, i0);
|
||||
fprintf(stderr, "%s : task %zu does not fit in the context window\n", __func__, i0);
|
||||
return;
|
||||
}
|
||||
|
||||
@ -951,7 +949,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||
|
||||
// decode all tasks [i0, i1)
|
||||
if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
|
||||
LOG_ERR("%s: llama_decode() failed\n", __func__);
|
||||
fprintf(stderr, "%s: llama_decode() failed\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
@ -1001,7 +999,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||
}
|
||||
}
|
||||
|
||||
//LOG("max logprob ending idx %lu, gold ending idx %lu\n", ending_logprob_max_idx, hs_cur.gold_ending_idx);
|
||||
//printf("max logprob ending idx %lu, gold ending idx %lu\n", ending_logprob_max_idx, hs_cur.gold_ending_idx);
|
||||
|
||||
// If the gold ending got the maximum logprobe add one accuracy point
|
||||
if (ending_logprob_max_idx == hs_cur.gold_ending_idx) {
|
||||
@ -1009,7 +1007,8 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||
}
|
||||
|
||||
// Print the accumulated accuracy mean x 100
|
||||
LOG("%zu\t%.8lf\n", i + 1, acc/double(i + 1)*100.0);
|
||||
printf("%zu\t%.8lf\n", i + 1, acc/double(i + 1)*100.0);
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
i0 = i1 - 1;
|
||||
@ -1017,7 +1016,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||
|
||||
llama_batch_free(batch);
|
||||
|
||||
LOG("\n");
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
struct winogrande_entry {
|
||||
@ -1061,7 +1060,7 @@ static std::vector<winogrande_entry> load_winogrande_from_csv(const std::string
|
||||
}
|
||||
}
|
||||
if (ipos != 4) {
|
||||
LOG_ERR("%s: failed to find comma separators in <%s>\n", __func__, line.c_str());
|
||||
printf("%s: failed to find comma separators in <%s>\n", __func__, line.c_str());
|
||||
continue;
|
||||
}
|
||||
auto sentence = line[comma_pos[0]+1] == '"' ? line.substr(comma_pos[0]+2, comma_pos[1] - comma_pos[0] - 3)
|
||||
@ -1075,13 +1074,13 @@ static std::vector<winogrande_entry> load_winogrande_from_csv(const std::string
|
||||
if (sentence[where] == '_') break;
|
||||
}
|
||||
if (where == int(sentence.size())) {
|
||||
LOG_ERR("%s: no _ in <%s>\n", __func__, sentence.c_str());
|
||||
printf("%s: no _ in <%s>\n", __func__, sentence.c_str());
|
||||
continue;
|
||||
}
|
||||
std::istringstream stream(answer.c_str());
|
||||
int i_answer; stream >> i_answer;
|
||||
if (stream.fail() || i_answer < 1 || i_answer > 2) {
|
||||
LOG_ERR("%s: failed to parse answer <%s>\n", __func__, answer.c_str());
|
||||
printf("%s: failed to parse answer <%s>\n", __func__, answer.c_str());
|
||||
continue;
|
||||
}
|
||||
result.emplace_back();
|
||||
@ -1110,14 +1109,14 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {
|
||||
|
||||
auto data = load_winogrande_from_csv(params.prompt);
|
||||
if (data.empty()) {
|
||||
LOG_ERR("%s: no tasks\n", __func__);
|
||||
fprintf(stderr, "%s: no tasks\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
LOG_INF("%s : loaded %zu tasks from prompt.\n", __func__, data.size());
|
||||
fprintf(stderr, "%s : loaded %zu tasks from prompt.\n", __func__, data.size());
|
||||
|
||||
if (params.winogrande_tasks > 0 && params.winogrande_tasks < data.size()) {
|
||||
LOG_INF("%s : selecting %zu random tasks\n", __func__, params.winogrande_tasks);
|
||||
fprintf(stderr, "%s : selecting %zu random tasks\n", __func__, params.winogrande_tasks);
|
||||
std::mt19937 rng(1);
|
||||
std::vector<int> aux(data.size());
|
||||
for (int i = 0; i < int(data.size()); ++i) {
|
||||
@ -1135,7 +1134,7 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {
|
||||
data = std::move(selected);
|
||||
}
|
||||
|
||||
LOG_INF("%s : tokenizing selected tasks\n", __func__);
|
||||
fprintf(stderr, "%s : tokenizing selected tasks\n", __func__);
|
||||
|
||||
for (auto & task : data) {
|
||||
task.seq_tokens[0] = ::llama_tokenize(ctx, task.first + task.choices[0] + task.second, true);
|
||||
@ -1158,7 +1157,7 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {
|
||||
task.n_base2 = ::llama_tokenize(ctx, task.first + task.choices[1], true).size();
|
||||
}
|
||||
|
||||
LOG_INF("%s : calculating winogrande score over selected tasks.\n", __func__);
|
||||
fprintf(stderr, "%s : calculating winogrande score over selected tasks.\n", __func__);
|
||||
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
@ -1219,7 +1218,7 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {
|
||||
}
|
||||
|
||||
if (i0 == i1) {
|
||||
LOG_ERR("%s : task %zu does not fit in the context window\n", __func__, i0);
|
||||
fprintf(stderr, "%s : task %zu does not fit in the context window\n", __func__, i0);
|
||||
return;
|
||||
}
|
||||
|
||||
@ -1227,7 +1226,7 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {
|
||||
|
||||
// decode all tasks [i0, i1)
|
||||
if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
|
||||
LOG_ERR("%s: llama_decode() failed\n", __func__);
|
||||
fprintf(stderr, "%s: llama_decode() failed\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
@ -1287,20 +1286,20 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {
|
||||
++n_done;
|
||||
|
||||
// print the accumulated accuracy mean x 100
|
||||
LOG("%zu\t%.4lf\t%10.6f %10.6f %d %d\n", i+1, 100.0 * n_correct/n_done, score_1st, score_2nd, result, task.answer);
|
||||
printf("%zu\t%.4lf\t%10.6f %10.6f %d %d\n", i+1, 100.0 * n_correct/n_done, score_1st, score_2nd, result, task.answer);
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
i0 = i1 - 1;
|
||||
}
|
||||
|
||||
LOG("\n");
|
||||
printf("\n");
|
||||
|
||||
if (n_done < 100) return;
|
||||
|
||||
const float p = 1.f*n_correct/n_done;
|
||||
const float sigma = 100.f*sqrt(p*(1-p)/(n_done-1));
|
||||
|
||||
LOG_INF("Final Winogrande score(%d tasks): %.4lf +/- %.4lf\n", n_done, 100*p, sigma);
|
||||
printf("Final Winogrande score(%d tasks): %.4lf +/- %.4lf\n", n_done, 100*p, sigma);
|
||||
}
|
||||
|
||||
static bool deserialize_string(std::istream & in, std::string & str) {
|
||||
@ -1349,7 +1348,7 @@ struct multiple_choice_task {
|
||||
static bool multiple_choice_prepare_one_task(llama_context * ctx, multiple_choice_task& task, bool log_error) {
|
||||
if (task.question.empty() || task.mc1.answers.empty()) {
|
||||
if (log_error) {
|
||||
LOG_ERR("%s: found bad task with empty question and/or answers\n", __func__);
|
||||
printf("%s: found bad task with empty question and/or answers\n", __func__);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
@ -1357,7 +1356,7 @@ static bool multiple_choice_prepare_one_task(llama_context * ctx, multiple_choic
|
||||
for (auto& answer : task.mc1.answers) {
|
||||
if (answer.empty()) {
|
||||
if (log_error) {
|
||||
LOG_ERR("%s: found empty answer\n", __func__);
|
||||
printf("%s: found empty answer\n", __func__);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
@ -1411,14 +1410,14 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
||||
uint32_t n_task;
|
||||
strstream.read((char *)&n_task, sizeof(n_task));
|
||||
if (strstream.fail() || n_task == 0) {
|
||||
LOG_ERR("%s: no tasks\n", __func__);
|
||||
printf("%s: no tasks\n", __func__);
|
||||
return;
|
||||
}
|
||||
LOG_INF("%s: there are %u tasks in prompt\n", __func__, n_task);
|
||||
printf("%s: there are %u tasks in prompt\n", __func__, n_task);
|
||||
std::vector<uint32_t> task_pos(n_task);
|
||||
strstream.read((char *)task_pos.data(), task_pos.size()*sizeof(uint32_t));
|
||||
if (strstream.fail()) {
|
||||
LOG_ERR("%s: failed to read task positions from prompt\n", __func__);
|
||||
printf("%s: failed to read task positions from prompt\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
@ -1426,21 +1425,21 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
||||
if (params.multiple_choice_tasks == 0 || params.multiple_choice_tasks >= (size_t)n_task) {
|
||||
// Use all tasks
|
||||
tasks.resize(n_task);
|
||||
LOG_INF("%s: reading tasks", __func__);
|
||||
printf("%s: reading tasks", __func__);
|
||||
int n_dot = std::max((int) n_task/100, 1);
|
||||
int i = 0;
|
||||
for (auto& task : tasks) {
|
||||
++i;
|
||||
if (!task.deserialize(strstream)) {
|
||||
LOG_ERR("%s: failed to read task %d of %u\n", __func__, i, n_task);
|
||||
printf("%s: failed to read task %d of %u\n", __func__, i, n_task);
|
||||
return;
|
||||
}
|
||||
if (i%n_dot == 0) LOG(".");
|
||||
if (i%n_dot == 0) printf(".");
|
||||
}
|
||||
LOG("done\n");
|
||||
printf("done\n");
|
||||
}
|
||||
else {
|
||||
LOG_INF("%s: selecting %zu random tasks from %u tasks available\n", __func__, params.multiple_choice_tasks, n_task);
|
||||
printf("%s: selecting %zu random tasks from %u tasks available\n", __func__, params.multiple_choice_tasks, n_task);
|
||||
std::mt19937 rng(1);
|
||||
std::vector<int> aux(n_task);
|
||||
for (uint32_t i = 0; i < n_task; ++i) aux[i] = i;
|
||||
@ -1453,16 +1452,18 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
||||
aux.pop_back();
|
||||
strstream.seekg(task_pos[idx], std::ios::beg);
|
||||
if (!task.deserialize(strstream)) {
|
||||
LOG_ERR("%s: failed to read task %d at position %u\n", __func__, idx, task_pos[idx]);
|
||||
printf("%s: failed to read task %d at position %u\n", __func__, idx, task_pos[idx]);
|
||||
return;
|
||||
}
|
||||
}
|
||||
n_task = params.multiple_choice_tasks;
|
||||
}
|
||||
|
||||
LOG_INF("%s: preparing task data", __func__);
|
||||
printf("%s: preparing task data", __func__);
|
||||
fflush(stdout);
|
||||
if (n_task > 500) {
|
||||
LOG("...");
|
||||
printf("...");
|
||||
fflush(stdout);
|
||||
std::atomic<int> counter(0);
|
||||
std::atomic<int> n_bad(0);
|
||||
auto prepare = [&counter, &n_bad, &tasks, ctx] () {
|
||||
@ -1486,10 +1487,11 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
||||
for (auto& w : workers) w = std::thread(prepare);
|
||||
prepare();
|
||||
for (auto& w : workers) w.join();
|
||||
LOG("done\n");
|
||||
printf("done\n");
|
||||
fflush(stdout);
|
||||
int nbad = n_bad;
|
||||
if (nbad > 0) {
|
||||
LOG_ERR("%s: found %d malformed tasks\n", __func__, nbad);
|
||||
printf("%s: found %d malformed tasks\n", __func__, nbad);
|
||||
return;
|
||||
}
|
||||
} else {
|
||||
@ -1501,15 +1503,16 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
||||
return;
|
||||
}
|
||||
if (i_task%n_dot == 0) {
|
||||
LOG(".");
|
||||
printf(".");
|
||||
fflush(stdout);
|
||||
}
|
||||
}
|
||||
LOG("done\n");
|
||||
printf("done\n");
|
||||
}
|
||||
|
||||
LOG_INF("%s : calculating TruthfulQA score over %zu tasks.\n", __func__, tasks.size());
|
||||
printf("%s : calculating TruthfulQA score over %zu tasks.\n", __func__, tasks.size());
|
||||
|
||||
LOG("\ntask\tacc_norm\n");
|
||||
printf("\ntask\tacc_norm\n");
|
||||
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
@ -1588,7 +1591,7 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
||||
}
|
||||
|
||||
if (i0 == i1) {
|
||||
LOG_ERR("%s : task %zu does not fit in the context window\n", __func__, i0);
|
||||
fprintf(stderr, "%s : task %zu does not fit in the context window\n", __func__, i0);
|
||||
return;
|
||||
}
|
||||
|
||||
@ -1596,7 +1599,7 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
||||
|
||||
// decode all tasks [i0, i1)
|
||||
if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
|
||||
LOG_ERR("%s: llama_decode() failed\n", __func__);
|
||||
fprintf(stderr, "%s: llama_decode() failed\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
@ -1620,13 +1623,13 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
||||
// compute the logprobs for each ending of the decoded tasks
|
||||
for (size_t i = i0; i < i1; ++i) {
|
||||
auto & cur_task = tasks[i];
|
||||
//LOG("==== Evaluating <%s> with correct answer ", cur_task.question.c_str());
|
||||
//printf("==== Evaluating <%s> with correct answer ", cur_task.question.c_str());
|
||||
//for (int j = 0; j < int(cur_task.mc1.labels.size()); ++j) {
|
||||
// if (cur_task.mc1.labels[j] == 1) {
|
||||
// LOG("%d", j+1);
|
||||
// printf("%d", j+1);
|
||||
// }
|
||||
//}
|
||||
//LOG("\n common_prefix: %zu\n", cur_task.common_prefix);
|
||||
//printf("\n common_prefix: %zu\n", cur_task.common_prefix);
|
||||
|
||||
// get the logits of the last token of the common prefix
|
||||
std::memcpy(tok_logits.data(), batch_logits.data() + n_vocab*cur_task.i_logits, n_vocab*sizeof(float));
|
||||
@ -1638,13 +1641,13 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
||||
size_t count = 1;
|
||||
float log_prob = std::log(first_probs[cur_task.seq_tokens[s][cur_task.common_prefix]]);
|
||||
for (size_t j = cur_task.common_prefix; j < cur_task.seq_tokens[s].size() - 1; j++) {
|
||||
//LOG(" %zu %g\n", ir, eval_results[ir]);
|
||||
//printf(" %zu %g\n", ir, eval_results[ir]);
|
||||
++count;
|
||||
log_prob += eval_results[ir++];
|
||||
}
|
||||
cur_task.log_probs[s] = log_prob / count;
|
||||
//LOG(" Final: %g\n", log_prob / count);
|
||||
//LOG(" <%s> : %g\n", cur_task.mc1.answers[s].c_str(), log_prob/count);
|
||||
//printf(" Final: %g\n", log_prob / count);
|
||||
//printf(" <%s> : %g\n", cur_task.mc1.answers[s].c_str(), log_prob/count);
|
||||
}
|
||||
|
||||
// Find the ending with maximum logprob
|
||||
@ -1664,7 +1667,8 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
||||
++n_done;
|
||||
|
||||
// Print the accumulated accuracy mean x 100
|
||||
LOG("%d\t%.8lf\n", n_done, 100.*n_correct/n_done);
|
||||
printf("%d\t%.8lf\n", n_done, 100.*n_correct/n_done);
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
i0 = i1 - 1;
|
||||
@ -1676,30 +1680,29 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
||||
|
||||
float p = 1.f*n_correct/n_done;
|
||||
float sigma = sqrt(p*(1-p)/(n_done-1));
|
||||
LOG("\n");
|
||||
LOG_INF("Final result: %.4f +/- %.4f\n", 100.f*p, 100.f*sigma);
|
||||
printf("\n Final result: %.4f +/- %.4f\n", 100.f*p, 100.f*sigma);
|
||||
p = 1.f*n_done/n_tot_answers;
|
||||
sigma = sqrt(p*(1-p)/(n_done-1));
|
||||
LOG_INF("Random chance: %.4f +/- %.4f\n", 100.f*p, 100.f*sigma);
|
||||
printf("Random chance: %.4f +/- %.4f\n", 100.f*p, 100.f*sigma);
|
||||
|
||||
LOG_INF("\n");
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
static void kl_divergence(llama_context * ctx, const gpt_params & params) {
|
||||
if (params.logits_file.empty()) {
|
||||
LOG_ERR("%s: you must provide a name of a file containing the log probabilities of the base model\n", __func__);
|
||||
fprintf(stderr, "%s: you must provide a name of a file containing the log probabilities of the base model\n", __func__);
|
||||
return;
|
||||
}
|
||||
std::ifstream in(params.logits_file.c_str(), std::ios::binary);
|
||||
if (!in) {
|
||||
LOG_ERR("%s: failed to open %s\n", __func__, params.logits_file.c_str());
|
||||
fprintf(stderr, "%s: failed to open %s\n", __func__, params.logits_file.c_str());
|
||||
return;
|
||||
}
|
||||
{
|
||||
char check[9]; check[8] = 0;
|
||||
in.read(check, 8);
|
||||
if (in.fail() || strncmp("_logits_", check, 8) != 0) {
|
||||
LOG_ERR("%s: %s does not look like a file containing log-probabilities\n", __func__, params.logits_file.c_str());
|
||||
fprintf(stderr, "%s: %s does not look like a file containing log-probabilities\n", __func__, params.logits_file.c_str());
|
||||
return;
|
||||
}
|
||||
}
|
||||
@ -1707,7 +1710,7 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) {
|
||||
uint32_t n_ctx;
|
||||
in.read((char *)&n_ctx, sizeof(n_ctx));
|
||||
if (n_ctx > llama_n_ctx(ctx)) {
|
||||
LOG_ERR("%s: %s has been computed with %u, while the current context is %d. Increase it with -c and retry\n",
|
||||
fprintf(stderr, "%s: %s has been computed with %u, while the current context is %d. Increase it with -c and retry\n",
|
||||
__func__, params.logits_file.c_str(), n_ctx, params.n_ctx);
|
||||
}
|
||||
|
||||
@ -1715,16 +1718,16 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) {
|
||||
in.read((char *)&n_vocab, sizeof(n_vocab));
|
||||
in.read((char *)&n_chunk, sizeof(n_chunk));
|
||||
if (in.fail()) {
|
||||
LOG_ERR("%s: failed reading n_vocab, n_chunk from %s\n", __func__, params.logits_file.c_str());
|
||||
fprintf(stderr, "%s: failed reading n_vocab, n_chunk from %s\n", __func__, params.logits_file.c_str());
|
||||
return;
|
||||
}
|
||||
if (n_vocab != llama_n_vocab(llama_get_model(ctx))) {
|
||||
LOG_ERR("%s: inconsistent vocabulary (%d vs %d)\n", __func__, n_vocab, llama_n_vocab(llama_get_model(ctx)));
|
||||
fprintf(stderr, "%s: inconsistent vocabulary (%d vs %d)\n", __func__, n_vocab, llama_n_vocab(llama_get_model(ctx)));
|
||||
}
|
||||
|
||||
std::vector<llama_token> tokens(n_ctx * n_chunk);
|
||||
if (in.read((char *)tokens.data(), tokens.size()*sizeof(tokens[0])).fail()) {
|
||||
LOG_ERR("%s: failed reading evaluation tokens from %s\n", __func__, params.logits_file.c_str());
|
||||
fprintf(stderr, "%s: failed reading evaluation tokens from %s\n", __func__, params.logits_file.c_str());
|
||||
return;
|
||||
}
|
||||
|
||||
@ -1773,7 +1776,7 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) {
|
||||
const auto t_start = std::chrono::high_resolution_clock::now();
|
||||
|
||||
if (in.read((char *)log_probs_uint16.data(), log_probs_uint16.size()*sizeof(uint16_t)).fail()) {
|
||||
LOG_ERR("%s: failed reading log-probs for chunk %d\n", __func__, i);
|
||||
fprintf(stderr, "%s: failed reading log-probs for chunk %d\n", __func__, i);
|
||||
return;
|
||||
}
|
||||
|
||||
@ -1794,7 +1797,7 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) {
|
||||
|
||||
// TODO: use llama_batch.logits instead of relying on logits_all == true
|
||||
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
|
||||
LOG_ERR("%s : failed to eval\n", __func__);
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
@ -1811,16 +1814,16 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) {
|
||||
|
||||
if (i == 0) {
|
||||
const float t_total = std::chrono::duration<float>(t_end - t_start).count();
|
||||
LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total);
|
||||
fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
|
||||
int total_seconds = (int)(t_total * n_chunk);
|
||||
if (total_seconds >= 60*60) {
|
||||
LOG("%d hours ", total_seconds / (60*60));
|
||||
fprintf(stderr, "%d hours ", total_seconds / (60*60));
|
||||
total_seconds = total_seconds % (60*60);
|
||||
}
|
||||
LOG("%.2f minutes\n", total_seconds / 60.0);
|
||||
fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
|
||||
|
||||
printf("\nchunk PPL ln(PPL(Q)/PPL(base)) KL Divergence Δp RMS Same top p\n");
|
||||
}
|
||||
LOG("\n");
|
||||
LOG("chunk PPL ln(PPL(Q)/PPL(base)) KL Divergence Δp RMS Same top p\n");
|
||||
|
||||
const int first = n_ctx/2;
|
||||
const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx);
|
||||
@ -1829,77 +1832,79 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) {
|
||||
p_diff_ptr += n_ctx - 1 - first;
|
||||
kld_ptr += n_ctx - 1 - first;
|
||||
|
||||
LOG("%4d", i+1);
|
||||
printf("%4d", i+1);
|
||||
|
||||
auto log_ppl = mean_and_uncertainty(kld.sum_nll, kld.sum_nll2, kld.count);
|
||||
const double ppl_val = exp(log_ppl.first);
|
||||
const double ppl_unc = ppl_val * log_ppl.second; // ppl_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl.second ** 2 )
|
||||
LOG(" %9.4lf ± %9.4lf", ppl_val, ppl_unc);
|
||||
printf(" %9.4lf ± %9.4lf", ppl_val, ppl_unc);
|
||||
|
||||
auto log_ppl_base = mean_and_uncertainty(kld.sum_nll_base, kld.sum_nll_base2, kld.count);
|
||||
const double log_ppl_cov = covariance(kld.sum_nll, kld.sum_nll_base, kld.sum_nll_nll_base, kld.count);
|
||||
const double log_ppl_ratio_val = log_ppl.first - log_ppl_base.first;
|
||||
const double log_ppl_ratio_unc = sqrt(log_ppl.second*log_ppl.second + log_ppl_base.second*log_ppl_base.second - 2.0*log_ppl_cov);
|
||||
LOG(" %10.5lf ± %10.5lf", log_ppl_ratio_val, log_ppl_ratio_unc);
|
||||
printf(" %10.5lf ± %10.5lf", log_ppl_ratio_val, log_ppl_ratio_unc);
|
||||
|
||||
auto kl_div = mean_and_uncertainty(kld.sum_kld, kld.sum_kld2, kld.count);
|
||||
LOG(" %10.5lf ± %10.5lf", kl_div.first, kl_div.second);
|
||||
printf(" %10.5lf ± %10.5lf", kl_div.first, kl_div.second);
|
||||
|
||||
auto p_diff_mse = mean_and_uncertainty(kld.sum_p_diff2, kld.sum_p_diff4, kld.count);
|
||||
const double p_diff_rms_val = sqrt(p_diff_mse.first);
|
||||
const double p_diff_rms_unc = 0.5/p_diff_rms_val * p_diff_mse.second;
|
||||
LOG(" %6.3lf ± %6.3lf %%", 100.0*p_diff_rms_val, 100.0*p_diff_rms_unc);
|
||||
printf(" %6.3lf ± %6.3lf %%", 100.0*p_diff_rms_val, 100.0*p_diff_rms_unc);
|
||||
|
||||
double p_top_val = 1.*kld.n_same_top/kld.count;
|
||||
double p_top_unc = sqrt(p_top_val*(1 - p_top_val)/(kld.count - 1));
|
||||
LOG(" %6.3lf ± %6.3lf %%", 100.0*p_top_val, 100.0*p_top_unc);
|
||||
printf(" %6.3lf ± %6.3lf %%", 100.0*p_top_val, 100.0*p_top_unc);
|
||||
|
||||
LOG("\n");
|
||||
printf("\n");
|
||||
|
||||
fflush(stdout);
|
||||
|
||||
logits.clear();
|
||||
}
|
||||
LOG("\n");
|
||||
printf("\n");
|
||||
|
||||
if (kld.count < 100) return; // we do not wish to do statistics on so few values
|
||||
|
||||
std::sort(kld_values.begin(), kld_values.end());
|
||||
std::sort(p_diff_values.begin(), p_diff_values.end());
|
||||
|
||||
LOG("====== Perplexity statistics ======\n");
|
||||
printf("====== Perplexity statistics ======\n");
|
||||
|
||||
auto log_ppl = mean_and_uncertainty(kld.sum_nll, kld.sum_nll2, kld.count);
|
||||
const double ppl_val = exp(log_ppl.first);
|
||||
const double ppl_unc = ppl_val * log_ppl.second; // ppl_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl.second ** 2 )
|
||||
LOG("Mean PPL(Q) : %10.6lf ± %10.6lf\n", ppl_val, ppl_unc);
|
||||
printf("Mean PPL(Q) : %10.6lf ± %10.6lf\n", ppl_val, ppl_unc);
|
||||
|
||||
auto log_ppl_base = mean_and_uncertainty(kld.sum_nll_base, kld.sum_nll_base2, kld.count);
|
||||
const double ppl_base_val = exp(log_ppl_base.first);
|
||||
const double ppl_base_unc = ppl_base_val * log_ppl_base.second; // ppl_base_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl_base.second ** 2 )
|
||||
LOG("Mean PPL(base) : %10.6lf ± %10.6lf\n", ppl_base_val, ppl_base_unc);
|
||||
printf("Mean PPL(base) : %10.6lf ± %10.6lf\n", ppl_base_val, ppl_base_unc);
|
||||
|
||||
const double log_ppl_cov = covariance(kld.sum_nll, kld.sum_nll_base, kld.sum_nll_nll_base, kld.count);
|
||||
// LOG("Cov(ln(PPL(Q)), ln(PPL(base))): %10.6lf\n", log_ppl_cov);
|
||||
// printf("Cov(ln(PPL(Q)), ln(PPL(base))): %10.6lf\n", log_ppl_cov);
|
||||
const double log_ppl_cor = log_ppl_cov / (log_ppl.second*log_ppl_base.second);
|
||||
LOG("Cor(ln(PPL(Q)), ln(PPL(base))): %6.2lf%%\n", 100.0*log_ppl_cor);
|
||||
printf("Cor(ln(PPL(Q)), ln(PPL(base))): %6.2lf%%\n", 100.0*log_ppl_cor);
|
||||
|
||||
const double log_ppl_ratio_val = log_ppl.first - log_ppl_base.first;
|
||||
const double log_ppl_ratio_unc = sqrt(log_ppl.second*log_ppl.second + log_ppl_base.second*log_ppl_base.second - 2.0*log_ppl_cov);
|
||||
LOG("Mean ln(PPL(Q)/PPL(base)) : %10.6lf ± %10.6lf\n", log_ppl_ratio_val, log_ppl_ratio_unc);
|
||||
printf("Mean ln(PPL(Q)/PPL(base)) : %10.6lf ± %10.6lf\n", log_ppl_ratio_val, log_ppl_ratio_unc);
|
||||
|
||||
const double ppl_ratio_val = exp(log_ppl_ratio_val);
|
||||
const double ppl_ratio_unc = ppl_ratio_val * log_ppl_ratio_unc; // ppl_ratio_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl_ratio.second ** 2 )
|
||||
LOG("Mean PPL(Q)/PPL(base) : %10.6lf ± %10.6lf\n", ppl_ratio_val, ppl_ratio_unc);
|
||||
printf("Mean PPL(Q)/PPL(base) : %10.6lf ± %10.6lf\n", ppl_ratio_val, ppl_ratio_unc);
|
||||
|
||||
const double ppl_cov = ppl_val * ppl_base_val * log_ppl_cov;
|
||||
const double ppl_diff_val = ppl_val - ppl_base_val;
|
||||
const double ppl_diff_unc = sqrt(ppl_unc*ppl_unc + ppl_base_unc*ppl_base_unc - 2.0*ppl_cov);
|
||||
LOG("Mean PPL(Q)-PPL(base) : %10.6lf ± %10.6lf\n", ppl_diff_val, ppl_diff_unc);
|
||||
printf("Mean PPL(Q)-PPL(base) : %10.6lf ± %10.6lf\n", ppl_diff_val, ppl_diff_unc);
|
||||
|
||||
LOG("\n");
|
||||
printf("\n");
|
||||
|
||||
LOG("====== KL divergence statistics ======\n");
|
||||
printf("====== KL divergence statistics ======\n");
|
||||
auto kl_div = mean_and_uncertainty(kld.sum_kld, kld.sum_kld2, kld.count);
|
||||
LOG("Mean KLD: %10.6lf ± %10.6lf\n", kl_div.first, kl_div.second);
|
||||
printf("Mean KLD: %10.6lf ± %10.6lf\n", kl_div.first, kl_div.second);
|
||||
auto kld_median = kld_values.size()%2 == 0 ? 0.5f*(kld_values[kld_values.size()/2] + kld_values[kld_values.size()/2-1])
|
||||
: kld_values[kld_values.size()/2];
|
||||
|
||||
@ -1911,49 +1916,50 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) {
|
||||
return (1 - p)*values[ip] + p*values[std::min(ip+1, values.size()-1)];
|
||||
};
|
||||
|
||||
LOG("Maximum KLD: %10.6f\n", kld_values.back());
|
||||
LOG("99.9%% KLD: %10.6f\n", percentile(kld_values, 0.999f));
|
||||
LOG("99.0%% KLD: %10.6f\n", percentile(kld_values, 0.990f));
|
||||
LOG("99.0%% KLD: %10.6f\n", percentile(kld_values, 0.990f));
|
||||
LOG("Median KLD: %10.6f\n", kld_median);
|
||||
LOG("10.0%% KLD: %10.6f\n", percentile(kld_values, 0.100f));
|
||||
LOG(" 5.0%% KLD: %10.6f\n", percentile(kld_values, 0.050f));
|
||||
LOG(" 1.0%% KLD: %10.6f\n", percentile(kld_values, 0.010f));
|
||||
LOG("Minimum KLD: %10.6f\n", kld_values.front());
|
||||
printf("Maximum KLD: %10.6f\n", kld_values.back());
|
||||
printf("99.9%% KLD: %10.6f\n", percentile(kld_values, 0.999f));
|
||||
printf("99.0%% KLD: %10.6f\n", percentile(kld_values, 0.990f));
|
||||
printf("99.0%% KLD: %10.6f\n", percentile(kld_values, 0.990f));
|
||||
printf("Median KLD: %10.6f\n", kld_median);
|
||||
printf("10.0%% KLD: %10.6f\n", percentile(kld_values, 0.100f));
|
||||
printf(" 5.0%% KLD: %10.6f\n", percentile(kld_values, 0.050f));
|
||||
printf(" 1.0%% KLD: %10.6f\n", percentile(kld_values, 0.010f));
|
||||
printf("Minimum KLD: %10.6f\n", kld_values.front());
|
||||
|
||||
LOG("\n");
|
||||
printf("\n");
|
||||
|
||||
LOG("====== Token probability statistics ======\n");
|
||||
printf("====== Token probability statistics ======\n");
|
||||
|
||||
auto p_diff = mean_and_uncertainty(kld.sum_p_diff, kld.sum_p_diff2, kld.count);
|
||||
LOG("Mean Δp: %6.3lf ± %5.3lf %%\n", 100.0*p_diff.first, 100.0*p_diff.second);
|
||||
printf("Mean Δp: %6.3lf ± %5.3lf %%\n", 100.0*p_diff.first, 100.0*p_diff.second);
|
||||
|
||||
auto p_diff_median = p_diff_values.size()%2 == 0 ? 0.5f*(p_diff_values[p_diff_values.size()/2] + p_diff_values[p_diff_values.size()/2-1])
|
||||
: p_diff_values[p_diff_values.size()/2];
|
||||
|
||||
LOG("Maximum Δp: %6.3lf%%\n", 100.0*p_diff_values.back());
|
||||
LOG("99.9%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.999f));
|
||||
LOG("99.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.990f));
|
||||
LOG("95.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.950f));
|
||||
LOG("90.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.900f));
|
||||
LOG("75.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.750f));
|
||||
LOG("Median Δp: %6.3lf%%\n", 100.0*p_diff_median);
|
||||
LOG("25.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.250f));
|
||||
LOG("10.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.100f));
|
||||
LOG(" 5.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.050f));
|
||||
LOG(" 1.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.010f));
|
||||
LOG(" 0.1%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.001f));
|
||||
LOG("Minimum Δp: %6.3lf%%\n", 100.0*p_diff_values.front());
|
||||
printf("Maximum Δp: %6.3lf%%\n", 100.0*p_diff_values.back());
|
||||
printf("99.9%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.999f));
|
||||
printf("99.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.990f));
|
||||
printf("95.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.950f));
|
||||
printf("90.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.900f));
|
||||
printf("75.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.750f));
|
||||
printf("Median Δp: %6.3lf%%\n", 100.0*p_diff_median);
|
||||
printf("25.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.250f));
|
||||
printf("10.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.100f));
|
||||
printf(" 5.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.050f));
|
||||
printf(" 1.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.010f));
|
||||
printf(" 0.1%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.001f));
|
||||
printf("Minimum Δp: %6.3lf%%\n", 100.0*p_diff_values.front());
|
||||
|
||||
auto p_diff_mse = mean_and_uncertainty(kld.sum_p_diff2, kld.sum_p_diff4, kld.count);
|
||||
// LOG("MSE Δp : %10.6lf ± %10.6lf\n", p_diff_mse.first, p_diff_mse.second);
|
||||
// printf("MSE Δp : %10.6lf ± %10.6lf\n", p_diff_mse.first, p_diff_mse.second);
|
||||
|
||||
const double p_diff_rms_val = sqrt(p_diff_mse.first);
|
||||
const double p_diff_rms_unc = 0.5/p_diff_rms_val * p_diff_mse.second;
|
||||
LOG("RMS Δp : %6.3lf ± %5.3lf %%\n", 100.0*p_diff_rms_val, 100.0*p_diff_rms_unc);
|
||||
printf("RMS Δp : %6.3lf ± %5.3lf %%\n", 100.0*p_diff_rms_val, 100.0*p_diff_rms_unc);
|
||||
|
||||
const double same_top_p = 1.0*kld.n_same_top/kld.count;
|
||||
LOG("Same top p: %6.3lf ± %5.3lf %%\n", 100.0*same_top_p, 100.0*sqrt(same_top_p*(1.0 - same_top_p)/(kld.count - 1)));
|
||||
printf("Same top p: %6.3lf ± %5.3lf %%\n", 100.0*same_top_p, 100.0*sqrt(same_top_p*(1.0 - same_top_p)/(kld.count - 1)));
|
||||
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
@ -1961,18 +1967,15 @@ int main(int argc, char ** argv) {
|
||||
|
||||
params.n_ctx = 512;
|
||||
params.logits_all = true;
|
||||
params.escape = false;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_PERPLEXITY)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
|
||||
const int32_t n_ctx = params.n_ctx;
|
||||
|
||||
if (n_ctx <= 0) {
|
||||
LOG_ERR("%s: perplexity tool requires '--ctx-size' > 0\n", __func__);
|
||||
fprintf(stderr, "%s: perplexity tool requires '--ctx-size' > 0\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -1997,11 +2000,13 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
if (params.ppl_stride > 0) {
|
||||
LOG_INF("Will perform strided perplexity calculation -> adjusting context size from %d to %d\n",
|
||||
fprintf(stderr, "Will perform strided perplexity calculation -> adjusting context size from %d to %d\n",
|
||||
params.n_ctx, params.n_ctx + params.ppl_stride/2);
|
||||
params.n_ctx += params.ppl_stride/2;
|
||||
}
|
||||
|
||||
print_build_info();
|
||||
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
@ -2011,21 +2016,21 @@ int main(int argc, char ** argv) {
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: unable to load model\n", __func__);
|
||||
fprintf(stderr, "%s: error: unable to load model\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
const int n_ctx_train = llama_n_ctx_train(model);
|
||||
|
||||
if (params.n_ctx > n_ctx_train) {
|
||||
LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n",
|
||||
fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
|
||||
__func__, n_ctx_train, params.n_ctx);
|
||||
}
|
||||
|
||||
// print system information
|
||||
{
|
||||
LOG_INF("\n");
|
||||
LOG_INF("%s\n", gpt_params_get_system_info(params).c_str());
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
|
||||
}
|
||||
|
||||
struct results_perplexity results;
|
||||
@ -2041,9 +2046,8 @@ int main(int argc, char ** argv) {
|
||||
results = perplexity(ctx, params, n_ctx);
|
||||
}
|
||||
|
||||
LOG("\n");
|
||||
llama_perf_context_print(ctx);
|
||||
|
||||
LOG_TEE("\n");
|
||||
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
|
||||
write_logfile(ctx, params, model, results);
|
||||
|
||||
llama_free(ctx);
|
||||
|
@ -63,16 +63,6 @@ static const char * const LLM_KV_QUANTIZE_IMATRIX_DATASET = "quantize.imatrix
|
||||
static const char * const LLM_KV_QUANTIZE_IMATRIX_N_ENTRIES = "quantize.imatrix.entries_count";
|
||||
static const char * const LLM_KV_QUANTIZE_IMATRIX_N_CHUNKS = "quantize.imatrix.chunks_count";
|
||||
|
||||
static bool striequals(const char * a, const char * b) {
|
||||
while (*a && *b) {
|
||||
if (std::tolower(*a) != std::tolower(*b)) {
|
||||
return false;
|
||||
}
|
||||
a++; b++;
|
||||
}
|
||||
return *a == *b;
|
||||
}
|
||||
|
||||
static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std::string & ftype_str_out) {
|
||||
std::string ftype_str;
|
||||
|
||||
@ -80,7 +70,7 @@ static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftyp
|
||||
ftype_str.push_back(std::toupper(ch));
|
||||
}
|
||||
for (auto & it : QUANT_OPTIONS) {
|
||||
if (striequals(it.name.c_str(), ftype_str.c_str())) {
|
||||
if (it.name == ftype_str) {
|
||||
ftype = it.ftype;
|
||||
ftype_str_out = it.name;
|
||||
return true;
|
||||
@ -235,15 +225,15 @@ static int prepare_imatrix(const std::string & imatrix_file,
|
||||
}
|
||||
|
||||
static ggml_type parse_ggml_type(const char * arg) {
|
||||
for (int i = 0; i < GGML_TYPE_COUNT; ++i) {
|
||||
auto type = (ggml_type)i;
|
||||
ggml_type result = GGML_TYPE_COUNT;
|
||||
for (int j = 0; j < GGML_TYPE_COUNT; ++j) {
|
||||
auto type = ggml_type(j);
|
||||
const auto * name = ggml_type_name(type);
|
||||
if (name && striequals(name, arg)) {
|
||||
return type;
|
||||
if (name && strcmp(arg, name) == 0) {
|
||||
result = type; break;
|
||||
}
|
||||
}
|
||||
fprintf(stderr, "%s: invalid ggml_type '%s'\n", __func__, arg);
|
||||
return GGML_TYPE_COUNT;
|
||||
return result;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
@ -264,18 +254,12 @@ int main(int argc, char ** argv) {
|
||||
} else if (strcmp(argv[arg_idx], "--output-tensor-type") == 0) {
|
||||
if (arg_idx < argc-1) {
|
||||
params.output_tensor_type = parse_ggml_type(argv[++arg_idx]);
|
||||
if (params.output_tensor_type == GGML_TYPE_COUNT) {
|
||||
usage(argv[0]);
|
||||
}
|
||||
} else {
|
||||
usage(argv[0]);
|
||||
}
|
||||
} else if (strcmp(argv[arg_idx], "--token-embedding-type") == 0) {
|
||||
if (arg_idx < argc-1) {
|
||||
params.token_embedding_type = parse_ggml_type(argv[++arg_idx]);
|
||||
if (params.token_embedding_type == GGML_TYPE_COUNT) {
|
||||
usage(argv[0]);
|
||||
}
|
||||
} else {
|
||||
usage(argv[0]);
|
||||
}
|
||||
|
@ -1,16 +1,14 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <fstream>
|
||||
#include <iostream> // TODO: remove me
|
||||
|
||||
static void print_usage(int, char ** argv) {
|
||||
LOG("\nexample usage:\n");
|
||||
LOG("\n %s --model ./models/bge-base-en-v1.5-f16.gguf --top-k 3 --context-file README.md --context-file License --chunk-size 100 --chunk-separator .\n", argv[0]);
|
||||
LOG("\n");
|
||||
LOG_TEE("\nexample usage:\n");
|
||||
LOG_TEE("\n %s --model ./models/bge-base-en-v1.5-f16.gguf --top-k 3 --context-file README.md --context-file License --chunk-size 100 --chunk-separator .\n", argv[0]);
|
||||
LOG_TEE("\n");
|
||||
}
|
||||
|
||||
struct chunk {
|
||||
@ -19,7 +17,7 @@ struct chunk {
|
||||
// original file position
|
||||
size_t filepos;
|
||||
// original text data
|
||||
std::string textdata;
|
||||
std::string textdata = "";
|
||||
// tokenized text data
|
||||
std::vector<llama_token> tokens;
|
||||
// embedding
|
||||
@ -33,14 +31,14 @@ static std::vector<chunk> chunk_file(const std::string & filename, int chunk_siz
|
||||
std::ifstream f(filename.c_str());
|
||||
|
||||
if (!f.is_open()) {
|
||||
LOG_ERR("could not open file %s\n", filename.c_str());
|
||||
fprintf(stderr, "Error: could not open file %s\n", filename.c_str());
|
||||
return chunks;
|
||||
}
|
||||
|
||||
chunk current_chunk;
|
||||
char buffer[1024];
|
||||
int64_t filepos = 0;
|
||||
std::string current;
|
||||
std::string current = "";
|
||||
while (f.read(buffer, 1024)) {
|
||||
current += std::string(buffer, f.gcount());
|
||||
size_t pos;
|
||||
@ -86,9 +84,9 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
|
||||
llama_kv_cache_clear(ctx);
|
||||
|
||||
// run model
|
||||
LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
|
||||
fprintf(stderr, "%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
|
||||
if (llama_decode(ctx, batch) < 0) {
|
||||
LOG_ERR("%s : failed to decode\n", __func__);
|
||||
fprintf(stderr, "%s : failed to decode\n", __func__);
|
||||
}
|
||||
|
||||
for (int i = 0; i < batch.n_tokens; i++) {
|
||||
@ -101,7 +99,7 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
|
||||
if (embd == NULL) {
|
||||
embd = llama_get_embeddings_ith(ctx, i);
|
||||
if (embd == NULL) {
|
||||
LOG_ERR("%s: failed to get embeddings for token %d\n", __func__, i);
|
||||
fprintf(stderr, "%s: failed to get embeddings for token %d\n", __func__, i);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
@ -118,24 +116,24 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
|
||||
// For BERT models, batch size must be equal to ubatch size
|
||||
params.n_ubatch = params.n_batch;
|
||||
params.embedding = true;
|
||||
|
||||
if (params.chunk_size <= 0) {
|
||||
LOG_ERR("chunk_size must be positive\n");
|
||||
fprintf(stderr, "chunk_size must be positive\n");
|
||||
return 1;
|
||||
}
|
||||
if (params.context_files.empty()) {
|
||||
LOG_ERR("context_files must be specified\n");
|
||||
fprintf(stderr, "context_files must be specified\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
LOG_INF("processing files:\n");
|
||||
print_build_info();
|
||||
|
||||
printf("processing files:\n");
|
||||
for (auto & context_file : params.context_files) {
|
||||
LOG_INF("%s\n", context_file.c_str());
|
||||
printf("%s\n", context_file.c_str());
|
||||
}
|
||||
|
||||
std::vector<chunk> chunks;
|
||||
@ -143,7 +141,7 @@ int main(int argc, char ** argv) {
|
||||
std::vector<chunk> file_chunk = chunk_file(context_file, params.chunk_size, params.chunk_separator);
|
||||
chunks.insert(chunks.end(), file_chunk.begin(), file_chunk.end());
|
||||
}
|
||||
LOG_INF("Number of chunks: %ld\n", chunks.size());
|
||||
printf("Number of chunks: %ld\n", chunks.size());
|
||||
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
@ -155,7 +153,7 @@ int main(int argc, char ** argv) {
|
||||
llama_context * ctx = llama_init.context;
|
||||
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: unable to load model\n", __func__);
|
||||
fprintf(stderr, "%s: error: unable to load model\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -164,19 +162,19 @@ int main(int argc, char ** argv) {
|
||||
|
||||
const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
|
||||
if (pooling_type == LLAMA_POOLING_TYPE_NONE) {
|
||||
LOG_ERR("%s: pooling type NONE not supported\n", __func__);
|
||||
fprintf(stderr, "%s: error: pooling type NONE not supported\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (n_ctx > n_ctx_train) {
|
||||
LOG_WRN("%s: warning: model was trained on only %d context tokens (%d specified)\n",
|
||||
fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
|
||||
__func__, n_ctx_train, n_ctx);
|
||||
}
|
||||
|
||||
// print system information
|
||||
{
|
||||
LOG_INF("\n");
|
||||
LOG_INF("%s\n", gpt_params_get_system_info(params).c_str());
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
|
||||
}
|
||||
|
||||
// max batch size
|
||||
@ -187,7 +185,7 @@ int main(int argc, char ** argv) {
|
||||
for (auto & chunk : chunks) {
|
||||
auto inp = ::llama_tokenize(ctx, chunk.textdata, true, false);
|
||||
if (inp.size() > n_batch) {
|
||||
LOG_ERR("%s: chunk size (%lld) exceeds batch size (%lld), increase batch size and re-run\n",
|
||||
fprintf(stderr, "%s: error: chunk size (%lld) exceeds batch size (%lld), increase batch size and re-run\n",
|
||||
__func__, (long long int) inp.size(), (long long int) n_batch);
|
||||
return 1;
|
||||
}
|
||||
@ -201,12 +199,12 @@ int main(int argc, char ** argv) {
|
||||
// tokenization stats
|
||||
if (params.verbose_prompt) {
|
||||
for (int i = 0; i < (int) chunks.size(); i++) {
|
||||
LOG_INF("%s: prompt %d: '%s'\n", __func__, i, chunks[i].textdata.c_str());
|
||||
LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, chunks[i].tokens.size());
|
||||
fprintf(stderr, "%s: prompt %d: '%s'\n", __func__, i, chunks[i].textdata.c_str());
|
||||
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, chunks[i].tokens.size());
|
||||
for (int j = 0; j < (int) chunks[i].tokens.size(); j++) {
|
||||
LOG_INF("%6d -> '%s'\n", chunks[i].tokens[j], llama_token_to_piece(ctx, chunks[i].tokens[j]).c_str());
|
||||
fprintf(stderr, "%6d -> '%s'\n", chunks[i].tokens[j], llama_token_to_piece(ctx, chunks[i].tokens[j]).c_str());
|
||||
}
|
||||
LOG_INF("\n\n");
|
||||
fprintf(stderr, "\n\n");
|
||||
}
|
||||
}
|
||||
|
||||
@ -258,7 +256,7 @@ int main(int argc, char ** argv) {
|
||||
// start loop, receive query and return top k similar chunks based on cosine similarity
|
||||
std::string query;
|
||||
while (true) {
|
||||
LOG("Enter query: ");
|
||||
printf("Enter query: ");
|
||||
std::getline(std::cin, query);
|
||||
std::vector<int32_t> query_tokens = llama_tokenize(ctx, query, true);
|
||||
|
||||
@ -282,19 +280,19 @@ int main(int argc, char ** argv) {
|
||||
return a.second > b.second;
|
||||
});
|
||||
|
||||
LOG("Top %d similar chunks:\n", params.sparams.top_k);
|
||||
printf("Top %d similar chunks:\n", params.sparams.top_k);
|
||||
for (int i = 0; i < std::min(params.sparams.top_k, (int) chunks.size()); i++) {
|
||||
LOG("filename: %s\n", chunks[similarities[i].first].filename.c_str());
|
||||
LOG("filepos: %lld\n", (long long int) chunks[similarities[i].first].filepos);
|
||||
LOG("similarity: %f\n", similarities[i].second);
|
||||
LOG("textdata:\n%s\n", chunks[similarities[i].first].textdata.c_str());
|
||||
LOG("--------------------\n");
|
||||
printf("filename: %s\n", chunks[similarities[i].first].filename.c_str());
|
||||
printf("filepos: %lld\n", (long long int) chunks[similarities[i].first].filepos);
|
||||
printf("similarity: %f\n", similarities[i].second);
|
||||
printf("textdata:\n%s\n", chunks[similarities[i].first].textdata.c_str());
|
||||
printf("--------------------\n");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
LOG("\n");
|
||||
llama_perf_context_print(ctx);
|
||||
LOG_TEE("\n");
|
||||
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
|
||||
|
||||
// clean up
|
||||
llama_batch_free(query_batch);
|
||||
|
@ -1,6 +1,6 @@
|
||||
set(TARGET llama-server)
|
||||
|
||||
option(LLAMA_SERVER_SSL "Build SSL support for the server" OFF)
|
||||
option(LLAMA_SERVER_VERBOSE "Build verbose logging option for Server" ON)
|
||||
option(LLAMA_SERVER_SSL "Build SSL support for the server" OFF)
|
||||
|
||||
include_directories(${CMAKE_CURRENT_SOURCE_DIR} ${CMAKE_CURRENT_BINARY_DIR})
|
||||
|
||||
@ -30,7 +30,6 @@ set(PUBLIC_ASSETS
|
||||
system-prompts.js
|
||||
prompt-formats.js
|
||||
json-schema-to-grammar.mjs
|
||||
loading.html
|
||||
)
|
||||
|
||||
foreach(asset ${PUBLIC_ASSETS})
|
||||
@ -46,6 +45,9 @@ endforeach()
|
||||
|
||||
add_executable(${TARGET} ${TARGET_SRCS})
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_compile_definitions(${TARGET} PRIVATE
|
||||
SERVER_VERBOSE=$<BOOL:${LLAMA_SERVER_VERBOSE}>
|
||||
)
|
||||
|
||||
target_link_libraries(${TARGET} PRIVATE common ${CMAKE_THREAD_LIBS_INIT})
|
||||
|
||||
|
@ -87,7 +87,7 @@ The project is under active development, and we are [looking for feedback and co
|
||||
| `-ctk, --cache-type-k TYPE` | KV cache data type for K (default: f16) |
|
||||
| `-ctv, --cache-type-v TYPE` | KV cache data type for V (default: f16) |
|
||||
| `-dt, --defrag-thold N` | KV cache defragmentation threshold (default: -1.0, < 0 - disabled)<br/>(env: LLAMA_ARG_DEFRAG_THOLD) |
|
||||
| `-np, --parallel N` | number of parallel sequences to decode (default: 1)<br/>(env: LLAMA_ARG_N_PARALLEL) |
|
||||
| `-np, --parallel N` | number of parallel sequences to decode (default: 1) |
|
||||
| `-cb, --cont-batching` | enable continuous batching (a.k.a dynamic batching) (default: enabled)<br/>(env: LLAMA_ARG_CONT_BATCHING) |
|
||||
| `-nocb, --no-cont-batching` | disable continuous batching<br/>(env: LLAMA_ARG_NO_CONT_BATCHING) |
|
||||
| `--mlock` | force system to keep model in RAM rather than swapping or compressing |
|
||||
@ -121,6 +121,7 @@ The project is under active development, and we are [looking for feedback and co
|
||||
| `-to, --timeout N` | server read/write timeout in seconds (default: 600) |
|
||||
| `--threads-http N` | number of threads used to process HTTP requests (default: -1)<br/>(env: LLAMA_ARG_THREADS_HTTP) |
|
||||
| `-spf, --system-prompt-file FNAME` | set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications |
|
||||
| `--log-format {text, json}` | log output format: json or text (default: json) |
|
||||
| `--metrics` | enable prometheus compatible metrics endpoint (default: disabled)<br/>(env: LLAMA_ARG_ENDPOINT_METRICS) |
|
||||
| `--no-slots` | disables slots monitoring endpoint (default: enabled)<br/>(env: LLAMA_ARG_NO_ENDPOINT_SLOTS) |
|
||||
| `--slot-save-path PATH` | path to save slot kv cache (default: disabled) |
|
||||
@ -501,7 +502,7 @@ Given a ChatML-formatted json description in `messages`, it returns the predicte
|
||||
|
||||
See [OpenAI Chat Completions API documentation](https://platform.openai.com/docs/api-reference/chat). While some OpenAI-specific features such as function calling aren't supported, llama.cpp `/completion`-specific features such as `mirostat` are supported.
|
||||
|
||||
The `response_format` parameter supports both plain JSON output (e.g. `{"type": "json_object"}`) and schema-constrained JSON (e.g. `{"type": "json_object", "schema": {"type": "string", "minLength": 10, "maxLength": 100}}` or `{"type": "json_schema", "schema": {"properties": { "name": { "title": "Name", "type": "string" }, "date": { "title": "Date", "type": "string" }, "participants": { "items": {"type: "string" }, "title": "Participants", "type": "string" } } } }`), similar to other OpenAI-inspired API providers.
|
||||
The `response_format` parameter supports both plain JSON output (e.g. `{"type": "json_object"}`) and schema-constrained JSON (e.g. `{"type": "json_object", "schema": {"type": "string", "minLength": 10, "maxLength": 100}}`), similar to other OpenAI-inspired API providers.
|
||||
|
||||
*Examples:*
|
||||
|
||||
|
@ -40,6 +40,7 @@ server --host localhost --port 8080 \
|
||||
--parallel 8 \
|
||||
--batch-size 512 \
|
||||
--ctx-size 4096 \
|
||||
--log-format text \
|
||||
-ngl 33
|
||||
```
|
||||
|
||||
|
@ -272,6 +272,7 @@ def start_server_background(args):
|
||||
server_args.append('--cont-batching')
|
||||
server_args.append('--metrics')
|
||||
server_args.append('--flash-attn')
|
||||
server_args.extend(['--log-format', "text"])
|
||||
args = [str(arg) for arg in [server_path, *server_args]]
|
||||
print(f"bench: starting server with: {' '.join(args)}")
|
||||
pkwargs = {
|
||||
|
@ -1,12 +0,0 @@
|
||||
<!DOCTYPE html>
|
||||
<html>
|
||||
<head>
|
||||
<meta http-equiv="refresh" content="5">
|
||||
</head>
|
||||
<body>
|
||||
<div id="loading">
|
||||
The model is loading. Please wait.<br/>
|
||||
The user interface will appear soon.
|
||||
</div>
|
||||
</body>
|
||||
</html>
|
File diff suppressed because it is too large
Load Diff
1
examples/server/tests/.gitignore
vendored
1
examples/server/tests/.gitignore
vendored
@ -1 +0,0 @@
|
||||
.venv
|
@ -40,6 +40,7 @@ It's possible to override some scenario steps values with environment variables:
|
||||
| `PORT` | `context.server_port` to set the listening port of the server during scenario, default: `8080` |
|
||||
| `LLAMA_SERVER_BIN_PATH` | to change the server binary path, default: `../../../build/bin/llama-server` |
|
||||
| `DEBUG` | "ON" to enable steps and server verbose mode `--verbose` |
|
||||
| `SERVER_LOG_FORMAT_JSON` | if set switch server logs to json format |
|
||||
| `N_GPU_LAYERS` | number of model layers to offload to VRAM `-ngl --n-gpu-layers` |
|
||||
|
||||
### Run @bug, @wip or @wrong_usage annotated scenario
|
||||
|
@ -1020,8 +1020,6 @@ async def oai_chat_completions(user_prompt,
|
||||
event_data = line.split(': ', 1)
|
||||
assert event_data[0] == 'data', f'Bad event code received: ```{event_data}```'
|
||||
chunk_raw = event_data[1]
|
||||
if chunk_raw == '[DONE]':
|
||||
break
|
||||
|
||||
chunk = json.loads(chunk_raw)
|
||||
assert len(chunk['choices']) == 1, f"no choices provided, line ```{line}```"
|
||||
@ -1372,6 +1370,8 @@ def start_server_background(context):
|
||||
server_args.append('--verbose')
|
||||
if context.lora_file:
|
||||
server_args.extend(['--lora', context.lora_file])
|
||||
if 'SERVER_LOG_FORMAT_JSON' not in os.environ:
|
||||
server_args.extend(['--log-format', "text"])
|
||||
|
||||
args = [str(arg) for arg in [context.server_path, *server_args]]
|
||||
print(f"bench: starting server with: {' '.join(args)}")
|
||||
|
@ -1,8 +1,7 @@
|
||||
#pragma once
|
||||
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
#include "llama.h"
|
||||
#include "common.h"
|
||||
|
||||
#ifndef NDEBUG
|
||||
// crash the server in debug mode, otherwise send an http 500 error
|
||||
@ -16,10 +15,10 @@
|
||||
#define JSON_ASSERT GGML_ASSERT
|
||||
#include "json.hpp"
|
||||
|
||||
#include <random>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <sstream>
|
||||
#include <random>
|
||||
|
||||
#define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo-0613"
|
||||
|
||||
@ -36,6 +35,32 @@ enum error_type {
|
||||
ERROR_TYPE_NOT_SUPPORTED, // custom error
|
||||
};
|
||||
|
||||
extern bool server_verbose;
|
||||
extern bool server_log_json;
|
||||
|
||||
#ifndef SERVER_VERBOSE
|
||||
#define SERVER_VERBOSE 1
|
||||
#endif
|
||||
|
||||
#if SERVER_VERBOSE != 1
|
||||
#define LOG_VERBOSE(MSG, ...)
|
||||
#else
|
||||
#define LOG_VERBOSE(MSG, ...) \
|
||||
do \
|
||||
{ \
|
||||
if (server_verbose) \
|
||||
{ \
|
||||
server_log("VERB", __func__, __LINE__, MSG, __VA_ARGS__); \
|
||||
} \
|
||||
} while (0)
|
||||
#endif
|
||||
|
||||
#define LOG_ERROR( MSG, ...) server_log("ERR", __func__, __LINE__, MSG, __VA_ARGS__)
|
||||
#define LOG_WARNING(MSG, ...) server_log("WARN", __func__, __LINE__, MSG, __VA_ARGS__)
|
||||
#define LOG_INFO( MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
|
||||
|
||||
static inline void server_log(const char * level, const char * function, int line, const char * message, const json & extra);
|
||||
|
||||
template <typename T>
|
||||
static T json_value(const json & body, const std::string & key, const T & default_value) {
|
||||
// Fallback null to default value
|
||||
@ -43,7 +68,9 @@ static T json_value(const json & body, const std::string & key, const T & defaul
|
||||
try {
|
||||
return body.at(key);
|
||||
} catch (NLOHMANN_JSON_NAMESPACE::detail::type_error const &) {
|
||||
LOG_WRN("Wrong type supplied for parameter '%s'. Expected '%s', using default value\n", key.c_str(), json(default_value).type_name());
|
||||
std::stringstream ss;
|
||||
ss << "Wrong type supplied for parameter '" << key << "'. Expected '" << json(default_value).type_name() << "', using default value.";
|
||||
LOG_WARNING(ss.str().c_str(), body);
|
||||
return default_value;
|
||||
}
|
||||
} else {
|
||||
@ -51,6 +78,48 @@ static T json_value(const json & body, const std::string & key, const T & defaul
|
||||
}
|
||||
}
|
||||
|
||||
static inline void server_log(const char * level, const char * function, int line, const char * message, const json & extra) {
|
||||
std::stringstream ss_tid;
|
||||
ss_tid << std::this_thread::get_id();
|
||||
json log = json{
|
||||
{"tid", ss_tid.str()},
|
||||
{"timestamp", time(nullptr)},
|
||||
};
|
||||
|
||||
if (server_log_json) {
|
||||
log.merge_patch({
|
||||
{"level", level},
|
||||
{"function", function},
|
||||
{"line", line},
|
||||
{"msg", message},
|
||||
});
|
||||
|
||||
if (!extra.empty()) {
|
||||
log.merge_patch(extra);
|
||||
}
|
||||
|
||||
printf("%s\n", log.dump(-1, ' ', false, json::error_handler_t::replace).c_str());
|
||||
} else {
|
||||
char buf[1024];
|
||||
snprintf(buf, 1024, "%4s [%24s] %s", level, function, message);
|
||||
|
||||
if (!extra.empty()) {
|
||||
log.merge_patch(extra);
|
||||
}
|
||||
std::stringstream ss;
|
||||
ss << buf << " |";
|
||||
for (const auto & el : log.items())
|
||||
{
|
||||
const std::string value = el.value().dump(-1, ' ', false, json::error_handler_t::replace);
|
||||
ss << " " << el.key() << "=" << value;
|
||||
}
|
||||
|
||||
const std::string str = ss.str();
|
||||
printf("%.*s\n", (int)str.size(), str.data());
|
||||
}
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
//
|
||||
// chat template utils
|
||||
//
|
||||
@ -84,9 +153,8 @@ inline std::string format_chat(const struct llama_model * model, const std::stri
|
||||
chat.push_back({role, content});
|
||||
}
|
||||
|
||||
const auto formatted_chat = llama_chat_apply_template(model, tmpl, chat, true);
|
||||
LOG_DBG("formatted_chat: '%s'\n", formatted_chat.c_str());
|
||||
|
||||
auto formatted_chat = llama_chat_apply_template(model, tmpl, chat, true);
|
||||
LOG_VERBOSE("formatted_chat", {{"text", formatted_chat.c_str()}});
|
||||
return formatted_chat;
|
||||
}
|
||||
|
||||
@ -175,7 +243,10 @@ static std::string random_string() {
|
||||
}
|
||||
|
||||
static std::string gen_chatcmplid() {
|
||||
return "chatcmpl-" + random_string();
|
||||
std::stringstream chatcmplid;
|
||||
chatcmplid << "chatcmpl-" << random_string();
|
||||
|
||||
return chatcmplid.str();
|
||||
}
|
||||
|
||||
//
|
||||
@ -216,7 +287,7 @@ static size_t find_partial_stop_string(const std::string &stop, const std::strin
|
||||
return std::string::npos;
|
||||
}
|
||||
|
||||
static bool json_is_array_of_numbers(const json & data) {
|
||||
static bool json_is_array_of_numbers(json data) {
|
||||
if (data.is_array()) {
|
||||
for (const auto & e : data) {
|
||||
if (!e.is_number()) {
|
||||
@ -292,13 +363,15 @@ static json probs_vector_to_json(const llama_context * ctx, const std::vector<co
|
||||
return out;
|
||||
}
|
||||
|
||||
static bool server_sent_event(httplib::DataSink & sink, const char * event, const json & data) {
|
||||
static bool server_sent_event(httplib::DataSink & sink, const char * event, json & data) {
|
||||
const std::string str =
|
||||
std::string(event) + ": " +
|
||||
data.dump(-1, ' ', false, json::error_handler_t::replace) +
|
||||
"\n\n"; // note: these newlines are important (not sure why though, if you know, add a comment to explain)
|
||||
"\n\n";
|
||||
|
||||
LOG_DBG("data stream, to_send: %s", str.c_str());
|
||||
LOG_VERBOSE("data stream", {
|
||||
{ "to_send", str }
|
||||
});
|
||||
|
||||
return sink.write(str.c_str(), str.size());
|
||||
}
|
||||
@ -331,9 +404,6 @@ static json oaicompat_completion_params_parse(
|
||||
std::string response_type = json_value(response_format, "type", std::string());
|
||||
if (response_type == "json_object") {
|
||||
llama_params["json_schema"] = json_value(response_format, "schema", json::object());
|
||||
} else if (response_type == "json_schema") {
|
||||
json json_schema = json_value(response_format, "json_schema", json::object());
|
||||
llama_params["json_schema"] = json_value(json_schema, "schema", json::object());
|
||||
} else if (!response_type.empty() && response_type != "text") {
|
||||
throw std::runtime_error("response_format type must be one of \"text\" or \"json_object\", but got: " + response_type);
|
||||
}
|
||||
@ -355,7 +425,7 @@ static json oaicompat_completion_params_parse(
|
||||
|
||||
// Params supported by OAI but unsupported by llama.cpp
|
||||
static const std::vector<std::string> unsupported_params { "tools", "tool_choice" };
|
||||
for (const auto & param : unsupported_params) {
|
||||
for (auto & param : unsupported_params) {
|
||||
if (body.contains(param)) {
|
||||
throw std::runtime_error("Unsupported param: " + param);
|
||||
}
|
||||
@ -374,7 +444,7 @@ static json oaicompat_completion_params_parse(
|
||||
return llama_params;
|
||||
}
|
||||
|
||||
static json format_final_response_oaicompat(const json & request, const json & result, const std::string & completion_id, bool streaming = false, bool verbose = false) {
|
||||
static json format_final_response_oaicompat(const json & request, json result, const std::string & completion_id, bool streaming = false) {
|
||||
bool stopped_word = result.count("stopped_word") != 0;
|
||||
bool stopped_eos = json_value(result, "stopped_eos", false);
|
||||
int num_tokens_predicted = json_value(result, "tokens_predicted", 0);
|
||||
@ -411,8 +481,7 @@ static json format_final_response_oaicompat(const json & request, const json & r
|
||||
{"id", completion_id}
|
||||
};
|
||||
|
||||
// extra fields for debugging purposes
|
||||
if (verbose) {
|
||||
if (server_verbose) {
|
||||
res["__verbose"] = result;
|
||||
}
|
||||
|
||||
@ -424,7 +493,7 @@ static json format_final_response_oaicompat(const json & request, const json & r
|
||||
}
|
||||
|
||||
// return value is vector as there is one case where we might need to generate two responses
|
||||
static std::vector<json> format_partial_response_oaicompat(const json & result, const std::string & completion_id) {
|
||||
static std::vector<json> format_partial_response_oaicompat(json result, const std::string & completion_id) {
|
||||
if (!result.contains("model") || !result.contains("oaicompat_token_ctr")) {
|
||||
return std::vector<json>({result});
|
||||
}
|
||||
@ -526,7 +595,7 @@ static std::vector<json> format_partial_response_oaicompat(const json & result,
|
||||
static json format_embeddings_response_oaicompat(const json & request, const json & embeddings) {
|
||||
json data = json::array();
|
||||
int i = 0;
|
||||
for (const auto & elem : embeddings) {
|
||||
for (auto & elem : embeddings) {
|
||||
data.push_back(json{
|
||||
{"embedding", json_value(elem, "embedding", json::array())},
|
||||
{"index", i++},
|
||||
|
@ -1,14 +1,16 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
static void print_usage(int, char ** argv) {
|
||||
LOG("\nexample usage:\n");
|
||||
LOG("\n %s -m model.gguf -p \"Hello my name is\" -n 32\n", argv[0]);
|
||||
LOG("\n");
|
||||
LOG_TEE("\nexample usage:\n");
|
||||
LOG_TEE("\n %s -m model.gguf -p \"Hello my name is\" -n 32\n", argv[0]);
|
||||
LOG_TEE("\n");
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
@ -21,8 +23,6 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
|
||||
// total length of the sequence including the prompt
|
||||
const int n_predict = params.n_predict;
|
||||
|
||||
@ -69,24 +69,25 @@ int main(int argc, char ** argv) {
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
const int n_kv_req = tokens_list.size() + (n_predict - tokens_list.size());
|
||||
|
||||
LOG("\n");
|
||||
LOG_INF("%s: n_predict = %d, n_ctx = %d, n_kv_req = %d\n", __func__, n_predict, n_ctx, n_kv_req);
|
||||
LOG_TEE("\n%s: n_predict = %d, n_ctx = %d, n_kv_req = %d\n", __func__, n_predict, n_ctx, n_kv_req);
|
||||
|
||||
// make sure the KV cache is big enough to hold all the prompt and generated tokens
|
||||
if (n_kv_req > n_ctx) {
|
||||
LOG_ERR("%s: error: n_kv_req > n_ctx, the required KV cache size is not big enough\n", __func__);
|
||||
LOG_ERR("%s: either reduce n_predict or increase n_ctx\n", __func__);
|
||||
LOG_TEE("%s: error: n_kv_req > n_ctx, the required KV cache size is not big enough\n", __func__);
|
||||
LOG_TEE("%s: either reduce n_predict or increase n_ctx\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// print the prompt token-by-token
|
||||
|
||||
LOG("\n");
|
||||
fprintf(stderr, "\n");
|
||||
|
||||
for (auto id : tokens_list) {
|
||||
LOG("%s", llama_token_to_piece(ctx, id).c_str());
|
||||
fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
|
||||
}
|
||||
|
||||
fflush(stderr);
|
||||
|
||||
// create a llama_batch with size 512
|
||||
// we use this object to submit token data for decoding
|
||||
|
||||
@ -101,7 +102,7 @@ int main(int argc, char ** argv) {
|
||||
batch.logits[batch.n_tokens - 1] = true;
|
||||
|
||||
if (llama_decode(ctx, batch) != 0) {
|
||||
LOG("%s: llama_decode() failed\n", __func__);
|
||||
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -115,16 +116,16 @@ int main(int argc, char ** argv) {
|
||||
while (n_cur <= n_predict) {
|
||||
// sample the next token
|
||||
{
|
||||
const llama_token new_token_id = llama_sampler_sample(smpl, ctx, -1);
|
||||
const llama_token new_token_id = llama_sampler_sample(smpl, ctx, batch.n_tokens - 1);
|
||||
|
||||
// is it an end of generation?
|
||||
if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) {
|
||||
LOG("\n");
|
||||
LOG_TEE("\n");
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
LOG("%s", llama_token_to_piece(ctx, new_token_id).c_str());
|
||||
LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str());
|
||||
fflush(stdout);
|
||||
|
||||
// prepare the next batch
|
||||
@ -140,23 +141,23 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// evaluate the current batch with the transformer model
|
||||
if (llama_decode(ctx, batch)) {
|
||||
LOG_ERR("%s : failed to eval, return code %d\n", __func__, 1);
|
||||
fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
LOG("\n");
|
||||
LOG_TEE("\n");
|
||||
|
||||
const auto t_main_end = ggml_time_us();
|
||||
|
||||
LOG_INF("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
|
||||
LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
|
||||
__func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
|
||||
|
||||
LOG("\n");
|
||||
llama_perf_sampler_print(smpl);
|
||||
llama_perf_context_print(ctx);
|
||||
LOG_TEE("\n");
|
||||
llama_perf_print(smpl, LLAMA_PERF_TYPE_SAMPLER_CHAIN);
|
||||
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
|
||||
|
||||
LOG("\n");
|
||||
fprintf(stderr, "\n");
|
||||
|
||||
llama_batch_free(batch);
|
||||
llama_sampler_free(smpl);
|
||||
|
@ -1,16 +1,13 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "sampling.h"
|
||||
#include "log.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <random>
|
||||
#include <set>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <set>
|
||||
#include <random>
|
||||
|
||||
#define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 100
|
||||
#define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
|
||||
@ -36,10 +33,8 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
|
||||
if (params.model_draft.empty()) {
|
||||
LOG_ERR("%s: --model-draft is required\n", __func__);
|
||||
fprintf(stderr, "%s: error: --model-draft is required\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -52,6 +47,12 @@ int main(int argc, char ** argv) {
|
||||
std::default_random_engine rng(params.sparams.seed);
|
||||
std::uniform_real_distribution<> u_dist;
|
||||
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
log_set_target(log_filename_generator("speculative", "log"));
|
||||
LOG_TEE("Log start\n");
|
||||
log_dump_cmdline(argc, argv);
|
||||
#endif // LOG_DISABLE_LOGS
|
||||
|
||||
// init llama.cpp
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
@ -80,14 +81,14 @@ int main(int argc, char ** argv) {
|
||||
ctx_dft = llama_init_dft.context;
|
||||
|
||||
const bool vocab_type_tgt = llama_vocab_type(model_tgt);
|
||||
LOG_DBG("vocab_type tgt: %d\n", vocab_type_tgt);
|
||||
LOG("vocab_type tgt: %d\n", vocab_type_tgt);
|
||||
|
||||
const bool vocab_type_dft = llama_vocab_type(model_dft);
|
||||
LOG_DBG("vocab_type dft: %d\n", vocab_type_dft);
|
||||
LOG("vocab_type dft: %d\n", vocab_type_dft);
|
||||
|
||||
if (vocab_type_tgt != vocab_type_dft) {
|
||||
LOG_ERR("%s: draft model vocab type must match target model to use speculation but ", __func__);
|
||||
LOG_ERR("vocab_type_dft = %d while vocab_type_tgt = %d\n", vocab_type_dft, vocab_type_tgt);
|
||||
fprintf(stderr, "%s: error: draft model vocab type must match target model to use speculation but ", __func__);
|
||||
fprintf(stderr, "vocab_type_dft = %d while vocab_type_tgt = %d\n", vocab_type_dft, vocab_type_tgt);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -97,7 +98,7 @@ int main(int argc, char ** argv) {
|
||||
llama_token_bos(model_tgt) != llama_token_bos(model_dft) ||
|
||||
llama_token_eos(model_tgt) != llama_token_eos(model_dft)
|
||||
) {
|
||||
LOG_ERR("%s: draft model special tokens must match target model to use speculation\n", __func__);
|
||||
fprintf(stderr, "%s: error: draft model special tokens must match target model to use speculation\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -109,8 +110,8 @@ int main(int argc, char ** argv) {
|
||||
: n_vocab_dft - n_vocab_tgt;
|
||||
|
||||
if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) {
|
||||
LOG_ERR("%s: draft model vocab must closely match target model to use speculation but ", __func__);
|
||||
LOG_ERR("target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
|
||||
fprintf(stderr, "%s: error: draft model vocab must closely match target model to use speculation but ", __func__);
|
||||
fprintf(stderr, "target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
|
||||
n_vocab_tgt, llama_n_vocab(model_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
|
||||
return 1;
|
||||
}
|
||||
@ -119,8 +120,8 @@ int main(int argc, char ** argv) {
|
||||
const char * token_text_tgt = llama_token_get_text(model_tgt, i);
|
||||
const char * token_text_dft = llama_token_get_text(model_dft, i);
|
||||
if (std::strcmp(token_text_tgt, token_text_dft) != 0) {
|
||||
LOG_ERR("%s: draft model vocab must match target model to use speculation but ", __func__);
|
||||
LOG_ERR("token %d content differs - target '%s', draft '%s'\n", i,
|
||||
fprintf(stderr, "%s: error: draft model vocab must match target model to use speculation but ", __func__);
|
||||
fprintf(stderr, "token %d content differs - target '%s', draft '%s'\n", i,
|
||||
llama_token_to_piece(ctx_tgt, i).c_str(),
|
||||
llama_token_to_piece(ctx_dft, i).c_str());
|
||||
return 1;
|
||||
@ -137,16 +138,18 @@ int main(int argc, char ** argv) {
|
||||
const int max_tokens_list_size = max_context_size - 4;
|
||||
|
||||
if ((int) inp.size() > max_tokens_list_size) {
|
||||
LOG_ERR("%s: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
|
||||
fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
|
||||
return 1;
|
||||
}
|
||||
|
||||
LOG("\n\n");
|
||||
fprintf(stderr, "\n\n");
|
||||
|
||||
for (auto id : inp) {
|
||||
LOG("%s", llama_token_to_piece(ctx_tgt, id).c_str());
|
||||
fprintf(stderr, "%s", llama_token_to_piece(ctx_tgt, id).c_str());
|
||||
}
|
||||
|
||||
fflush(stderr);
|
||||
|
||||
const int n_input = inp.size();
|
||||
|
||||
const auto t_enc_start = ggml_time_us();
|
||||
@ -208,7 +211,7 @@ int main(int argc, char ** argv) {
|
||||
active_seqs.insert(s);
|
||||
const auto & tokens = drafts[s].tokens;
|
||||
|
||||
LOG_DBG("draft %d: %s\n", s, string_from(ctx_dft, tokens).c_str());
|
||||
LOG("draft %d: %s\n", s, LOG_TOKENS_TOSTR_PRETTY(ctx_dft, tokens).c_str());
|
||||
}
|
||||
|
||||
int i_dft = 0;
|
||||
@ -251,7 +254,7 @@ int main(int argc, char ** argv) {
|
||||
continue;
|
||||
}
|
||||
|
||||
LOG_DBG("verifying sequence #%d at pos #%d from %d active sequence(s)\n", s, i_dft, (int) active_seqs.size());
|
||||
LOG("verifying sequence #%d at pos #%d from %d active sequence(s)\n", s, i_dft, (int) active_seqs.size());
|
||||
float r = u_dist(rng);
|
||||
llama_token_data_array dist_dft = { drafts[s].dists[i_dft].data() , drafts[s].dists[i_dft].size(), LLAMA_TOKEN_NULL, true };
|
||||
|
||||
@ -269,7 +272,7 @@ int main(int argc, char ** argv) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
LOG_DBG("r = %f, p_dft = %f, p_tgt = %f\n", r, p_dft, p_tgt);
|
||||
LOG("r = %f, p_dft = %f, p_tgt = %f\n", r, p_dft, p_tgt);
|
||||
if (r <= p_tgt / p_dft) {
|
||||
s_keep = s;
|
||||
accept = true;
|
||||
@ -277,10 +280,10 @@ int main(int argc, char ** argv) {
|
||||
token_str = llama_token_to_piece(ctx_tgt, token_id);
|
||||
gpt_sampler_accept(smpl, token_id, true);
|
||||
|
||||
LOG_DBG("draft token %d of sequence %d (%d, '%s') accepted\n", i_dft, s, token_id, token_str.c_str());
|
||||
LOG("draft token %d of sequence %d (%d, '%s') accepted\n", i_dft, s, token_id, token_str.c_str());
|
||||
break;
|
||||
} else {
|
||||
LOG_DBG("draft token %d of sequence %d (%d, '%s') rejected\n", i_dft, s, drafts[s].tokens[i_dft], llama_token_to_piece(ctx_tgt, drafts[s].tokens[i_dft]).c_str());
|
||||
LOG("draft token %d of sequence %d (%d, '%s') rejected\n", i_dft, s, drafts[s].tokens[i_dft], llama_token_to_piece(ctx_tgt, drafts[s].tokens[i_dft]).c_str());
|
||||
drafts[s].active = false;
|
||||
|
||||
// calculate residual probability
|
||||
@ -335,7 +338,7 @@ int main(int argc, char ** argv) {
|
||||
if (!accept) {
|
||||
// all drafted tokens were rejected
|
||||
// sample from the target model
|
||||
LOG_DBG("all drafted tokens were rejected, sampling from residual distribution\n");
|
||||
LOG("all drafted tokens were rejected, sampling from residual distribution\n");
|
||||
std::vector<float> probs(dist_tgt.size);
|
||||
for (size_t i = 0; i < dist_tgt.size; ++i) {
|
||||
probs[i] = dist_tgt.data[i].p;
|
||||
@ -353,11 +356,13 @@ int main(int argc, char ** argv) {
|
||||
// greedy verification
|
||||
|
||||
// sample from the target model
|
||||
LOG_DBG("sampling target: s_keep = %3d, i_dft = %3d, i_batch_tgt = %3d\n", s_keep, i_dft, drafts[s_keep].i_batch_tgt[i_dft]);
|
||||
LOG("sampling target: s_keep = %3d, i_dft = %3d, i_batch_tgt = %3d\n", s_keep, i_dft, drafts[s_keep].i_batch_tgt[i_dft]);
|
||||
token_id = gpt_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft]);
|
||||
|
||||
gpt_sampler_accept(smpl, token_id, true);
|
||||
|
||||
//LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_tgt, smpl->prev).c_str());
|
||||
|
||||
token_str = llama_token_to_piece(ctx_tgt, token_id);
|
||||
|
||||
for (int s = 0; s < n_seq_dft; ++s) {
|
||||
@ -366,7 +371,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
if (i_dft < (int) drafts[s].tokens.size() && token_id == drafts[s].tokens[i_dft]) {
|
||||
LOG_DBG("the sampled target token matches the %dth drafted token of sequence %d (%d, '%s') - accepted\n", i_dft, s, token_id, token_str.c_str());
|
||||
LOG("the sampled target token matches the %dth drafted token of sequence %d (%d, '%s') - accepted\n", i_dft, s, token_id, token_str.c_str());
|
||||
|
||||
s_keep = s;
|
||||
accept = true;
|
||||
@ -388,24 +393,26 @@ int main(int argc, char ** argv) {
|
||||
++i_dft;
|
||||
if (params.use_color) {
|
||||
// Color token according to its origin sequence
|
||||
LOG("\u001b[%dm%s\u001b[37m", (36 - s_keep % 6), token_str.c_str());
|
||||
printf("\u001b[%dm%s\u001b[37m", (36 - s_keep % 6), token_str.c_str());
|
||||
} else {
|
||||
LOG("%s", token_str.c_str());
|
||||
printf("%s", token_str.c_str());
|
||||
}
|
||||
fflush(stdout);
|
||||
continue;
|
||||
} else {
|
||||
LOG("%s", token_str.c_str());
|
||||
printf("%s", token_str.c_str());
|
||||
fflush(stdout);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
LOG_DBG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", token_id, token_str.c_str());
|
||||
LOG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", token_id, token_str.c_str());
|
||||
|
||||
// TODO: simplify
|
||||
{
|
||||
LOG_DBG("keeping sequence %d, n_past_tgt = %d, n_past_dft = %d\n", s_keep, n_past_tgt, n_past_dft);
|
||||
LOG("keeping sequence %d, n_past_tgt = %d, n_past_dft = %d\n", s_keep, n_past_tgt, n_past_dft);
|
||||
|
||||
llama_kv_cache_seq_keep(ctx_dft, s_keep);
|
||||
llama_kv_cache_seq_cp (ctx_dft, s_keep, 0, -1, -1);
|
||||
@ -432,7 +439,7 @@ int main(int argc, char ** argv) {
|
||||
llama_batch_add (batch_dft, token_id, n_past_dft, { 0 }, true);
|
||||
|
||||
llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1);
|
||||
// LOG_DBG("dft batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_dft, batch_dft).c_str());
|
||||
// LOG("dft batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_dft, batch_dft).c_str());
|
||||
llama_decode(ctx_dft, batch_dft);
|
||||
|
||||
++n_past_dft;
|
||||
@ -479,7 +486,7 @@ int main(int argc, char ** argv) {
|
||||
const auto * cur_p = gpt_sampler_get_candidates(drafts[s].smpl);
|
||||
|
||||
for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p->size); ++k) {
|
||||
LOG_DBG(" - draft candidate %3d for seq %3d, pos %3d: %6d (%8.3f) '%s'\n",
|
||||
LOG(" - draft candidate %3d for seq %3d, pos %3d: %6d (%8.3f) '%s'\n",
|
||||
k, s, i, cur_p->data[k].id, cur_p->data[k].p, llama_token_to_piece(ctx_dft, cur_p->data[k].id).c_str());
|
||||
}
|
||||
|
||||
@ -488,7 +495,7 @@ int main(int argc, char ** argv) {
|
||||
// attempt to split the branch if the probability is high enough
|
||||
for (int f = 1; f < 8; ++f) {
|
||||
if (n_seq_cur < n_seq_dft && cur_p->data[f].p > p_split) {
|
||||
LOG_DBG("splitting seq %3d into %3d\n", s, n_seq_cur);
|
||||
LOG("splitting seq %3d into %3d\n", s, n_seq_cur);
|
||||
|
||||
llama_kv_cache_seq_rm(ctx_dft, n_seq_cur, -1, -1);
|
||||
llama_kv_cache_seq_cp(ctx_dft, s, n_seq_cur, -1, -1);
|
||||
@ -577,7 +584,7 @@ int main(int argc, char ** argv) {
|
||||
llama_kv_cache_seq_cp(ctx_tgt, 0, s, -1, -1);
|
||||
}
|
||||
|
||||
// LOG_DBG("target batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_tgt, batch_tgt).c_str());
|
||||
// LOG("target batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_tgt, batch_tgt).c_str());
|
||||
llama_decode(ctx_tgt, batch_tgt);
|
||||
++n_past_tgt;
|
||||
}
|
||||
@ -595,25 +602,23 @@ int main(int argc, char ** argv) {
|
||||
|
||||
auto t_dec_end = ggml_time_us();
|
||||
|
||||
LOG("\n\n");
|
||||
LOG_TEE("\n\n");
|
||||
|
||||
LOG_INF("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
|
||||
LOG_INF("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
|
||||
LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
|
||||
LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
|
||||
|
||||
LOG_INF("\n");
|
||||
LOG_INF("n_draft = %d\n", n_draft);
|
||||
LOG_INF("n_predict = %d\n", n_predict);
|
||||
LOG_INF("n_drafted = %d\n", n_drafted);
|
||||
LOG_INF("n_accept = %d\n", n_accept);
|
||||
LOG_INF("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("n_draft = %d\n", n_draft);
|
||||
LOG_TEE("n_predict = %d\n", n_predict);
|
||||
LOG_TEE("n_drafted = %d\n", n_drafted);
|
||||
LOG_TEE("n_accept = %d\n", n_accept);
|
||||
LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
|
||||
|
||||
LOG_INF("\n");
|
||||
LOG_INF("draft:\n\n");
|
||||
LOG_TEE("\ndraft:\n\n");
|
||||
// TODO: print sampling/grammar timings for all drafts
|
||||
llama_perf_context_print(ctx_dft);
|
||||
llama_perf_print(ctx_dft, LLAMA_PERF_TYPE_CONTEXT);
|
||||
|
||||
LOG_INF("\n");
|
||||
LOG_INF("target:\n\n");
|
||||
LOG_TEE("\ntarget:\n\n");
|
||||
gpt_perf_print(ctx_tgt, smpl);
|
||||
|
||||
gpt_sampler_free(smpl);
|
||||
@ -632,7 +637,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
LOG("\n\n");
|
||||
fprintf(stderr, "\n\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@ -11,17 +11,16 @@ source /opt/intel/oneapi/setvars.sh
|
||||
#ZES_ENABLE_SYSMAN=1, Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory. Recommended to use when --split-mode = layer.
|
||||
|
||||
INPUT_PROMPT="Building a website can be done in 10 simple steps:\nStep 1:"
|
||||
MODEL_FILE=models/llama-2-7b.Q4_0.gguf
|
||||
MODEL_FILE=llama-2-7b.Q4_0.gguf
|
||||
NGL=33
|
||||
CONEXT=8192
|
||||
|
||||
if [ $# -gt 0 ]; then
|
||||
GGML_SYCL_DEVICE=$1
|
||||
echo "use $GGML_SYCL_DEVICE as main GPU"
|
||||
#use signle GPU only
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m ${MODEL_FILE} -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONEXT} -mg $GGML_SYCL_DEVICE -sm none
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/${MODEL_FILE} -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -mg $GGML_SYCL_DEVICE -sm none
|
||||
|
||||
else
|
||||
#use multiple GPUs with same max compute units
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m ${MODEL_FILE} -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONEXT}
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/${MODEL_FILE} -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0
|
||||
fi
|
||||
|
@ -1,13 +1,11 @@
|
||||
#include "common.h"
|
||||
//#include "log.h" // TODO: start using log.h
|
||||
#include "llama.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <iostream> // TODO: remove me
|
||||
|
||||
#if defined(_WIN32)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
@ -15,25 +13,25 @@
|
||||
#include <shellapi.h> // For CommandLineToArgvW
|
||||
#endif
|
||||
|
||||
static void print_usage_information(const char * argv0) {
|
||||
printf("usage: %s [options]\n\n", argv0);
|
||||
printf("The tokenize program tokenizes a prompt using a given model,\n");
|
||||
printf("and prints the resulting tokens to standard output.\n\n");
|
||||
printf("It needs a model file, a prompt, and optionally other flags\n");
|
||||
printf("to control the behavior of the tokenizer.\n\n");
|
||||
printf(" The possible options are:\n");
|
||||
printf("\n");
|
||||
printf(" -h, --help print this help and exit\n");
|
||||
printf(" -m MODEL_PATH, --model MODEL_PATH path to model.\n");
|
||||
printf(" --ids if given, only print numerical token IDs, and not token strings.\n");
|
||||
printf(" The output format looks like [1, 2, 3], i.e. parseable by Python.\n");
|
||||
printf(" -f PROMPT_FNAME, --file PROMPT_FNAME read prompt from a file.\n");
|
||||
printf(" -p PROMPT, --prompt PROMPT read prompt from the argument.\n");
|
||||
printf(" --stdin read prompt from standard input.\n");
|
||||
printf(" --no-bos do not ever add a BOS token to the prompt, even if normally the model uses a BOS token.\n");
|
||||
printf(" --no-parse-special do not parse control tokens.\n");
|
||||
printf(" --log-disable disable logs. Makes stderr quiet when loading the model.\n");
|
||||
printf(" --show-count print the total number of tokens.\n");
|
||||
static void print_usage_information(const char * argv0, FILE * stream) {
|
||||
fprintf(stream, "usage: %s [options]\n\n", argv0);
|
||||
fprintf(stream, "The tokenize program tokenizes a prompt using a given model,\n");
|
||||
fprintf(stream, "and prints the resulting tokens to standard output.\n\n");
|
||||
fprintf(stream, "It needs a model file, a prompt, and optionally other flags\n");
|
||||
fprintf(stream, "to control the behavior of the tokenizer.\n\n");
|
||||
fprintf(stream, " The possible options are:\n");
|
||||
fprintf(stream, "\n");
|
||||
fprintf(stream, " -h, --help print this help and exit\n");
|
||||
fprintf(stream, " -m MODEL_PATH, --model MODEL_PATH path to model.\n");
|
||||
fprintf(stream, " --ids if given, only print numerical token IDs, and not token strings.\n");
|
||||
fprintf(stream, " The output format looks like [1, 2, 3], i.e. parseable by Python.\n");
|
||||
fprintf(stream, " -f PROMPT_FNAME, --file PROMPT_FNAME read prompt from a file.\n");
|
||||
fprintf(stream, " -p PROMPT, --prompt PROMPT read prompt from the argument.\n");
|
||||
fprintf(stream, " --stdin read prompt from standard input.\n");
|
||||
fprintf(stream, " --no-bos do not ever add a BOS token to the prompt, even if normally the model uses a BOS token.\n");
|
||||
fprintf(stream, " --no-parse-special do not parse control tokens.\n");
|
||||
fprintf(stream, " --log-disable disable logs. Makes stderr quiet when loading the model.\n");
|
||||
fprintf(stream, " --show-count print the total number of tokens.\n");
|
||||
}
|
||||
|
||||
static void llama_log_callback_null(ggml_log_level level, const char * text, void * user_data) {
|
||||
@ -187,7 +185,7 @@ int main(int raw_argc, char ** raw_argv) {
|
||||
const int argc = argv.size();
|
||||
|
||||
if (argc <= 1) {
|
||||
print_usage_information(argv[0].c_str());
|
||||
print_usage_information(argv[0].c_str(), stderr);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -216,7 +214,7 @@ int main(int raw_argc, char ** raw_argv) {
|
||||
for (; iarg < argc; ++iarg) {
|
||||
std::string arg{argv[iarg]};
|
||||
if (arg == "-h" || arg == "--help") {
|
||||
print_usage_information(argv[0].c_str());
|
||||
print_usage_information(argv[0].c_str(), stdout);
|
||||
return 0;
|
||||
}
|
||||
else if (arg == "--ids") {
|
||||
@ -325,6 +323,10 @@ int main(int raw_argc, char ** raw_argv) {
|
||||
// Start actually doing the tokenizing stuff.
|
||||
//////
|
||||
|
||||
#ifdef LOG_DISABLE_LOGS
|
||||
disable_logging = true;
|
||||
#endif
|
||||
|
||||
if (disable_logging) {
|
||||
llama_log_set(llama_log_callback_null, NULL);
|
||||
}
|
||||
|
12
flake.lock
12
flake.lock
@ -5,11 +5,11 @@
|
||||
"nixpkgs-lib": "nixpkgs-lib"
|
||||
},
|
||||
"locked": {
|
||||
"lastModified": 1726153070,
|
||||
"narHash": "sha256-HO4zgY0ekfwO5bX0QH/3kJ/h4KvUDFZg8YpkNwIbg1U=",
|
||||
"lastModified": 1725234343,
|
||||
"narHash": "sha256-+ebgonl3NbiKD2UD0x4BszCZQ6sTfL4xioaM49o5B3Y=",
|
||||
"owner": "hercules-ci",
|
||||
"repo": "flake-parts",
|
||||
"rev": "bcef6817a8b2aa20a5a6dbb19b43e63c5bf8619a",
|
||||
"rev": "567b938d64d4b4112ee253b9274472dc3a346eb6",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
@ -20,11 +20,11 @@
|
||||
},
|
||||
"nixpkgs": {
|
||||
"locked": {
|
||||
"lastModified": 1726062873,
|
||||
"narHash": "sha256-IiA3jfbR7K/B5+9byVi9BZGWTD4VSbWe8VLpp9B/iYk=",
|
||||
"lastModified": 1725634671,
|
||||
"narHash": "sha256-v3rIhsJBOMLR8e/RNWxr828tB+WywYIoajrZKFM+0Gg=",
|
||||
"owner": "NixOS",
|
||||
"repo": "nixpkgs",
|
||||
"rev": "4f807e8940284ad7925ebd0a0993d2a1791acb2f",
|
||||
"rev": "574d1eac1c200690e27b8eb4e24887f8df7ac27c",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
|
@ -56,15 +56,6 @@ else()
|
||||
set(GGML_NATIVE_DEFAULT ON)
|
||||
endif()
|
||||
|
||||
# defaults
|
||||
if (NOT GGML_LLAMAFILE_DEFAULT)
|
||||
set(GGML_LLAMAFILE_DEFAULT OFF)
|
||||
endif()
|
||||
|
||||
if (NOT GGML_CUDA_GRAPHS_DEFAULT)
|
||||
set(GGML_CUDA_GRAPHS_DEFAULT OFF)
|
||||
endif()
|
||||
|
||||
# general
|
||||
option(GGML_STATIC "ggml: static link libraries" OFF)
|
||||
option(GGML_NATIVE "ggml: enable -march=native flag" ${GGML_NATIVE_DEFAULT})
|
||||
@ -119,7 +110,7 @@ option(GGML_ACCELERATE "ggml: enable Accelerate framework"
|
||||
option(GGML_BLAS "ggml: use BLAS" ${GGML_BLAS_DEFAULT})
|
||||
set(GGML_BLAS_VENDOR ${GGML_BLAS_VENDOR_DEFAULT} CACHE STRING
|
||||
"ggml: BLAS library vendor")
|
||||
option(GGML_LLAMAFILE "ggml: use LLAMAFILE" ${GGML_LLAMAFILE_DEFAULT})
|
||||
option(GGML_LLAMAFILE "ggml: use LLAMAFILE" OFF)
|
||||
|
||||
option(GGML_CUDA "ggml: use CUDA" OFF)
|
||||
option(GGML_MUSA "ggml: use MUSA" OFF)
|
||||
@ -136,7 +127,7 @@ set (GGML_CUDA_PEER_MAX_BATCH_SIZE "128" CACHE STRING
|
||||
option(GGML_CUDA_NO_PEER_COPY "ggml: do not use peer to peer copies" OFF)
|
||||
option(GGML_CUDA_NO_VMM "ggml: do not try to use CUDA VMM" OFF)
|
||||
option(GGML_CUDA_FA_ALL_QUANTS "ggml: compile all quants for FlashAttention" OFF)
|
||||
option(GGML_CUDA_GRAPHS "ggml: use CUDA graphs (llama.cpp only)" ${GGML_CUDA_GRAPHS_DEFAULT})
|
||||
option(GGML_CUDA_USE_GRAPHS "ggml: use CUDA graphs (llama.cpp only)" OFF)
|
||||
|
||||
option(GGML_HIPBLAS "ggml: use hipBLAS" OFF)
|
||||
option(GGML_HIP_UMA "ggml: use HIP unified memory architecture" OFF)
|
||||
|
@ -66,7 +66,6 @@ extern "C" {
|
||||
// "offset" refers to the offset of the tensor data for setting/getting data
|
||||
GGML_API GGML_CALL void ggml_backend_tensor_set( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
GGML_API GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||
GGML_API GGML_CALL void ggml_backend_tensor_memset( struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size);
|
||||
|
||||
GGML_API void ggml_backend_synchronize(ggml_backend_t backend);
|
||||
|
||||
@ -123,7 +122,7 @@ extern "C" {
|
||||
// The backend registry is a registry of all the available backends, and allows initializing backends in a generic way
|
||||
|
||||
GGML_API size_t ggml_backend_reg_get_count(void);
|
||||
GGML_API size_t ggml_backend_reg_find_by_name(const char * name); // returns index of backend with name, or SIZE_MAX if not found
|
||||
GGML_API size_t ggml_backend_reg_find_by_name(const char * name);
|
||||
GGML_API ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str); // str is backend_name:params (params is optional)
|
||||
GGML_API const char * ggml_backend_reg_get_name(size_t i);
|
||||
GGML_API ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params); // params is backend-specific
|
||||
|
@ -534,7 +534,6 @@ extern "C" {
|
||||
|
||||
GGML_OP_CROSS_ENTROPY_LOSS,
|
||||
GGML_OP_CROSS_ENTROPY_LOSS_BACK,
|
||||
GGML_OP_OPT_STEP_ADAMW,
|
||||
|
||||
GGML_OP_COUNT,
|
||||
};
|
||||
@ -565,19 +564,16 @@ extern "C" {
|
||||
};
|
||||
|
||||
enum ggml_log_level {
|
||||
GGML_LOG_LEVEL_NONE = 0,
|
||||
GGML_LOG_LEVEL_INFO = 1,
|
||||
GGML_LOG_LEVEL_WARN = 2,
|
||||
GGML_LOG_LEVEL_ERROR = 3,
|
||||
GGML_LOG_LEVEL_DEBUG = 4,
|
||||
GGML_LOG_LEVEL_ERROR = 2,
|
||||
GGML_LOG_LEVEL_WARN = 3,
|
||||
GGML_LOG_LEVEL_INFO = 4,
|
||||
GGML_LOG_LEVEL_DEBUG = 5
|
||||
};
|
||||
|
||||
// this tensor...
|
||||
enum ggml_tensor_flag {
|
||||
GGML_TENSOR_FLAG_INPUT = 1, // ...is an input for the GGML compute graph
|
||||
GGML_TENSOR_FLAG_OUTPUT = 2, // ...is an output for the GGML compute graph
|
||||
GGML_TENSOR_FLAG_PARAM = 4, // ...contains trainable parameters
|
||||
GGML_TENSOR_FLAG_LOSS = 8, // ...defines loss for numerical optimization (multiple loss tensors add up)
|
||||
GGML_TENSOR_FLAG_INPUT = 1,
|
||||
GGML_TENSOR_FLAG_OUTPUT = 2,
|
||||
GGML_TENSOR_FLAG_PARAM = 4,
|
||||
};
|
||||
|
||||
// n-dimensional tensor
|
||||
@ -2040,44 +2036,23 @@ extern "C" {
|
||||
struct ggml_tensor * b,
|
||||
struct ggml_tensor * c);
|
||||
|
||||
// AdamW optimizer step
|
||||
// Paper: https://arxiv.org/pdf/1711.05101v3.pdf
|
||||
// PyTorch: https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
|
||||
GGML_API struct ggml_tensor * ggml_opt_step_adamw(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
float alpha,
|
||||
float beta1,
|
||||
float beta2,
|
||||
float eps,
|
||||
float wd); // weight decay
|
||||
|
||||
//
|
||||
// automatic differentiation
|
||||
//
|
||||
|
||||
GGML_API void ggml_set_param(struct ggml_context * ctx, struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_set_loss(struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_set_param(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * tensor);
|
||||
|
||||
GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool accumulate, bool keep);
|
||||
|
||||
GGML_API void ggml_build_opt_adamw(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_cgraph * gf,
|
||||
struct ggml_cgraph * gb,
|
||||
float alpha,
|
||||
float beta1,
|
||||
float beta2,
|
||||
float eps,
|
||||
float wd); // weight decay
|
||||
GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);
|
||||
|
||||
// graph allocation in a context
|
||||
GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
|
||||
GGML_API struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads);
|
||||
GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
|
||||
GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
|
||||
GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // set regular grads + optimizer momenta to 0, set loss grad to 1
|
||||
GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // zero grads
|
||||
GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
|
||||
|
||||
GGML_API int ggml_graph_size (struct ggml_cgraph * cgraph);
|
||||
|
@ -26,9 +26,6 @@ if (NOT MSVC)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
unset(GGML_EXTRA_LIBS_PRIVATE)
|
||||
unset(GGML_EXTRA_LIBS_PUBLIC)
|
||||
|
||||
if (APPLE AND GGML_ACCELERATE)
|
||||
find_library(ACCELERATE_FRAMEWORK Accelerate)
|
||||
if (ACCELERATE_FRAMEWORK)
|
||||
@ -38,7 +35,7 @@ if (APPLE AND GGML_ACCELERATE)
|
||||
add_compile_definitions(ACCELERATE_NEW_LAPACK)
|
||||
add_compile_definitions(ACCELERATE_LAPACK_ILP64)
|
||||
|
||||
list(APPEND GGML_EXTRA_LIBS_PRIVATE ${ACCELERATE_FRAMEWORK})
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} ${ACCELERATE_FRAMEWORK})
|
||||
else()
|
||||
message(WARNING "Accelerate framework not found")
|
||||
endif()
|
||||
@ -90,7 +87,7 @@ if (GGML_METAL)
|
||||
COMMENT "Generate assembly for embedded Metal library"
|
||||
)
|
||||
|
||||
list(APPEND GGML_SOURCES_METAL ${METALLIB_EMBED_ASM})
|
||||
set(GGML_SOURCES_METAL ${GGML_SOURCES_METAL} ${METALLIB_EMBED_ASM})
|
||||
else()
|
||||
if (GGML_METAL_SHADER_DEBUG)
|
||||
# custom command to do the following:
|
||||
@ -135,7 +132,7 @@ if (GGML_METAL)
|
||||
)
|
||||
endif() # GGML_METAL_EMBED_LIBRARY
|
||||
|
||||
list(APPEND GGML_EXTRA_LIBS_PRIVATE
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS}
|
||||
${FOUNDATION_LIBRARY}
|
||||
${METAL_FRAMEWORK}
|
||||
${METALKIT_FRAMEWORK}
|
||||
@ -160,11 +157,11 @@ if (GGML_OPENMP)
|
||||
|
||||
add_compile_definitions(GGML_USE_OPENMP)
|
||||
|
||||
list(APPEND GGML_EXTRA_LIBS_PRIVATE OpenMP::OpenMP_C OpenMP::OpenMP_CXX)
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} OpenMP::OpenMP_C OpenMP::OpenMP_CXX)
|
||||
|
||||
if (GGML_MUSA)
|
||||
list(APPEND GGML_EXTRA_INCLUDES "/usr/lib/llvm-10/include/openmp")
|
||||
list(APPEND GGML_EXTRA_LIBS_PRIVATE "/usr/lib/llvm-10/lib/libomp.so")
|
||||
set(GGML_EXTRA_INCLUDES ${GGML_EXTRA_INCLUDES} "/usr/lib/llvm-10/include/openmp")
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} "/usr/lib/llvm-10/lib/libomp.so")
|
||||
endif()
|
||||
else()
|
||||
message(WARNING "OpenMP not found")
|
||||
@ -247,8 +244,8 @@ if (GGML_BLAS)
|
||||
set(GGML_HEADERS_BLAS ../include/ggml-blas.h)
|
||||
set(GGML_SOURCES_BLAS ggml-blas.cpp)
|
||||
|
||||
list(APPEND GGML_EXTRA_LIBS_PRIVATE ${BLAS_LIBRARIES})
|
||||
list(APPEND GGML_EXTRA_INCLUDES ${BLAS_INCLUDE_DIRS})
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} ${BLAS_LIBRARIES})
|
||||
set(GGML_EXTRA_INCLUDES ${GGML_EXTRA_INCLUDES} ${BLAS_INCLUDE_DIRS})
|
||||
else()
|
||||
message(WARNING "BLAS not found, please refer to "
|
||||
"https://cmake.org/cmake/help/latest/module/FindBLAS.html#blas-lapack-vendors"
|
||||
@ -329,7 +326,7 @@ if (GGML_CUDA)
|
||||
add_compile_definitions(K_QUANTS_PER_ITERATION=${GGML_CUDA_KQUANTS_ITER})
|
||||
add_compile_definitions(GGML_CUDA_PEER_MAX_BATCH_SIZE=${GGML_CUDA_PEER_MAX_BATCH_SIZE})
|
||||
|
||||
if (GGML_CUDA_GRAPHS)
|
||||
if (GGML_CUDA_USE_GRAPHS)
|
||||
add_compile_definitions(GGML_CUDA_USE_GRAPHS)
|
||||
endif()
|
||||
|
||||
@ -371,19 +368,19 @@ if (GGML_CUDA)
|
||||
if (GGML_STATIC)
|
||||
if (WIN32)
|
||||
# As of 12.3.1 CUDA Toolkit for Windows does not offer a static cublas library
|
||||
list(APPEND GGML_EXTRA_LIBS_PRIVATE CUDA::cudart_static CUDA::cublas CUDA::cublasLt)
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas CUDA::cublasLt)
|
||||
else ()
|
||||
if (GGML_MUSA)
|
||||
list(APPEND GGML_EXTRA_LIBS_PRIVATE MUSA::musart_static MUSA::mublas_static)
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} MUSA::musart_static MUSA::mublas_static)
|
||||
else()
|
||||
list(APPEND GGML_EXTRA_LIBS_PRIVATE CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static)
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static)
|
||||
endif()
|
||||
endif()
|
||||
else()
|
||||
if (GGML_MUSA)
|
||||
list(APPEND GGML_EXTRA_LIBS_PRIVATE MUSA::musart MUSA::mublas)
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} MUSA::musart MUSA::mublas)
|
||||
else()
|
||||
list(APPEND GGML_EXTRA_LIBS_PRIVATE CUDA::cudart CUDA::cublas CUDA::cublasLt)
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} CUDA::cudart CUDA::cublas CUDA::cublasLt)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
@ -391,9 +388,9 @@ if (GGML_CUDA)
|
||||
# No VMM requested, no need to link directly with the cuda driver lib (libcuda.so)
|
||||
else()
|
||||
if (GGML_MUSA)
|
||||
list(APPEND GGML_EXTRA_LIBS_PRIVATE MUSA::musa_driver) # required by muDeviceGetAttribute(), muMemGetAllocationGranularity(...), ...
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} MUSA::musa_driver) # required by muDeviceGetAttribute(), muMemGetAllocationGranularity(...), ...
|
||||
else()
|
||||
list(APPEND GGML_EXTRA_LIBS_PRIVATE CUDA::cuda_driver) # required by cuDeviceGetAttribute(), cuMemGetAllocationGranularity(...), ...
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} CUDA::cuda_driver) # required by cuDeviceGetAttribute(), cuMemGetAllocationGranularity(...), ...
|
||||
endif()
|
||||
endif()
|
||||
else()
|
||||
@ -498,7 +495,7 @@ if (GGML_HIPBLAS)
|
||||
|
||||
if (CXX_IS_HIPCC)
|
||||
set_source_files_properties(${GGML_SOURCES_ROCM} PROPERTIES LANGUAGE CXX)
|
||||
list(APPEND GGML_EXTRA_LIBS_PRIVATE hip::device)
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} hip::device)
|
||||
else()
|
||||
set_source_files_properties(${GGML_SOURCES_ROCM} PROPERTIES LANGUAGE HIP)
|
||||
endif()
|
||||
@ -507,7 +504,7 @@ if (GGML_HIPBLAS)
|
||||
message(FATAL_ERROR "Static linking not supported for HIP/ROCm")
|
||||
endif()
|
||||
|
||||
list(APPEND GGML_EXTRA_LIBS_PUBLIC hip::host roc::rocblas roc::hipblas)
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} PUBLIC hip::host roc::rocblas roc::hipblas)
|
||||
endif()
|
||||
|
||||
if (GGML_SYCL)
|
||||
@ -516,8 +513,7 @@ if (GGML_SYCL)
|
||||
endif()
|
||||
|
||||
check_cxx_compiler_flag("-fsycl" SUPPORTS_SYCL)
|
||||
|
||||
if (DEFINED ENV{ONEAPI_ROOT})
|
||||
if ( DEFINED ENV{ONEAPI_ROOT})
|
||||
message(STATUS "Using oneAPI Release SYCL compiler (icpx).")
|
||||
elseif(SUPPORTS_SYCL)
|
||||
message(WARNING "Using open-source SYCL compiler (clang++). Didn't detect ENV {ONEAPI_ROOT}.
|
||||
@ -555,29 +551,26 @@ if (GGML_SYCL)
|
||||
|
||||
find_package(DNNL)
|
||||
message("-- DNNL found:" ${DNNL_FOUND})
|
||||
|
||||
if (GGML_SYCL_TARGET STREQUAL "INTEL")
|
||||
add_compile_definitions(GGML_SYCL_DNNL=${DNNL_FOUND})
|
||||
else()
|
||||
add_compile_definitions(GGML_SYCL_DNNL=0)
|
||||
endif()
|
||||
|
||||
if (${DNNL_FOUND} AND GGML_SYCL_TARGET STREQUAL "INTEL")
|
||||
list(APPEND GGML_EXTRA_LIBS_PRIVATE DNNL::dnnl)
|
||||
endif()
|
||||
|
||||
if (WIN32)
|
||||
find_package(IntelSYCL REQUIRED)
|
||||
find_package(MKL REQUIRED)
|
||||
list(APPEND GGML_EXTRA_LIBS_PRIVATE IntelSYCL::SYCL_CXX MKL::MKL MKL::MKL_SYCL)
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} IntelSYCL::SYCL_CXX MKL::MKL MKL::MKL_SYCL)
|
||||
else()
|
||||
if (GGML_SYCL_TARGET STREQUAL "INTEL")
|
||||
list(APPEND GGML_EXTRA_LIBS_PRIVATE sycl OpenCL mkl_core pthread m dl mkl_sycl_blas mkl_intel_ilp64 mkl_tbb_thread)
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} -fsycl OpenCL mkl_core pthread m dl mkl_sycl_blas mkl_intel_ilp64 mkl_tbb_thread)
|
||||
elseif (GGML_SYCL_TARGET STREQUAL "NVIDIA")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl-targets=nvptx64-nvidia-cuda")
|
||||
list(APPEND GGML_EXTRA_LIBS_PRIVATE sycl pthread m dl onemkl)
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} -fsycl pthread m dl onemkl)
|
||||
endif()
|
||||
endif()
|
||||
if (${DNNL_FOUND} AND GGML_SYCL_TARGET STREQUAL "INTEL")
|
||||
list(APPEND GGML_EXTRA_LIBS DNNL::dnnl)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (GGML_RPC)
|
||||
@ -586,7 +579,7 @@ if (GGML_RPC)
|
||||
list(APPEND GGML_CDEF_PUBLIC GGML_USE_RPC)
|
||||
|
||||
if (WIN32)
|
||||
list(APPEND GGML_EXTRA_LIBS_PRIVATE ws2_32)
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} ws2_32)
|
||||
endif()
|
||||
|
||||
set(GGML_HEADERS_RPC ../include/ggml-rpc.h)
|
||||
@ -664,8 +657,8 @@ if (GGML_VULKAN)
|
||||
set(GGML_HEADERS_VULKAN ${CMAKE_CURRENT_SOURCE_DIR}/../include/ggml-vulkan.h ${_ggml_vk_header})
|
||||
set(GGML_SOURCES_VULKAN ggml-vulkan.cpp ${_ggml_vk_source})
|
||||
|
||||
list(APPEND GGML_EXTRA_LIBS_PRIVATE Vulkan::Vulkan)
|
||||
list(APPEND GGML_EXTRA_INCLUDES ${CMAKE_CURRENT_BINARY_DIR})
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} Vulkan::Vulkan)
|
||||
set(GGML_EXTRA_INCLUDES ${GGML_EXTRA_INCLUDES} ${CMAKE_CURRENT_BINARY_DIR})
|
||||
else()
|
||||
message(WARNING "Vulkan not found")
|
||||
endif()
|
||||
@ -824,8 +817,8 @@ if (GGML_KOMPUTE)
|
||||
|
||||
list(APPEND GGML_CDEF_PUBLIC GGML_USE_KOMPUTE)
|
||||
|
||||
list(APPEND GGML_EXTRA_LIBS_PRIVATE kompute)
|
||||
list(APPEND GGML_EXTRA_INCLUDES ${CMAKE_CURRENT_BINARY_DIR})
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} kompute)
|
||||
set(GGML_EXTRA_INCLUDES ${GGML_EXTRA_INCLUDES} ${CMAKE_CURRENT_BINARY_DIR})
|
||||
else()
|
||||
message(WARNING "Kompute not found")
|
||||
endif()
|
||||
@ -890,10 +883,9 @@ if (GGML_CANN)
|
||||
message(STATUS "CANN: CANN_INCLUDE_DIRS = ${CANN_INCLUDE_DIRS}")
|
||||
message(STATUS "CANN: CANN_LIBRARIES = ${CANN_LIBRARIES}")
|
||||
|
||||
list(APPEND GGML_EXTRA_LIBS_PRIVATE ${CANN_LIBRARIES} )
|
||||
list(APPEND GGML_EXTRA_INCLUDES ${CANN_INCLUDE_DIRS})
|
||||
list(APPEND GGML_EXTRA_LIBDIRS ${CANN_INSTALL_DIR}/lib64)
|
||||
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} ${CANN_LIBRARIES} )
|
||||
set(GGML_EXTRA_INCLUDES ${GGML_EXTRA_INCLUDES} ${CANN_INCLUDE_DIRS})
|
||||
set(GGML_EXTRA_LIBDIRS ${GGML_EXTRA_LIBDIRS} ${CANN_INSTALL_DIR}/lib64)
|
||||
list(APPEND GGML_CDEF_PUBLIC GGML_USE_CANN)
|
||||
endif()
|
||||
else()
|
||||
@ -1330,25 +1322,21 @@ if (EMSCRIPTEN)
|
||||
set_target_properties(ggml PROPERTIES COMPILE_FLAGS "-msimd128")
|
||||
endif()
|
||||
|
||||
target_compile_definitions(ggml PUBLIC ${GGML_CDEF_PUBLIC})
|
||||
target_include_directories(ggml PUBLIC ../include)
|
||||
target_compile_definitions(ggml PUBLIC ${GGML_CDEF_PUBLIC})
|
||||
target_include_directories(ggml PUBLIC ../include)
|
||||
target_include_directories(ggml PRIVATE . ${GGML_EXTRA_INCLUDES})
|
||||
target_link_directories (ggml PRIVATE ${GGML_EXTRA_LIBDIRS})
|
||||
target_link_directories(ggml PRIVATE ${GGML_EXTRA_LIBDIRS})
|
||||
target_compile_features (ggml PRIVATE c_std_11) # don't bump
|
||||
|
||||
list(APPEND GGML_EXTRA_LIBS_PRIVATE Threads::Threads)
|
||||
target_link_libraries(ggml PRIVATE Threads::Threads ${GGML_EXTRA_LIBS})
|
||||
|
||||
find_library(MATH_LIBRARY m)
|
||||
if (MATH_LIBRARY)
|
||||
if (NOT WIN32 OR NOT GGML_SYCL)
|
||||
list(APPEND GGML_EXTRA_LIBS_PRIVATE m)
|
||||
target_link_libraries(ggml PRIVATE ${MATH_LIBRARY})
|
||||
endif()
|
||||
endif()
|
||||
|
||||
list(REMOVE_DUPLICATES GGML_EXTRA_LIBS_PRIVATE)
|
||||
list(REMOVE_DUPLICATES GGML_EXTRA_LIBS_PUBLIC)
|
||||
target_link_libraries(ggml PRIVATE ${GGML_EXTRA_LIBS_PRIVATE} PUBLIC ${GGML_EXTRA_LIBS_PUBLIC})
|
||||
|
||||
if (BUILD_SHARED_LIBS)
|
||||
set_target_properties(ggml PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
target_compile_definitions(ggml PRIVATE GGML_SHARED GGML_BUILD)
|
||||
|
@ -4,7 +4,6 @@
|
||||
|
||||
#include "ggml-quants.h"
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-cpu-impl.h"
|
||||
|
||||
#include <math.h>
|
||||
#include <string.h>
|
||||
|
@ -294,12 +294,6 @@ static void ggml_dyn_tallocr_reset(struct ggml_dyn_tallocr * alloc) {
|
||||
alloc->free_blocks[0].offset = 0;
|
||||
alloc->free_blocks[0].size = SIZE_MAX/2; // restrict maximum size of a measure allocator to half size_t max to avoid overflows
|
||||
alloc->max_size = 0;
|
||||
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
for (int i = 0; i < 1024; i++) {
|
||||
alloc->allocated_tensors[i].tensor = NULL;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
static struct ggml_dyn_tallocr * ggml_dyn_tallocr_new(size_t alignment) {
|
||||
|
@ -38,16 +38,15 @@ extern "C" {
|
||||
typedef void * ggml_backend_buffer_context_t;
|
||||
|
||||
struct ggml_backend_buffer_i {
|
||||
const char * (*GGML_CALL get_name) (ggml_backend_buffer_t buffer);
|
||||
void (*GGML_CALL free_buffer) (ggml_backend_buffer_t buffer);
|
||||
void * (*GGML_CALL get_base) (ggml_backend_buffer_t buffer);
|
||||
void (*GGML_CALL init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
void (*GGML_CALL memset_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size);
|
||||
void (*GGML_CALL set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
void (*GGML_CALL get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||
bool (*GGML_CALL cpy_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst); // dst is in the buffer, src may be in any buffer
|
||||
void (*GGML_CALL clear) (ggml_backend_buffer_t buffer, uint8_t value);
|
||||
void (*GGML_CALL reset) (ggml_backend_buffer_t buffer); // reset any internal state due to tensor initialization, such as tensor extras
|
||||
const char * (*GGML_CALL get_name) (ggml_backend_buffer_t buffer);
|
||||
void (*GGML_CALL free_buffer)(ggml_backend_buffer_t buffer);
|
||||
void * (*GGML_CALL get_base) (ggml_backend_buffer_t buffer);
|
||||
void (*GGML_CALL init_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
void (*GGML_CALL set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
void (*GGML_CALL get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||
bool (*GGML_CALL cpy_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst); // dst is in the buffer, src may be in any buffer
|
||||
void (*GGML_CALL clear) (ggml_backend_buffer_t buffer, uint8_t value);
|
||||
void (*GGML_CALL reset) (ggml_backend_buffer_t buffer); // reset any internal state due to tensor initialization, such as tensor extras
|
||||
};
|
||||
|
||||
struct ggml_backend_buffer {
|
||||
|
@ -246,22 +246,6 @@ GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void *
|
||||
buf->iface.get_tensor(buf, tensor, data, offset, size);
|
||||
}
|
||||
|
||||
GGML_API GGML_CALL void ggml_backend_tensor_memset(struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
|
||||
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
|
||||
|
||||
GGML_ASSERT(buf != NULL && "tensor buffer not set");
|
||||
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
||||
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
|
||||
|
||||
if (!size) {
|
||||
return;
|
||||
}
|
||||
|
||||
GGML_ASSERT(buf->iface.memset_tensor != NULL && "memset not supported by backend buffer");
|
||||
|
||||
buf->iface.memset_tensor(buf, tensor, value, offset, size);
|
||||
}
|
||||
|
||||
void ggml_backend_synchronize(ggml_backend_t backend) {
|
||||
if (backend->iface.synchronize == NULL) {
|
||||
return;
|
||||
@ -585,12 +569,6 @@ GGML_CALL static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t
|
||||
free(buffer->context);
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_cpu_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
|
||||
memset((char *)tensor->data + offset, value, size);
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
memcpy((char *)tensor->data + offset, data, size);
|
||||
|
||||
@ -622,7 +600,6 @@ static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
|
||||
/* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
|
||||
/* .get_base = */ ggml_backend_cpu_buffer_get_base,
|
||||
/* .init_tensor = */ NULL, // no initialization required
|
||||
/* .memset_tensor = */ ggml_backend_cpu_buffer_memset_tensor,
|
||||
/* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
|
||||
/* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
|
||||
/* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
|
||||
@ -636,7 +613,6 @@ static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
|
||||
/* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
|
||||
/* .get_base = */ ggml_backend_cpu_buffer_get_base,
|
||||
/* .init_tensor = */ NULL, // no initialization required
|
||||
/* .memset_tensor = */ ggml_backend_cpu_buffer_memset_tensor,
|
||||
/* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
|
||||
/* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
|
||||
/* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
|
||||
@ -1004,7 +980,6 @@ static struct ggml_backend_buffer_i ggml_backend_multi_buffer_context_interface(
|
||||
/* .free_buffer = */ ggml_backend_multi_buffer_free_buffer,
|
||||
/* .get_base = */ NULL,
|
||||
/* .init_tensor = */ NULL,
|
||||
/* .memset_tensor = */ NULL,
|
||||
/* .set_tensor = */ NULL,
|
||||
/* .get_tensor = */ NULL,
|
||||
/* .cpy_tensor = */ NULL,
|
||||
|
@ -1037,7 +1037,6 @@ static ggml_backend_buffer_i ggml_backend_cann_buffer_interface = {
|
||||
/* .free_buffer = */ ggml_backend_cann_buffer_free_buffer,
|
||||
/* .get_base = */ ggml_backend_cann_buffer_get_base,
|
||||
/* .init_tensor = */ ggml_backend_cann_buffer_init_tensor,
|
||||
/* .memset_tensor = */ NULL,
|
||||
/* .set_tensor = */ ggml_backend_cann_buffer_set_tensor,
|
||||
/* .get_tensor = */ ggml_backend_cann_buffer_get_tensor,
|
||||
/* .cpy_tensor = */ ggml_backend_cann_buffer_cpy_tensor,
|
||||
|
@ -1,614 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
// GGML CPU internal header
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-impl.h"
|
||||
#include <stdlib.h> // load `stdlib.h` before other headers to work around MinGW bug: https://sourceforge.net/p/mingw-w64/bugs/192/
|
||||
//#include <stddef.h>
|
||||
#include <stdbool.h>
|
||||
#include <string.h> // memcpy
|
||||
#include <math.h> // fabsf
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
|
||||
#define m512bh(p) p
|
||||
#define m512i(p) p
|
||||
|
||||
#else
|
||||
|
||||
#define m512bh(p) (__m512bh)(p)
|
||||
#define m512i(p) (__m512i)(p)
|
||||
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Converts brain16 to float32.
|
||||
*
|
||||
* The bfloat16 floating point format has the following structure:
|
||||
*
|
||||
* ┌sign
|
||||
* │
|
||||
* │ ┌exponent
|
||||
* │ │
|
||||
* │ │ ┌mantissa
|
||||
* │ │ │
|
||||
* │┌──┴───┐┌─┴───┐
|
||||
* 0b0000000000000000 brain16
|
||||
*
|
||||
* Since bf16 has the same number of exponent bits as a 32bit float,
|
||||
* encoding and decoding numbers becomes relatively straightforward.
|
||||
*
|
||||
* ┌sign
|
||||
* │
|
||||
* │ ┌exponent
|
||||
* │ │
|
||||
* │ │ ┌mantissa
|
||||
* │ │ │
|
||||
* │┌──┴───┐┌─┴───────────────────┐
|
||||
* 0b00000000000000000000000000000000 IEEE binary32
|
||||
*
|
||||
* For comparison, the standard fp16 format has fewer exponent bits.
|
||||
*
|
||||
* ┌sign
|
||||
* │
|
||||
* │ ┌exponent
|
||||
* │ │
|
||||
* │ │ ┌mantissa
|
||||
* │ │ │
|
||||
* │┌─┴─┐┌─┴──────┐
|
||||
* 0b0000000000000000 IEEE binary16
|
||||
*
|
||||
* @see IEEE 754-2008
|
||||
*/
|
||||
static inline float ggml_compute_bf16_to_fp32(ggml_bf16_t h) {
|
||||
union {
|
||||
float f;
|
||||
uint32_t i;
|
||||
} u;
|
||||
u.i = (uint32_t)h.bits << 16;
|
||||
return u.f;
|
||||
}
|
||||
|
||||
/**
|
||||
* Converts float32 to brain16.
|
||||
*
|
||||
* This is binary identical with Google Brain float conversion.
|
||||
* Floats shall round to nearest even, and NANs shall be quiet.
|
||||
* Subnormals aren't flushed to zero, except perhaps when used.
|
||||
* This code should vectorize nicely if using modern compilers.
|
||||
*/
|
||||
static inline ggml_bf16_t ggml_compute_fp32_to_bf16(float s) {
|
||||
ggml_bf16_t h;
|
||||
union {
|
||||
float f;
|
||||
uint32_t i;
|
||||
} u;
|
||||
u.f = s;
|
||||
if ((u.i & 0x7fffffff) > 0x7f800000) { /* nan */
|
||||
h.bits = (u.i >> 16) | 64; /* force to quiet */
|
||||
return h;
|
||||
}
|
||||
h.bits = (u.i + (0x7fff + ((u.i >> 16) & 1))) >> 16;
|
||||
return h;
|
||||
}
|
||||
|
||||
#define GGML_FP32_TO_BF16(x) ggml_compute_fp32_to_bf16(x)
|
||||
#define GGML_BF16_TO_FP32(x) ggml_compute_bf16_to_fp32(x)
|
||||
|
||||
// __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
|
||||
#if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
|
||||
#ifndef __FMA__
|
||||
#define __FMA__
|
||||
#endif
|
||||
#ifndef __F16C__
|
||||
#define __F16C__
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// __SSE3__ and __SSSE3__ are not defined in MSVC, but SSE3/SSSE3 are present when AVX/AVX2/AVX512 are available
|
||||
#if defined(_MSC_VER) && (defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__))
|
||||
#ifndef __SSE3__
|
||||
#define __SSE3__
|
||||
#endif
|
||||
#ifndef __SSSE3__
|
||||
#define __SSSE3__
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
#include <arm_sve.h>
|
||||
#include <sys/prctl.h>
|
||||
#endif
|
||||
|
||||
// 16-bit float
|
||||
// on Arm, we use __fp16
|
||||
// on x86, we use uint16_t
|
||||
#if defined(__ARM_NEON)
|
||||
|
||||
// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
|
||||
//
|
||||
// $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
|
||||
//
|
||||
#include <arm_neon.h>
|
||||
|
||||
#ifdef _MSC_VER
|
||||
|
||||
typedef uint16_t ggml_fp16_internal_t;
|
||||
|
||||
#define ggml_vld1q_u32(w,x,y,z) { ((w) + ((uint64_t)(x) << 32)), ((y) + ((uint64_t)(z) << 32)) }
|
||||
|
||||
#else
|
||||
|
||||
typedef __fp16 ggml_fp16_internal_t;
|
||||
|
||||
#define ggml_vld1q_u32(w,x,y,z) { (w), (x), (y), (z) }
|
||||
|
||||
#endif // _MSC_VER
|
||||
|
||||
#if !defined(__aarch64__)
|
||||
|
||||
// 32-bit ARM compatibility
|
||||
|
||||
// vaddlvq_s16
|
||||
// vpaddq_s16
|
||||
// vpaddq_s32
|
||||
// vaddvq_s32
|
||||
// vaddvq_f32
|
||||
// vmaxvq_f32
|
||||
// vcvtnq_s32_f32
|
||||
// vzip1_u8
|
||||
// vzip2_u8
|
||||
|
||||
inline static int32_t vaddlvq_s16(int16x8_t v) {
|
||||
int32x4_t v0 = vreinterpretq_s32_s64(vpaddlq_s32(vpaddlq_s16(v)));
|
||||
return vgetq_lane_s32(v0, 0) + vgetq_lane_s32(v0, 2);
|
||||
}
|
||||
|
||||
inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) {
|
||||
int16x4_t a0 = vpadd_s16(vget_low_s16(a), vget_high_s16(a));
|
||||
int16x4_t b0 = vpadd_s16(vget_low_s16(b), vget_high_s16(b));
|
||||
return vcombine_s16(a0, b0);
|
||||
}
|
||||
|
||||
inline static int32x4_t vpaddq_s32(int32x4_t a, int32x4_t b) {
|
||||
int32x2_t a0 = vpadd_s32(vget_low_s32(a), vget_high_s32(a));
|
||||
int32x2_t b0 = vpadd_s32(vget_low_s32(b), vget_high_s32(b));
|
||||
return vcombine_s32(a0, b0);
|
||||
}
|
||||
|
||||
inline static int32_t vaddvq_s32(int32x4_t v) {
|
||||
return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
|
||||
}
|
||||
|
||||
inline static float vaddvq_f32(float32x4_t v) {
|
||||
return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
|
||||
}
|
||||
|
||||
inline static float vmaxvq_f32(float32x4_t v) {
|
||||
return
|
||||
MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
|
||||
MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
|
||||
}
|
||||
|
||||
inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
|
||||
int32x4_t res;
|
||||
|
||||
res[0] = roundf(vgetq_lane_f32(v, 0));
|
||||
res[1] = roundf(vgetq_lane_f32(v, 1));
|
||||
res[2] = roundf(vgetq_lane_f32(v, 2));
|
||||
res[3] = roundf(vgetq_lane_f32(v, 3));
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
inline static uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
|
||||
uint8x8_t res;
|
||||
|
||||
res[0] = a[0]; res[1] = b[0];
|
||||
res[2] = a[1]; res[3] = b[1];
|
||||
res[4] = a[2]; res[5] = b[2];
|
||||
res[6] = a[3]; res[7] = b[3];
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
inline static uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
|
||||
uint8x8_t res;
|
||||
|
||||
res[0] = a[4]; res[1] = b[4];
|
||||
res[2] = a[5]; res[3] = b[5];
|
||||
res[4] = a[6]; res[5] = b[6];
|
||||
res[6] = a[7]; res[7] = b[7];
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
// vld1q_s16_x2
|
||||
// vld1q_u8_x2
|
||||
// vld1q_u8_x4
|
||||
// vld1q_s8_x2
|
||||
// vld1q_s8_x4
|
||||
// TODO: double-check these work correctly
|
||||
|
||||
typedef struct ggml_int16x8x2_t {
|
||||
int16x8_t val[2];
|
||||
} ggml_int16x8x2_t;
|
||||
|
||||
inline static ggml_int16x8x2_t ggml_vld1q_s16_x2(const int16_t * ptr) {
|
||||
ggml_int16x8x2_t res;
|
||||
|
||||
res.val[0] = vld1q_s16(ptr + 0);
|
||||
res.val[1] = vld1q_s16(ptr + 8);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef struct ggml_uint8x16x2_t {
|
||||
uint8x16_t val[2];
|
||||
} ggml_uint8x16x2_t;
|
||||
|
||||
inline static ggml_uint8x16x2_t ggml_vld1q_u8_x2(const uint8_t * ptr) {
|
||||
ggml_uint8x16x2_t res;
|
||||
|
||||
res.val[0] = vld1q_u8(ptr + 0);
|
||||
res.val[1] = vld1q_u8(ptr + 16);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef struct ggml_uint8x16x4_t {
|
||||
uint8x16_t val[4];
|
||||
} ggml_uint8x16x4_t;
|
||||
|
||||
inline static ggml_uint8x16x4_t ggml_vld1q_u8_x4(const uint8_t * ptr) {
|
||||
ggml_uint8x16x4_t res;
|
||||
|
||||
res.val[0] = vld1q_u8(ptr + 0);
|
||||
res.val[1] = vld1q_u8(ptr + 16);
|
||||
res.val[2] = vld1q_u8(ptr + 32);
|
||||
res.val[3] = vld1q_u8(ptr + 48);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef struct ggml_int8x16x2_t {
|
||||
int8x16_t val[2];
|
||||
} ggml_int8x16x2_t;
|
||||
|
||||
inline static ggml_int8x16x2_t ggml_vld1q_s8_x2(const int8_t * ptr) {
|
||||
ggml_int8x16x2_t res;
|
||||
|
||||
res.val[0] = vld1q_s8(ptr + 0);
|
||||
res.val[1] = vld1q_s8(ptr + 16);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef struct ggml_int8x16x4_t {
|
||||
int8x16_t val[4];
|
||||
} ggml_int8x16x4_t;
|
||||
|
||||
inline static ggml_int8x16x4_t ggml_vld1q_s8_x4(const int8_t * ptr) {
|
||||
ggml_int8x16x4_t res;
|
||||
|
||||
res.val[0] = vld1q_s8(ptr + 0);
|
||||
res.val[1] = vld1q_s8(ptr + 16);
|
||||
res.val[2] = vld1q_s8(ptr + 32);
|
||||
res.val[3] = vld1q_s8(ptr + 48);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
// NOTE: not tested
|
||||
inline static int8x16_t ggml_vqtbl1q_s8(int8x16_t a, uint8x16_t b) {
|
||||
int8x16_t res;
|
||||
|
||||
res[ 0] = a[b[ 0]];
|
||||
res[ 1] = a[b[ 1]];
|
||||
res[ 2] = a[b[ 2]];
|
||||
res[ 3] = a[b[ 3]];
|
||||
res[ 4] = a[b[ 4]];
|
||||
res[ 5] = a[b[ 5]];
|
||||
res[ 6] = a[b[ 6]];
|
||||
res[ 7] = a[b[ 7]];
|
||||
res[ 8] = a[b[ 8]];
|
||||
res[ 9] = a[b[ 9]];
|
||||
res[10] = a[b[10]];
|
||||
res[11] = a[b[11]];
|
||||
res[12] = a[b[12]];
|
||||
res[13] = a[b[13]];
|
||||
res[14] = a[b[14]];
|
||||
res[15] = a[b[15]];
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
// NOTE: not tested
|
||||
inline static uint8x16_t ggml_vqtbl1q_u8(uint8x16_t a, uint8x16_t b) {
|
||||
uint8x16_t res;
|
||||
|
||||
res[ 0] = a[b[ 0]];
|
||||
res[ 1] = a[b[ 1]];
|
||||
res[ 2] = a[b[ 2]];
|
||||
res[ 3] = a[b[ 3]];
|
||||
res[ 4] = a[b[ 4]];
|
||||
res[ 5] = a[b[ 5]];
|
||||
res[ 6] = a[b[ 6]];
|
||||
res[ 7] = a[b[ 7]];
|
||||
res[ 8] = a[b[ 8]];
|
||||
res[ 9] = a[b[ 9]];
|
||||
res[10] = a[b[10]];
|
||||
res[11] = a[b[11]];
|
||||
res[12] = a[b[12]];
|
||||
res[13] = a[b[13]];
|
||||
res[14] = a[b[14]];
|
||||
res[15] = a[b[15]];
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#define ggml_int16x8x2_t int16x8x2_t
|
||||
#define ggml_uint8x16x2_t uint8x16x2_t
|
||||
#define ggml_uint8x16x4_t uint8x16x4_t
|
||||
#define ggml_int8x16x2_t int8x16x2_t
|
||||
#define ggml_int8x16x4_t int8x16x4_t
|
||||
|
||||
#define ggml_vld1q_s16_x2 vld1q_s16_x2
|
||||
#define ggml_vld1q_u8_x2 vld1q_u8_x2
|
||||
#define ggml_vld1q_u8_x4 vld1q_u8_x4
|
||||
#define ggml_vld1q_s8_x2 vld1q_s8_x2
|
||||
#define ggml_vld1q_s8_x4 vld1q_s8_x4
|
||||
#define ggml_vqtbl1q_s8 vqtbl1q_s8
|
||||
#define ggml_vqtbl1q_u8 vqtbl1q_u8
|
||||
|
||||
#endif // !defined(__aarch64__)
|
||||
|
||||
#if !defined(__ARM_FEATURE_DOTPROD)
|
||||
|
||||
inline static int32x4_t ggml_vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b) {
|
||||
const int16x8_t p0 = vmull_s8(vget_low_s8 (a), vget_low_s8 (b));
|
||||
const int16x8_t p1 = vmull_s8(vget_high_s8(a), vget_high_s8(b));
|
||||
|
||||
return vaddq_s32(acc, vaddq_s32(vpaddlq_s16(p0), vpaddlq_s16(p1)));
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#define ggml_vdotq_s32(a, b, c) vdotq_s32(a, b, c)
|
||||
|
||||
#endif // !defined(__ARM_FEATURE_DOTPROD)
|
||||
|
||||
#endif // defined(__ARM_NEON)
|
||||
|
||||
#if defined(__ARM_NEON) && !defined(_MSC_VER)
|
||||
|
||||
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
|
||||
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
|
||||
|
||||
#define GGML_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
|
||||
|
||||
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
|
||||
ggml_fp16_internal_t tmp;
|
||||
memcpy(&tmp, &h, sizeof(ggml_fp16_t));
|
||||
return (float)tmp;
|
||||
}
|
||||
|
||||
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
|
||||
ggml_fp16_t res;
|
||||
ggml_fp16_internal_t tmp = f;
|
||||
memcpy(&res, &tmp, sizeof(ggml_fp16_t));
|
||||
return res;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#ifdef __wasm_simd128__
|
||||
#include <wasm_simd128.h>
|
||||
#else
|
||||
#ifdef __POWER9_VECTOR__
|
||||
#include <altivec.h>
|
||||
#undef bool
|
||||
#define bool _Bool
|
||||
#else
|
||||
#if defined(_MSC_VER) || defined(__MINGW32__)
|
||||
#include <intrin.h>
|
||||
#else
|
||||
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__) || defined(__SSE__)
|
||||
#if !defined(__riscv)
|
||||
#include <immintrin.h>
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef __riscv_v_intrinsic
|
||||
#include <riscv_vector.h>
|
||||
#endif
|
||||
|
||||
#if defined(__loongarch64)
|
||||
#if defined(__loongarch_asx)
|
||||
#include <lasxintrin.h>
|
||||
#endif
|
||||
#if defined(__loongarch_sx)
|
||||
#include <lsxintrin.h>
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(__loongarch_asx)
|
||||
|
||||
typedef union {
|
||||
int32_t i;
|
||||
float f;
|
||||
} ft_union;
|
||||
|
||||
/* float type data load instructions */
|
||||
static __m128 __lsx_vreplfr2vr_s(float val) {
|
||||
ft_union fi_tmpval = {.f = val};
|
||||
return (__m128)__lsx_vreplgr2vr_w(fi_tmpval.i);
|
||||
}
|
||||
|
||||
static __m256 __lasx_xvreplfr2vr_s(float val) {
|
||||
ft_union fi_tmpval = {.f = val};
|
||||
return (__m256)__lasx_xvreplgr2vr_w(fi_tmpval.i);
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef __F16C__
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
|
||||
#define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
|
||||
#else
|
||||
#define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
|
||||
#define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
|
||||
#endif
|
||||
|
||||
#elif defined(__POWER9_VECTOR__)
|
||||
|
||||
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
|
||||
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
|
||||
/* the inline asm below is about 12% faster than the lookup method */
|
||||
#define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
|
||||
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
|
||||
|
||||
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
|
||||
register float f;
|
||||
register double d;
|
||||
__asm__(
|
||||
"mtfprd %0,%2\n"
|
||||
"xscvhpdp %0,%0\n"
|
||||
"frsp %1,%0\n" :
|
||||
/* temp */ "=d"(d),
|
||||
/* out */ "=f"(f):
|
||||
/* in */ "r"(h));
|
||||
return f;
|
||||
}
|
||||
|
||||
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
|
||||
register double d;
|
||||
register ggml_fp16_t r;
|
||||
__asm__( /* xscvdphp can work on double or single precision */
|
||||
"xscvdphp %0,%2\n"
|
||||
"mffprd %1,%0\n" :
|
||||
/* temp */ "=d"(d),
|
||||
/* out */ "=r"(r):
|
||||
/* in */ "f"(f));
|
||||
return r;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
// FP16 <-> FP32
|
||||
// ref: https://github.com/Maratyszcza/FP16
|
||||
|
||||
static inline float fp32_from_bits(uint32_t w) {
|
||||
union {
|
||||
uint32_t as_bits;
|
||||
float as_value;
|
||||
} fp32;
|
||||
fp32.as_bits = w;
|
||||
return fp32.as_value;
|
||||
}
|
||||
|
||||
static inline uint32_t fp32_to_bits(float f) {
|
||||
union {
|
||||
float as_value;
|
||||
uint32_t as_bits;
|
||||
} fp32;
|
||||
fp32.as_value = f;
|
||||
return fp32.as_bits;
|
||||
}
|
||||
|
||||
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
|
||||
const uint32_t w = (uint32_t) h << 16;
|
||||
const uint32_t sign = w & UINT32_C(0x80000000);
|
||||
const uint32_t two_w = w + w;
|
||||
|
||||
const uint32_t exp_offset = UINT32_C(0xE0) << 23;
|
||||
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
|
||||
const float exp_scale = 0x1.0p-112f;
|
||||
#else
|
||||
const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
|
||||
#endif
|
||||
const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
|
||||
|
||||
const uint32_t magic_mask = UINT32_C(126) << 23;
|
||||
const float magic_bias = 0.5f;
|
||||
const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
|
||||
|
||||
const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
|
||||
const uint32_t result = sign |
|
||||
(two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
|
||||
return fp32_from_bits(result);
|
||||
}
|
||||
|
||||
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
|
||||
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
|
||||
const float scale_to_inf = 0x1.0p+112f;
|
||||
const float scale_to_zero = 0x1.0p-110f;
|
||||
#else
|
||||
const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
|
||||
const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
|
||||
#endif
|
||||
float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
|
||||
|
||||
const uint32_t w = fp32_to_bits(f);
|
||||
const uint32_t shl1_w = w + w;
|
||||
const uint32_t sign = w & UINT32_C(0x80000000);
|
||||
uint32_t bias = shl1_w & UINT32_C(0xFF000000);
|
||||
if (bias < UINT32_C(0x71000000)) {
|
||||
bias = UINT32_C(0x71000000);
|
||||
}
|
||||
|
||||
base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
|
||||
const uint32_t bits = fp32_to_bits(base);
|
||||
const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
|
||||
const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
|
||||
const uint32_t nonsign = exp_bits + mantissa_bits;
|
||||
return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
|
||||
}
|
||||
|
||||
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
|
||||
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
|
||||
|
||||
#endif // __F16C__
|
||||
|
||||
#endif // defined(__ARM_NEON) && (!defined(__MSC_VER)
|
||||
|
||||
#ifdef __ARM_FEATURE_SVE
|
||||
#include <arm_sve.h>
|
||||
#endif // __ARM_FEATURE_SVE
|
||||
|
||||
// precomputed f32 table for f16 (256 KB)
|
||||
// defined in ggml.c, initialized in ggml_init()
|
||||
extern float ggml_table_f32_f16[1 << 16];
|
||||
|
||||
// On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
|
||||
// so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
|
||||
// This is also true for POWER9.
|
||||
#if !defined(GGML_FP16_TO_FP32)
|
||||
inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
|
||||
uint16_t s;
|
||||
memcpy(&s, &f, sizeof(uint16_t));
|
||||
return ggml_table_f32_f16[s];
|
||||
}
|
||||
|
||||
#define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
|
||||
#endif
|
||||
|
||||
#if !defined(GGML_FP32_TO_FP16)
|
||||
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
@ -21,8 +21,6 @@
|
||||
#include "ggml-cuda/mmq.cuh"
|
||||
#include "ggml-cuda/mmvq.cuh"
|
||||
#include "ggml-cuda/norm.cuh"
|
||||
#include "ggml-cuda/opt-step-adamw.cuh"
|
||||
#include "ggml-cuda/out-prod.cuh"
|
||||
#include "ggml-cuda/pad.cuh"
|
||||
#include "ggml-cuda/pool2d.cuh"
|
||||
#include "ggml-cuda/quantize.cuh"
|
||||
@ -496,14 +494,6 @@ GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t
|
||||
}
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_cuda_buffer_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
|
||||
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
|
||||
|
||||
ggml_cuda_set_device(ctx->device);
|
||||
CUDA_CHECK(cudaMemsetAsync((char *)tensor->data + offset, value, size, cudaStreamPerThread));
|
||||
CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
|
||||
|
||||
@ -555,7 +545,6 @@ static ggml_backend_buffer_i ggml_backend_cuda_buffer_interface = {
|
||||
/* .free_buffer = */ ggml_backend_cuda_buffer_free_buffer,
|
||||
/* .get_base = */ ggml_backend_cuda_buffer_get_base,
|
||||
/* .init_tensor = */ ggml_backend_cuda_buffer_init_tensor,
|
||||
/* .memset_tensor = */ ggml_backend_cuda_buffer_memset_tensor,
|
||||
/* .set_tensor = */ ggml_backend_cuda_buffer_set_tensor,
|
||||
/* .get_tensor = */ ggml_backend_cuda_buffer_get_tensor,
|
||||
/* .cpy_tensor = */ ggml_backend_cuda_buffer_cpy_tensor,
|
||||
@ -872,7 +861,6 @@ static struct ggml_backend_buffer_i ggml_backend_cuda_split_buffer_interface = {
|
||||
/* .free_buffer = */ ggml_backend_cuda_split_buffer_free_buffer,
|
||||
/* .get_base = */ ggml_backend_cuda_split_buffer_get_base,
|
||||
/* .init_tensor = */ ggml_backend_cuda_split_buffer_init_tensor,
|
||||
/* .memset_tensor = */ NULL,
|
||||
/* .set_tensor = */ ggml_backend_cuda_split_buffer_set_tensor,
|
||||
/* .get_tensor = */ ggml_backend_cuda_split_buffer_get_tensor,
|
||||
/* .cpy_tensor = */ NULL,
|
||||
@ -2181,9 +2169,6 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
||||
case GGML_OP_REPEAT:
|
||||
ggml_cuda_op_repeat(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_REPEAT_BACK:
|
||||
ggml_cuda_op_repeat_back(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_GET_ROWS:
|
||||
ggml_cuda_op_get_rows(ctx, dst);
|
||||
break;
|
||||
@ -2217,9 +2202,6 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
||||
case GGML_UNARY_OP_NEG:
|
||||
ggml_cuda_op_neg(ctx, dst);
|
||||
break;
|
||||
case GGML_UNARY_OP_STEP:
|
||||
ggml_cuda_op_step(ctx, dst);
|
||||
break;
|
||||
case GGML_UNARY_OP_GELU:
|
||||
ggml_cuda_op_gelu(ctx, dst);
|
||||
break;
|
||||
@ -2289,9 +2271,6 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
||||
case GGML_OP_MUL_MAT_ID:
|
||||
ggml_cuda_mul_mat_id(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_OUT_PROD:
|
||||
ggml_cuda_out_prod(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_SCALE:
|
||||
ggml_cuda_op_scale(ctx, dst);
|
||||
break;
|
||||
@ -2351,11 +2330,6 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
||||
break;
|
||||
case GGML_OP_RWKV_WKV:
|
||||
ggml_cuda_op_rwkv_wkv(ctx, dst);
|
||||
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
|
||||
ggml_cuda_cross_entropy_loss_back(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_OPT_STEP_ADAMW:
|
||||
ggml_cuda_opt_step_adamw(ctx, dst);
|
||||
break;
|
||||
default:
|
||||
return false;
|
||||
@ -2484,7 +2458,6 @@ static void set_ggml_graph_node_properties(ggml_tensor * node, ggml_graph_node_p
|
||||
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
||||
graph_node_properties->src_address[i] = node->src[i] ? node->src[i]->data : nullptr;
|
||||
}
|
||||
memcpy(graph_node_properties->op_params, node->op_params, GGML_MAX_OP_PARAMS);
|
||||
}
|
||||
|
||||
static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) {
|
||||
@ -2516,12 +2489,6 @@ static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_gra
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
if (node->op == GGML_OP_SCALE &&
|
||||
memcmp(graph_node_properties->op_params, node->op_params, GGML_MAX_OP_PARAMS) != 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -2733,9 +2700,7 @@ GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t
|
||||
// First call with null argument gets number of nodes in graph
|
||||
CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, nullptr, &cuda_ctx->cuda_graph->num_nodes));
|
||||
// Subsequent call with non-null argument gets nodes
|
||||
cuda_ctx->cuda_graph->nodes.clear();
|
||||
cuda_ctx->cuda_graph->nodes.resize(cuda_ctx->cuda_graph->num_nodes);
|
||||
cuda_ctx->cuda_graph->params.clear();
|
||||
cuda_ctx->cuda_graph->params.resize(cuda_ctx->cuda_graph->num_nodes);
|
||||
if (cuda_ctx->cuda_graph->num_nodes > 0) {
|
||||
CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, cuda_ctx->cuda_graph->nodes.data(), &cuda_ctx->cuda_graph->num_nodes));
|
||||
@ -2803,7 +2768,6 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
||||
case GGML_OP_UNARY:
|
||||
switch (ggml_get_unary_op(op)) {
|
||||
case GGML_UNARY_OP_NEG:
|
||||
case GGML_UNARY_OP_STEP:
|
||||
case GGML_UNARY_OP_GELU:
|
||||
case GGML_UNARY_OP_SILU:
|
||||
case GGML_UNARY_OP_RELU:
|
||||
@ -2857,8 +2821,6 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
||||
return false;
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_OUT_PROD:
|
||||
return op->type == GGML_TYPE_F32 && op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->ne[2] == 1 && op->ne[3] == 1;
|
||||
case GGML_OP_GET_ROWS:
|
||||
{
|
||||
switch (op->src[0]->type) {
|
||||
@ -2915,12 +2877,6 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
||||
} break;
|
||||
case GGML_OP_DUP:
|
||||
case GGML_OP_REPEAT:
|
||||
{
|
||||
ggml_type src0_type = op->src[0]->type;
|
||||
return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16;
|
||||
} break;
|
||||
case GGML_OP_REPEAT_BACK:
|
||||
return op->type == GGML_TYPE_F32 && op->src[0]->ne[3] == 1;
|
||||
case GGML_OP_CONCAT:
|
||||
{
|
||||
ggml_type src0_type = op->src[0]->type;
|
||||
@ -2988,11 +2944,9 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
||||
}
|
||||
return ggml_cuda_info().devices[cuda_ctx->device].cc >= CC_VOLTA &&
|
||||
op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16;
|
||||
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
case GGML_OP_CROSS_ENTROPY_LOSS:
|
||||
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
|
||||
case GGML_OP_OPT_STEP_ADAMW:
|
||||
return true;
|
||||
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
|
@ -1,5 +1,4 @@
|
||||
#include "binbcast.cuh"
|
||||
#include <cstdint>
|
||||
|
||||
static __device__ __forceinline__ float op_repeat(const float a, const float b) {
|
||||
return b;
|
||||
@ -91,30 +90,6 @@ static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t * s
|
||||
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static __global__ void k_repeat_back(
|
||||
const T * __restrict__ src, T * __restrict__ dst, const int64_t ne00, const int64_t ne01, const int64_t ne02,
|
||||
const int64_t ne0, const int64_t ne1, const int64_t ne2) {
|
||||
|
||||
const int64_t tid0 = (int64_t) blockIdx.x*blockDim.x + threadIdx.x;
|
||||
const int64_t tid1 = (int64_t) blockIdx.y*blockDim.y + threadIdx.y;
|
||||
const int64_t tid2 = (int64_t) blockIdx.z*blockDim.z + threadIdx.z;
|
||||
|
||||
if (tid0 >= ne0) {
|
||||
return;
|
||||
}
|
||||
|
||||
T sum = 0;
|
||||
for (int64_t i2 = tid2; i2 < ne02; i2 += ne2) {
|
||||
for (int64_t i1 = tid1; i1 < ne01; i1 += ne1) {
|
||||
for (int64_t i0 = tid0; i0 < ne00; i0 += ne0) {
|
||||
sum += src[i2*ne01*ne00 + i1*ne00 + i0];
|
||||
}
|
||||
}
|
||||
}
|
||||
dst[tid2*ne1*ne0 + tid1*ne0 + tid0] = sum;
|
||||
}
|
||||
|
||||
template<float (*bin_op)(const float, const float)>
|
||||
struct bin_bcast_cuda {
|
||||
template<typename src0_t, typename src1_t, typename dst_t>
|
||||
@ -272,16 +247,6 @@ struct bin_bcast_cuda {
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
static void repeat_back_cuda(
|
||||
const T * src, T * dst, const int64_t ne00, const int64_t ne01, const int64_t ne02,
|
||||
const int64_t ne0, const int64_t ne1, const int64_t ne2, cudaStream_t stream) {
|
||||
|
||||
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||
const dim3 block_nums((ne0 + WARP_SIZE - 1) / WARP_SIZE, ne1, ne2);
|
||||
k_repeat_back<T><<<block_nums, block_dims, 0, stream>>>(src, dst, ne00, ne01, ne02, ne0, ne1, ne2);
|
||||
}
|
||||
|
||||
template<class op>
|
||||
static void ggml_cuda_op_bin_bcast(
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
@ -321,35 +286,3 @@ void ggml_cuda_op_mul(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
void ggml_cuda_op_div(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_div>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
|
||||
}
|
||||
|
||||
void ggml_cuda_op_repeat_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
GGML_ASSERT(src0->type == dst->type);
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
GGML_ASSERT(ggml_is_contiguous(dst));
|
||||
GGML_ASSERT(ggml_can_repeat(dst, src0));
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
const int64_t ne02 = src0->ne[2];
|
||||
GGML_ASSERT(src0->ne[3] == 1);
|
||||
|
||||
const int64_t ne0 = dst->ne[0];
|
||||
const int64_t ne1 = dst->ne[1];
|
||||
const int64_t ne2 = dst->ne[2];
|
||||
GGML_ASSERT(dst->ne[3] == 1);
|
||||
|
||||
switch (dst->type) {
|
||||
case GGML_TYPE_F32: {
|
||||
const float * src0_d = (const float *) src0->data;
|
||||
float * dst_d = (float *) dst->data;
|
||||
repeat_back_cuda<float>(src0_d, dst_d, ne00, ne01, ne02, ne0, ne1, ne2, stream);
|
||||
} break;
|
||||
default: {
|
||||
GGML_ASSERT(false);
|
||||
} break;
|
||||
}
|
||||
}
|
||||
|
@ -5,5 +5,3 @@ void ggml_cuda_op_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
void ggml_cuda_op_sub(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
void ggml_cuda_op_mul(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
void ggml_cuda_op_div(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_repeat_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
@ -569,7 +569,6 @@ struct ggml_graph_node_properties {
|
||||
int64_t ne[GGML_MAX_DIMS];
|
||||
size_t nb[GGML_MAX_DIMS];
|
||||
void * src_address[GGML_MAX_SRC];
|
||||
int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
|
||||
};
|
||||
|
||||
struct ggml_cuda_graph {
|
||||
|
@ -71,32 +71,6 @@ static __global__ void cross_entropy_loss_f32(const float * logits, const float
|
||||
dst[blockIdx.x] = loss;
|
||||
}
|
||||
|
||||
static __global__ void cross_entropy_loss_back_f32(const float * logits, const float * labels, const float * loss, float * dst, const int nclasses) {
|
||||
extern __shared__ float tmp[];
|
||||
|
||||
float maxval = -INFINITY;
|
||||
for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) {
|
||||
const float val = logits[blockIdx.x*nclasses + i];
|
||||
maxval = fmaxf(maxval, val);
|
||||
tmp[i] = val;
|
||||
}
|
||||
maxval = warp_reduce_max(maxval);
|
||||
|
||||
float sum = 0.0f;
|
||||
for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) {
|
||||
const float val = expf(tmp[i] - maxval);
|
||||
sum += val;
|
||||
tmp[i] = val;
|
||||
}
|
||||
sum = warp_reduce_sum(sum);
|
||||
const float sm_scale = 1.0f/sum;
|
||||
|
||||
const float d_by_nrows = *loss/gridDim.x;
|
||||
for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) {
|
||||
dst[blockIdx.x*nclasses + i] = (tmp[i]*sm_scale - labels[blockIdx.x*nclasses + i])*d_by_nrows;
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_cross_entropy_loss(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
@ -130,37 +104,3 @@ void ggml_cuda_cross_entropy_loss(ggml_backend_cuda_context & ctx, ggml_tensor *
|
||||
// Combine results from individual blocks:
|
||||
sum_f32_cuda(pool, dst_tmp.ptr, dst_d, blocks_num.x, stream);
|
||||
}
|
||||
|
||||
void ggml_cuda_cross_entropy_loss_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
const ggml_tensor * opt0 = dst->src[2];
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(opt0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
GGML_ASSERT(ggml_is_contiguous(src1));
|
||||
GGML_ASSERT(ggml_is_contiguous(opt0));
|
||||
GGML_ASSERT(ggml_is_contiguous(dst));
|
||||
GGML_ASSERT(ggml_are_same_shape(src0, src1));
|
||||
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t nrows = ggml_nrows(src0);
|
||||
|
||||
const float * src0_d = (const float *) src0->data;
|
||||
const float * src1_d = (const float *) src1->data;
|
||||
const float * opt0_d = (const float *) opt0->data;
|
||||
float * dst_d = (float *) dst->data;
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
const dim3 blocks_dim(WARP_SIZE, 1, 1);
|
||||
const dim3 blocks_num(nrows, 1, 1);
|
||||
const int shmem = ne00*sizeof(float);
|
||||
|
||||
cross_entropy_loss_back_f32<<<blocks_num, blocks_dim, shmem, stream>>>(src0_d, src1_d, opt0_d, dst_d, ne00);
|
||||
}
|
||||
|
@ -3,5 +3,3 @@
|
||||
#define CUDA_CROSS_ENTROPY_LOSS_BLOCK_SIZE 256
|
||||
|
||||
void ggml_cuda_cross_entropy_loss(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_cross_entropy_loss_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
@ -1,80 +0,0 @@
|
||||
#include "opt-step-adamw.cuh"
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
static __global__ void opt_step_adamw_f32(
|
||||
float * __restrict__ x, const float * __restrict__ g, float * __restrict__ g_m, float * __restrict__ g_v, const int64_t k,
|
||||
const float alpha, const float beta1, const float beta2, const float eps, const float wd,
|
||||
const float beta1h, const float beta2h) {
|
||||
|
||||
const int64_t i = (int64_t) blockIdx.x*blockDim.x + threadIdx.x;
|
||||
|
||||
if (i >= k) {
|
||||
return;
|
||||
}
|
||||
|
||||
const float gi = g[i];
|
||||
const float gmi = g_m[i]*beta1 + gi*(1.0f - beta1);
|
||||
const float gvi = g_v[i]*beta2 + gi*gi*(1.0f - beta2);
|
||||
|
||||
g_m[i] = gmi;
|
||||
g_v[i] = gvi;
|
||||
|
||||
const float mh = gmi*beta1h;
|
||||
const float vh = sqrtf(gvi*beta2h) + eps;
|
||||
|
||||
x[i] = x[i]*(1.0f - alpha*wd) - mh/vh;
|
||||
}
|
||||
|
||||
static void opt_step_adamw_f32_cuda(
|
||||
float * x, const float * g, float * g_m, float * g_v, const int64_t k,
|
||||
const float alpha, const float beta1, const float beta2, const float eps, const float wd,
|
||||
const float beta1h, const float beta2h, cudaStream_t stream) {
|
||||
|
||||
const dim3 block_dims(CUDA_OPT_STEP_ADAMW_BLOCK_SIZE, 1, 1);
|
||||
const dim3 block_nums((k + CUDA_OPT_STEP_ADAMW_BLOCK_SIZE - 1) / CUDA_OPT_STEP_ADAMW_BLOCK_SIZE, 1, 1);
|
||||
opt_step_adamw_f32<<<block_nums, block_dims, 0, stream>>>(x, g, g_m, g_v, k, alpha, beta1, beta2, eps, wd, beta1h, beta2h);
|
||||
}
|
||||
|
||||
void ggml_cuda_opt_step_adamw(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src0_grad = dst->src[1];
|
||||
const ggml_tensor * src0_grad_m = dst->src[2];
|
||||
const ggml_tensor * src0_grad_v = dst->src[3];
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src0_grad->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src0_grad_m->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src0_grad_v->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
GGML_ASSERT(ggml_is_contiguous(src0_grad));
|
||||
GGML_ASSERT(ggml_is_contiguous(src0_grad_m));
|
||||
GGML_ASSERT(ggml_is_contiguous(src0_grad_v));
|
||||
GGML_ASSERT(ggml_are_same_shape(src0, src0_grad));
|
||||
GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_m));
|
||||
GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_v));
|
||||
|
||||
float * src0_d = (float *) src0->data;
|
||||
const float * src0_grad_d = (const float *) src0_grad->data;
|
||||
float * src0_grad_m_d = (float *) src0_grad_m->data;
|
||||
float * src0_grad_v_d = (float *) src0_grad_v->data;
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
const int64_t ne = ggml_nelements(src0);
|
||||
|
||||
int64_t iter; memcpy(&iter, &dst->op_params[0], sizeof(int64_t));
|
||||
float alpha; memcpy(&alpha, &dst->op_params[2], sizeof(float));
|
||||
float beta1; memcpy(&beta1, &dst->op_params[3], sizeof(float));
|
||||
float beta2; memcpy(&beta2, &dst->op_params[4], sizeof(float));
|
||||
float eps; memcpy(&eps, &dst->op_params[5], sizeof(float));
|
||||
float wd; memcpy(&wd, &dst->op_params[6], sizeof(float));
|
||||
|
||||
const float beta1h = alpha/(1.0f - powf(beta1, iter));
|
||||
const float beta2h = 1.0f/(1.0f - powf(beta2, iter));
|
||||
|
||||
opt_step_adamw_f32_cuda(src0_d, src0_grad_d, src0_grad_m_d, src0_grad_v_d, ne, alpha, beta1, beta2, eps, wd, beta1h, beta2h, stream);
|
||||
|
||||
iter++;
|
||||
memcpy(&dst->op_params[0], &iter, sizeof(int64_t));
|
||||
}
|
@ -1,5 +0,0 @@
|
||||
#include "common.cuh"
|
||||
|
||||
#define CUDA_OPT_STEP_ADAMW_BLOCK_SIZE 256
|
||||
|
||||
void ggml_cuda_opt_step_adamw(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
@ -1,51 +0,0 @@
|
||||
#include "out-prod.cuh"
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
void ggml_cuda_out_prod(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
GGML_ASSERT(ggml_is_contiguous(dst));
|
||||
|
||||
GGML_ASSERT(ne01 == ne11);
|
||||
GGML_ASSERT(ne0 == ne00);
|
||||
GGML_ASSERT(ne1 == ne10);
|
||||
|
||||
GGML_ASSERT(ne2 == src0->ne[2]);
|
||||
GGML_ASSERT(ne2 == src1->ne[2]);
|
||||
GGML_ASSERT(ne3 == src0->ne[3]);
|
||||
GGML_ASSERT(ne3 == src1->ne[3]);
|
||||
|
||||
const float * src0_d = (const float *) src0->data;
|
||||
const float * src1_d = (const float *) src1->data;
|
||||
float * dst_d = (float *) dst->data;
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
cublasHandle_t handle = ctx.cublas_handle();
|
||||
|
||||
const float alpha = 1.0f;
|
||||
const float beta = 0.0f;
|
||||
|
||||
GGML_ASSERT(ne2 == 1);
|
||||
GGML_ASSERT(ne3 == 1);
|
||||
CUBLAS_CHECK(cublasSetStream(handle, stream));
|
||||
|
||||
const bool src1_T = ggml_is_transposed(src1);
|
||||
const cublasOperation_t src1_cublas_op = src1_T ? CUBLAS_OP_N : CUBLAS_OP_T;
|
||||
const int64_t ldb = (src1_T ? nb10 : nb11) / sizeof(float);
|
||||
GGML_ASSERT( (src1_T ? nb11 : nb10) == sizeof(float));
|
||||
|
||||
CUBLAS_CHECK(
|
||||
cublasSgemm(handle, CUBLAS_OP_N, src1_cublas_op,
|
||||
ne0, ne1, ne01,
|
||||
&alpha, src0_d, ne00,
|
||||
src1_d, ldb,
|
||||
&beta, dst_d, ne0));
|
||||
}
|
@ -1,3 +0,0 @@
|
||||
#include "common.cuh"
|
||||
|
||||
void ggml_cuda_out_prod(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
@ -1,13 +1,9 @@
|
||||
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11700
|
||||
#define USE_CUB
|
||||
#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11700
|
||||
|
||||
#ifdef USE_CUB
|
||||
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA)
|
||||
// On Windows CUB uses libraries with variables called CC_PASCAL which conflict with the define in common.cuh.
|
||||
// For this reason CUB must be included BEFORE anything else.
|
||||
#include <cub/cub.cuh>
|
||||
using namespace cub;
|
||||
#endif // USE_CUB
|
||||
#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA)
|
||||
|
||||
#include "sumrows.cuh"
|
||||
#include "sum.cuh"
|
||||
@ -15,7 +11,7 @@ using namespace cub;
|
||||
#include <cstdint>
|
||||
|
||||
void sum_f32_cuda(ggml_cuda_pool & pool, const float * x, float * dst, const int64_t ne, cudaStream_t stream) {
|
||||
#ifdef USE_CUB
|
||||
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA)
|
||||
size_t tmp_size = 0;
|
||||
DeviceReduce::Sum(nullptr, tmp_size, x, dst, ne, stream);
|
||||
ggml_cuda_pool_alloc<uint8_t> tmp_alloc(pool, tmp_size);
|
||||
@ -25,7 +21,7 @@ void sum_f32_cuda(ggml_cuda_pool & pool, const float * x, float * dst, const int
|
||||
// For AMD there is rocPRIM which could be used as a drop-in replacement via hipcub but this would require C++11 -> C++14.
|
||||
sum_rows_f32_cuda(x, dst, ne, 1, stream);
|
||||
GGML_UNUSED(pool);
|
||||
#endif // USE_CUB
|
||||
#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA)
|
||||
}
|
||||
|
||||
void ggml_cuda_op_sum(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
|
@ -10,16 +10,6 @@ static __global__ void neg_f32(const float * x, float * dst, const int k) {
|
||||
dst[i] = -x[i];
|
||||
}
|
||||
|
||||
static __global__ void step_f32(const float * x, float * dst, const int k) {
|
||||
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i >= k) {
|
||||
return;
|
||||
}
|
||||
|
||||
dst[i] = x[i] > 0.0f;
|
||||
}
|
||||
|
||||
static __global__ void gelu_f32(const float * x, float * dst, const int k) {
|
||||
const float GELU_COEF_A = 0.044715f;
|
||||
const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
|
||||
@ -153,11 +143,6 @@ static void neg_f32_cuda(const float * x, float * dst, const int k, cudaStream_t
|
||||
neg_f32<<<num_blocks, CUDA_NEG_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||
}
|
||||
|
||||
static void step_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_STEP_BLOCK_SIZE - 1) / CUDA_STEP_BLOCK_SIZE;
|
||||
step_f32<<<num_blocks, CUDA_STEP_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||
}
|
||||
|
||||
static void gelu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
|
||||
gelu_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||
@ -242,20 +227,6 @@ void ggml_cuda_op_neg(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
neg_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_step(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
float * dst_d = (float *)dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
step_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
|
@ -1,7 +1,6 @@
|
||||
#include "common.cuh"
|
||||
|
||||
#define CUDA_NEG_BLOCK_SIZE 256
|
||||
#define CUDA_STEP_BLOCK_SIZE 256
|
||||
#define CUDA_GELU_BLOCK_SIZE 256
|
||||
#define CUDA_SILU_BLOCK_SIZE 256
|
||||
#define CUDA_TANH_BLOCK_SIZE 256
|
||||
@ -17,8 +16,6 @@
|
||||
|
||||
void ggml_cuda_op_neg(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_step(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_silu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
1
ggml/src/ggml-cuda/vendors/hip.h
vendored
1
ggml/src/ggml-cuda/vendors/hip.h
vendored
@ -30,7 +30,6 @@
|
||||
#define cublasSetStream hipblasSetStream
|
||||
#define cublasSgemm hipblasSgemm
|
||||
#define cublasStatus_t hipblasStatus_t
|
||||
#define cublasOperation_t hipblasOperation_t
|
||||
#define cudaDataType_t hipblasDatatype_t //deprecated, new hipblasDatatype not in 5.6
|
||||
#define cudaDeviceCanAccessPeer hipDeviceCanAccessPeer
|
||||
#define cudaDeviceDisablePeerAccess hipDeviceDisablePeerAccess
|
||||
|
@ -1,17 +1,15 @@
|
||||
#pragma once
|
||||
|
||||
// GGML internal header
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
// GGML internal header
|
||||
|
||||
#include <assert.h>
|
||||
#include <stdlib.h> // load `stdlib.h` before other headers to work around MinGW bug: https://sourceforge.net/p/mingw-w64/bugs/192/
|
||||
#include <stddef.h>
|
||||
#include <stdbool.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
#include <string.h> // memcpy
|
||||
#include <math.h> // fabsf
|
||||
|
||||
#undef MIN
|
||||
#undef MAX
|
||||
@ -19,6 +17,96 @@ extern "C" {
|
||||
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
|
||||
#define m512bh(p) p
|
||||
#define m512i(p) p
|
||||
|
||||
#else
|
||||
|
||||
#define m512bh(p) (__m512bh)(p)
|
||||
#define m512i(p) (__m512i)(p)
|
||||
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Converts brain16 to float32.
|
||||
*
|
||||
* The bfloat16 floating point format has the following structure:
|
||||
*
|
||||
* ┌sign
|
||||
* │
|
||||
* │ ┌exponent
|
||||
* │ │
|
||||
* │ │ ┌mantissa
|
||||
* │ │ │
|
||||
* │┌──┴───┐┌─┴───┐
|
||||
* 0b0000000000000000 brain16
|
||||
*
|
||||
* Since bf16 has the same number of exponent bits as a 32bit float,
|
||||
* encoding and decoding numbers becomes relatively straightforward.
|
||||
*
|
||||
* ┌sign
|
||||
* │
|
||||
* │ ┌exponent
|
||||
* │ │
|
||||
* │ │ ┌mantissa
|
||||
* │ │ │
|
||||
* │┌──┴───┐┌─┴───────────────────┐
|
||||
* 0b00000000000000000000000000000000 IEEE binary32
|
||||
*
|
||||
* For comparison, the standard fp16 format has fewer exponent bits.
|
||||
*
|
||||
* ┌sign
|
||||
* │
|
||||
* │ ┌exponent
|
||||
* │ │
|
||||
* │ │ ┌mantissa
|
||||
* │ │ │
|
||||
* │┌─┴─┐┌─┴──────┐
|
||||
* 0b0000000000000000 IEEE binary16
|
||||
*
|
||||
* @see IEEE 754-2008
|
||||
*/
|
||||
static inline float ggml_compute_bf16_to_fp32(ggml_bf16_t h) {
|
||||
union {
|
||||
float f;
|
||||
uint32_t i;
|
||||
} u;
|
||||
u.i = (uint32_t)h.bits << 16;
|
||||
return u.f;
|
||||
}
|
||||
|
||||
/**
|
||||
* Converts float32 to brain16.
|
||||
*
|
||||
* This is binary identical with Google Brain float conversion.
|
||||
* Floats shall round to nearest even, and NANs shall be quiet.
|
||||
* Subnormals aren't flushed to zero, except perhaps when used.
|
||||
* This code should vectorize nicely if using modern compilers.
|
||||
*/
|
||||
static inline ggml_bf16_t ggml_compute_fp32_to_bf16(float s) {
|
||||
ggml_bf16_t h;
|
||||
union {
|
||||
float f;
|
||||
uint32_t i;
|
||||
} u;
|
||||
u.f = s;
|
||||
if ((u.i & 0x7fffffff) > 0x7f800000) { /* nan */
|
||||
h.bits = (u.i >> 16) | 64; /* force to quiet */
|
||||
return h;
|
||||
}
|
||||
h.bits = (u.i + (0x7fff + ((u.i >> 16) & 1))) >> 16;
|
||||
return h;
|
||||
}
|
||||
|
||||
#define GGML_FP32_TO_BF16(x) ggml_compute_fp32_to_bf16(x)
|
||||
#define GGML_BF16_TO_FP32(x) ggml_compute_bf16_to_fp32(x)
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// static_assert should be a #define, but if it's not,
|
||||
// fall back to the _Static_assert C11 keyword.
|
||||
// if C99 - static_assert is noop
|
||||
@ -33,6 +121,520 @@ extern "C" {
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
|
||||
#if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
|
||||
#ifndef __FMA__
|
||||
#define __FMA__
|
||||
#endif
|
||||
#ifndef __F16C__
|
||||
#define __F16C__
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// __SSE3__ and __SSSE3__ are not defined in MSVC, but SSE3/SSSE3 are present when AVX/AVX2/AVX512 are available
|
||||
#if defined(_MSC_VER) && (defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__))
|
||||
#ifndef __SSE3__
|
||||
#define __SSE3__
|
||||
#endif
|
||||
#ifndef __SSSE3__
|
||||
#define __SSSE3__
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
#include <arm_sve.h>
|
||||
#include <sys/prctl.h>
|
||||
#endif
|
||||
|
||||
// 16-bit float
|
||||
// on Arm, we use __fp16
|
||||
// on x86, we use uint16_t
|
||||
#if defined(__ARM_NEON)
|
||||
|
||||
// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
|
||||
//
|
||||
// $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
|
||||
//
|
||||
#include <arm_neon.h>
|
||||
|
||||
#ifdef _MSC_VER
|
||||
|
||||
typedef uint16_t ggml_fp16_internal_t;
|
||||
|
||||
#define ggml_vld1q_u32(w,x,y,z) { ((w) + ((uint64_t)(x) << 32)), ((y) + ((uint64_t)(z) << 32)) }
|
||||
|
||||
#else
|
||||
|
||||
typedef __fp16 ggml_fp16_internal_t;
|
||||
|
||||
#define ggml_vld1q_u32(w,x,y,z) { (w), (x), (y), (z) }
|
||||
|
||||
#endif // _MSC_VER
|
||||
|
||||
#if !defined(__aarch64__)
|
||||
|
||||
// 32-bit ARM compatibility
|
||||
|
||||
// vaddlvq_s16
|
||||
// vpaddq_s16
|
||||
// vpaddq_s32
|
||||
// vaddvq_s32
|
||||
// vaddvq_f32
|
||||
// vmaxvq_f32
|
||||
// vcvtnq_s32_f32
|
||||
// vzip1_u8
|
||||
// vzip2_u8
|
||||
|
||||
inline static int32_t vaddlvq_s16(int16x8_t v) {
|
||||
int32x4_t v0 = vreinterpretq_s32_s64(vpaddlq_s32(vpaddlq_s16(v)));
|
||||
return vgetq_lane_s32(v0, 0) + vgetq_lane_s32(v0, 2);
|
||||
}
|
||||
|
||||
inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) {
|
||||
int16x4_t a0 = vpadd_s16(vget_low_s16(a), vget_high_s16(a));
|
||||
int16x4_t b0 = vpadd_s16(vget_low_s16(b), vget_high_s16(b));
|
||||
return vcombine_s16(a0, b0);
|
||||
}
|
||||
|
||||
inline static int32x4_t vpaddq_s32(int32x4_t a, int32x4_t b) {
|
||||
int32x2_t a0 = vpadd_s32(vget_low_s32(a), vget_high_s32(a));
|
||||
int32x2_t b0 = vpadd_s32(vget_low_s32(b), vget_high_s32(b));
|
||||
return vcombine_s32(a0, b0);
|
||||
}
|
||||
|
||||
inline static int32_t vaddvq_s32(int32x4_t v) {
|
||||
return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
|
||||
}
|
||||
|
||||
inline static float vaddvq_f32(float32x4_t v) {
|
||||
return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
|
||||
}
|
||||
|
||||
inline static float vmaxvq_f32(float32x4_t v) {
|
||||
return
|
||||
MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
|
||||
MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
|
||||
}
|
||||
|
||||
inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
|
||||
int32x4_t res;
|
||||
|
||||
res[0] = roundf(vgetq_lane_f32(v, 0));
|
||||
res[1] = roundf(vgetq_lane_f32(v, 1));
|
||||
res[2] = roundf(vgetq_lane_f32(v, 2));
|
||||
res[3] = roundf(vgetq_lane_f32(v, 3));
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
inline static uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
|
||||
uint8x8_t res;
|
||||
|
||||
res[0] = a[0]; res[1] = b[0];
|
||||
res[2] = a[1]; res[3] = b[1];
|
||||
res[4] = a[2]; res[5] = b[2];
|
||||
res[6] = a[3]; res[7] = b[3];
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
inline static uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
|
||||
uint8x8_t res;
|
||||
|
||||
res[0] = a[4]; res[1] = b[4];
|
||||
res[2] = a[5]; res[3] = b[5];
|
||||
res[4] = a[6]; res[5] = b[6];
|
||||
res[6] = a[7]; res[7] = b[7];
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
// vld1q_s16_x2
|
||||
// vld1q_u8_x2
|
||||
// vld1q_u8_x4
|
||||
// vld1q_s8_x2
|
||||
// vld1q_s8_x4
|
||||
// TODO: double-check these work correctly
|
||||
|
||||
typedef struct ggml_int16x8x2_t {
|
||||
int16x8_t val[2];
|
||||
} ggml_int16x8x2_t;
|
||||
|
||||
inline static ggml_int16x8x2_t ggml_vld1q_s16_x2(const int16_t * ptr) {
|
||||
ggml_int16x8x2_t res;
|
||||
|
||||
res.val[0] = vld1q_s16(ptr + 0);
|
||||
res.val[1] = vld1q_s16(ptr + 8);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef struct ggml_uint8x16x2_t {
|
||||
uint8x16_t val[2];
|
||||
} ggml_uint8x16x2_t;
|
||||
|
||||
inline static ggml_uint8x16x2_t ggml_vld1q_u8_x2(const uint8_t * ptr) {
|
||||
ggml_uint8x16x2_t res;
|
||||
|
||||
res.val[0] = vld1q_u8(ptr + 0);
|
||||
res.val[1] = vld1q_u8(ptr + 16);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef struct ggml_uint8x16x4_t {
|
||||
uint8x16_t val[4];
|
||||
} ggml_uint8x16x4_t;
|
||||
|
||||
inline static ggml_uint8x16x4_t ggml_vld1q_u8_x4(const uint8_t * ptr) {
|
||||
ggml_uint8x16x4_t res;
|
||||
|
||||
res.val[0] = vld1q_u8(ptr + 0);
|
||||
res.val[1] = vld1q_u8(ptr + 16);
|
||||
res.val[2] = vld1q_u8(ptr + 32);
|
||||
res.val[3] = vld1q_u8(ptr + 48);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef struct ggml_int8x16x2_t {
|
||||
int8x16_t val[2];
|
||||
} ggml_int8x16x2_t;
|
||||
|
||||
inline static ggml_int8x16x2_t ggml_vld1q_s8_x2(const int8_t * ptr) {
|
||||
ggml_int8x16x2_t res;
|
||||
|
||||
res.val[0] = vld1q_s8(ptr + 0);
|
||||
res.val[1] = vld1q_s8(ptr + 16);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef struct ggml_int8x16x4_t {
|
||||
int8x16_t val[4];
|
||||
} ggml_int8x16x4_t;
|
||||
|
||||
inline static ggml_int8x16x4_t ggml_vld1q_s8_x4(const int8_t * ptr) {
|
||||
ggml_int8x16x4_t res;
|
||||
|
||||
res.val[0] = vld1q_s8(ptr + 0);
|
||||
res.val[1] = vld1q_s8(ptr + 16);
|
||||
res.val[2] = vld1q_s8(ptr + 32);
|
||||
res.val[3] = vld1q_s8(ptr + 48);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
// NOTE: not tested
|
||||
inline static int8x16_t ggml_vqtbl1q_s8(int8x16_t a, uint8x16_t b) {
|
||||
int8x16_t res;
|
||||
|
||||
res[ 0] = a[b[ 0]];
|
||||
res[ 1] = a[b[ 1]];
|
||||
res[ 2] = a[b[ 2]];
|
||||
res[ 3] = a[b[ 3]];
|
||||
res[ 4] = a[b[ 4]];
|
||||
res[ 5] = a[b[ 5]];
|
||||
res[ 6] = a[b[ 6]];
|
||||
res[ 7] = a[b[ 7]];
|
||||
res[ 8] = a[b[ 8]];
|
||||
res[ 9] = a[b[ 9]];
|
||||
res[10] = a[b[10]];
|
||||
res[11] = a[b[11]];
|
||||
res[12] = a[b[12]];
|
||||
res[13] = a[b[13]];
|
||||
res[14] = a[b[14]];
|
||||
res[15] = a[b[15]];
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
// NOTE: not tested
|
||||
inline static uint8x16_t ggml_vqtbl1q_u8(uint8x16_t a, uint8x16_t b) {
|
||||
uint8x16_t res;
|
||||
|
||||
res[ 0] = a[b[ 0]];
|
||||
res[ 1] = a[b[ 1]];
|
||||
res[ 2] = a[b[ 2]];
|
||||
res[ 3] = a[b[ 3]];
|
||||
res[ 4] = a[b[ 4]];
|
||||
res[ 5] = a[b[ 5]];
|
||||
res[ 6] = a[b[ 6]];
|
||||
res[ 7] = a[b[ 7]];
|
||||
res[ 8] = a[b[ 8]];
|
||||
res[ 9] = a[b[ 9]];
|
||||
res[10] = a[b[10]];
|
||||
res[11] = a[b[11]];
|
||||
res[12] = a[b[12]];
|
||||
res[13] = a[b[13]];
|
||||
res[14] = a[b[14]];
|
||||
res[15] = a[b[15]];
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#define ggml_int16x8x2_t int16x8x2_t
|
||||
#define ggml_uint8x16x2_t uint8x16x2_t
|
||||
#define ggml_uint8x16x4_t uint8x16x4_t
|
||||
#define ggml_int8x16x2_t int8x16x2_t
|
||||
#define ggml_int8x16x4_t int8x16x4_t
|
||||
|
||||
#define ggml_vld1q_s16_x2 vld1q_s16_x2
|
||||
#define ggml_vld1q_u8_x2 vld1q_u8_x2
|
||||
#define ggml_vld1q_u8_x4 vld1q_u8_x4
|
||||
#define ggml_vld1q_s8_x2 vld1q_s8_x2
|
||||
#define ggml_vld1q_s8_x4 vld1q_s8_x4
|
||||
#define ggml_vqtbl1q_s8 vqtbl1q_s8
|
||||
#define ggml_vqtbl1q_u8 vqtbl1q_u8
|
||||
|
||||
#endif // !defined(__aarch64__)
|
||||
|
||||
#if !defined(__ARM_FEATURE_DOTPROD)
|
||||
|
||||
inline static int32x4_t ggml_vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b) {
|
||||
const int16x8_t p0 = vmull_s8(vget_low_s8 (a), vget_low_s8 (b));
|
||||
const int16x8_t p1 = vmull_s8(vget_high_s8(a), vget_high_s8(b));
|
||||
|
||||
return vaddq_s32(acc, vaddq_s32(vpaddlq_s16(p0), vpaddlq_s16(p1)));
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#define ggml_vdotq_s32(a, b, c) vdotq_s32(a, b, c)
|
||||
|
||||
#endif // !defined(__ARM_FEATURE_DOTPROD)
|
||||
|
||||
#endif // defined(__ARM_NEON)
|
||||
|
||||
#if defined(__ARM_NEON) && !defined(_MSC_VER)
|
||||
|
||||
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
|
||||
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
|
||||
|
||||
#define GGML_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
|
||||
|
||||
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
|
||||
ggml_fp16_internal_t tmp;
|
||||
memcpy(&tmp, &h, sizeof(ggml_fp16_t));
|
||||
return (float)tmp;
|
||||
}
|
||||
|
||||
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
|
||||
ggml_fp16_t res;
|
||||
ggml_fp16_internal_t tmp = f;
|
||||
memcpy(&res, &tmp, sizeof(ggml_fp16_t));
|
||||
return res;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#ifdef __wasm_simd128__
|
||||
#include <wasm_simd128.h>
|
||||
#else
|
||||
#ifdef __POWER9_VECTOR__
|
||||
#include <altivec.h>
|
||||
#undef bool
|
||||
#define bool _Bool
|
||||
#else
|
||||
#if defined(_MSC_VER) || defined(__MINGW32__)
|
||||
#include <intrin.h>
|
||||
#else
|
||||
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__) || defined(__SSE__)
|
||||
#if !defined(__riscv)
|
||||
#include <immintrin.h>
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef __riscv_v_intrinsic
|
||||
#include <riscv_vector.h>
|
||||
#endif
|
||||
|
||||
#if defined(__loongarch64)
|
||||
#if defined(__loongarch_asx)
|
||||
#include <lasxintrin.h>
|
||||
#endif
|
||||
#if defined(__loongarch_sx)
|
||||
#include <lsxintrin.h>
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(__loongarch_asx)
|
||||
|
||||
typedef union {
|
||||
int32_t i;
|
||||
float f;
|
||||
} ft_union;
|
||||
|
||||
/* float type data load instructions */
|
||||
static __m128 __lsx_vreplfr2vr_s(float val) {
|
||||
ft_union fi_tmpval = {.f = val};
|
||||
return (__m128)__lsx_vreplgr2vr_w(fi_tmpval.i);
|
||||
}
|
||||
|
||||
static __m256 __lasx_xvreplfr2vr_s(float val) {
|
||||
ft_union fi_tmpval = {.f = val};
|
||||
return (__m256)__lasx_xvreplgr2vr_w(fi_tmpval.i);
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef __F16C__
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
|
||||
#define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
|
||||
#else
|
||||
#define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
|
||||
#define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
|
||||
#endif
|
||||
|
||||
#elif defined(__POWER9_VECTOR__)
|
||||
|
||||
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
|
||||
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
|
||||
/* the inline asm below is about 12% faster than the lookup method */
|
||||
#define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
|
||||
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
|
||||
|
||||
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
|
||||
register float f;
|
||||
register double d;
|
||||
__asm__(
|
||||
"mtfprd %0,%2\n"
|
||||
"xscvhpdp %0,%0\n"
|
||||
"frsp %1,%0\n" :
|
||||
/* temp */ "=d"(d),
|
||||
/* out */ "=f"(f):
|
||||
/* in */ "r"(h));
|
||||
return f;
|
||||
}
|
||||
|
||||
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
|
||||
register double d;
|
||||
register ggml_fp16_t r;
|
||||
__asm__( /* xscvdphp can work on double or single precision */
|
||||
"xscvdphp %0,%2\n"
|
||||
"mffprd %1,%0\n" :
|
||||
/* temp */ "=d"(d),
|
||||
/* out */ "=r"(r):
|
||||
/* in */ "f"(f));
|
||||
return r;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
// FP16 <-> FP32
|
||||
// ref: https://github.com/Maratyszcza/FP16
|
||||
|
||||
static inline float fp32_from_bits(uint32_t w) {
|
||||
union {
|
||||
uint32_t as_bits;
|
||||
float as_value;
|
||||
} fp32;
|
||||
fp32.as_bits = w;
|
||||
return fp32.as_value;
|
||||
}
|
||||
|
||||
static inline uint32_t fp32_to_bits(float f) {
|
||||
union {
|
||||
float as_value;
|
||||
uint32_t as_bits;
|
||||
} fp32;
|
||||
fp32.as_value = f;
|
||||
return fp32.as_bits;
|
||||
}
|
||||
|
||||
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
|
||||
const uint32_t w = (uint32_t) h << 16;
|
||||
const uint32_t sign = w & UINT32_C(0x80000000);
|
||||
const uint32_t two_w = w + w;
|
||||
|
||||
const uint32_t exp_offset = UINT32_C(0xE0) << 23;
|
||||
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
|
||||
const float exp_scale = 0x1.0p-112f;
|
||||
#else
|
||||
const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
|
||||
#endif
|
||||
const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
|
||||
|
||||
const uint32_t magic_mask = UINT32_C(126) << 23;
|
||||
const float magic_bias = 0.5f;
|
||||
const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
|
||||
|
||||
const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
|
||||
const uint32_t result = sign |
|
||||
(two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
|
||||
return fp32_from_bits(result);
|
||||
}
|
||||
|
||||
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
|
||||
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
|
||||
const float scale_to_inf = 0x1.0p+112f;
|
||||
const float scale_to_zero = 0x1.0p-110f;
|
||||
#else
|
||||
const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
|
||||
const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
|
||||
#endif
|
||||
float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
|
||||
|
||||
const uint32_t w = fp32_to_bits(f);
|
||||
const uint32_t shl1_w = w + w;
|
||||
const uint32_t sign = w & UINT32_C(0x80000000);
|
||||
uint32_t bias = shl1_w & UINT32_C(0xFF000000);
|
||||
if (bias < UINT32_C(0x71000000)) {
|
||||
bias = UINT32_C(0x71000000);
|
||||
}
|
||||
|
||||
base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
|
||||
const uint32_t bits = fp32_to_bits(base);
|
||||
const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
|
||||
const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
|
||||
const uint32_t nonsign = exp_bits + mantissa_bits;
|
||||
return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
|
||||
}
|
||||
|
||||
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
|
||||
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
|
||||
|
||||
#endif // __F16C__
|
||||
|
||||
#endif // defined(__ARM_NEON) && (!defined(__MSC_VER)
|
||||
|
||||
#ifdef __ARM_FEATURE_SVE
|
||||
#include <arm_sve.h>
|
||||
#endif // __ARM_FEATURE_SVE
|
||||
|
||||
// precomputed f32 table for f16 (256 KB)
|
||||
// defined in ggml.c, initialized in ggml_init()
|
||||
extern float ggml_table_f32_f16[1 << 16];
|
||||
|
||||
// On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
|
||||
// so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
|
||||
// This is also true for POWER9.
|
||||
#if !defined(GGML_FP16_TO_FP32)
|
||||
inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
|
||||
uint16_t s;
|
||||
memcpy(&s, &f, sizeof(uint16_t));
|
||||
return ggml_table_f32_f16[s];
|
||||
}
|
||||
|
||||
#define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
|
||||
#endif
|
||||
|
||||
#if !defined(GGML_FP32_TO_FP16)
|
||||
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
|
||||
#endif
|
||||
|
||||
enum ggml_cgraph_eval_order {
|
||||
GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0,
|
||||
GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT,
|
||||
GGML_CGRAPH_EVAL_ORDER_COUNT
|
||||
};
|
||||
|
||||
// bitset
|
||||
|
||||
typedef uint32_t ggml_bitset_t;
|
||||
@ -159,12 +761,6 @@ static size_t ggml_hash_find_or_insert(struct ggml_hash_set * hash_set, struct g
|
||||
|
||||
// computation graph
|
||||
|
||||
enum ggml_cgraph_eval_order {
|
||||
GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0,
|
||||
GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT,
|
||||
GGML_CGRAPH_EVAL_ORDER_COUNT
|
||||
};
|
||||
|
||||
struct ggml_cgraph {
|
||||
int size;
|
||||
int n_nodes;
|
||||
|
@ -1872,7 +1872,6 @@ static ggml_backend_buffer_i ggml_backend_kompute_buffer_i = {
|
||||
/* .free_buffer = */ ggml_backend_kompute_buffer_free_buffer,
|
||||
/* .get_base = */ ggml_backend_kompute_buffer_get_base,
|
||||
/* .init_tensor = */ NULL,
|
||||
/* .memset_tensor = */ NULL,
|
||||
/* .set_tensor = */ ggml_backend_kompute_buffer_set_tensor,
|
||||
/* .get_tensor = */ ggml_backend_kompute_buffer_get_tensor,
|
||||
/* .cpy_tensor = */ NULL,
|
||||
|
@ -13,16 +13,13 @@
|
||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||
|
||||
#ifdef GGML_METAL_NDEBUG
|
||||
#define GGML_METAL_LOG(...)
|
||||
#define GGML_METAL_LOG_INFO(...)
|
||||
#define GGML_METAL_LOG_WARN(...)
|
||||
#define GGML_METAL_LOG_ERROR(...)
|
||||
#else
|
||||
#define GGML_METAL_LOG(...) ggml_metal_log(GGML_LOG_LEVEL_NONE, __VA_ARGS__)
|
||||
#define GGML_METAL_LOG_INFO(...) ggml_metal_log(GGML_LOG_LEVEL_INFO, __VA_ARGS__)
|
||||
#define GGML_METAL_LOG_WARN(...) ggml_metal_log(GGML_LOG_LEVEL_WARN, __VA_ARGS__)
|
||||
#define GGML_METAL_LOG_ERROR(...) ggml_metal_log(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
|
||||
#define GGML_METAL_LOG_DEBUG(...) ggml_metal_log(GGML_LOG_LEVEL_DEBUG, __VA_ARGS__)
|
||||
#endif
|
||||
|
||||
#define UNUSED(x) (void)(x)
|
||||
@ -3167,7 +3164,6 @@ static struct ggml_backend_buffer_i ggml_backend_metal_buffer_i = {
|
||||
/* .free_buffer = */ ggml_backend_metal_buffer_free_buffer,
|
||||
/* .get_base = */ ggml_backend_metal_buffer_get_base,
|
||||
/* .init_tensor = */ NULL,
|
||||
/* .memset_tensor = */ NULL,
|
||||
/* .set_tensor = */ ggml_backend_metal_buffer_set_tensor,
|
||||
/* .get_tensor = */ ggml_backend_metal_buffer_get_tensor,
|
||||
/* .cpy_tensor = */ ggml_backend_metal_buffer_cpy_tensor,
|
||||
@ -3187,7 +3183,7 @@ static void ggml_backend_metal_log_allocated_size(id<MTLDevice> device, size_t s
|
||||
#ifndef GGML_METAL_NDEBUG
|
||||
#if TARGET_OS_OSX || (TARGET_OS_IOS && __clang_major__ >= 15)
|
||||
if (@available(macOS 10.12, iOS 16.0, *)) {
|
||||
GGML_METAL_LOG_DEBUG("%s: allocated buffer, size = %8.2f MiB, (%8.2f / %8.2f)\n",
|
||||
GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB, (%8.2f / %8.2f)",
|
||||
__func__,
|
||||
size_aligned / 1024.0 / 1024.0,
|
||||
device.currentAllocatedSize / 1024.0 / 1024.0,
|
||||
@ -3195,6 +3191,8 @@ static void ggml_backend_metal_log_allocated_size(id<MTLDevice> device, size_t s
|
||||
|
||||
if (device.currentAllocatedSize > device.recommendedMaxWorkingSetSize) {
|
||||
GGML_METAL_LOG_WARN("%s: warning: current allocated size is greater than the recommended max working set size\n", __func__);
|
||||
} else {
|
||||
GGML_METAL_LOG_INFO("\n");
|
||||
}
|
||||
} else {
|
||||
GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB, (%8.2f)\n",
|
||||
@ -3226,19 +3224,15 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buff
|
||||
ctx->n_buffers = 1;
|
||||
|
||||
if (ctx->all_data != NULL) {
|
||||
ctx->buffers[0].data = ctx->all_data;
|
||||
ctx->buffers[0].size = size;
|
||||
ctx->buffers[0].metal = nil;
|
||||
|
||||
if (size_aligned > 0) {
|
||||
ctx->buffers[0].metal = [device newBufferWithBytesNoCopy:ctx->all_data
|
||||
length:size_aligned
|
||||
options:MTLResourceStorageModeShared
|
||||
deallocator:nil];
|
||||
}
|
||||
ctx->buffers[0].data = ctx->all_data;
|
||||
ctx->buffers[0].size = size;
|
||||
ctx->buffers[0].metal = [device newBufferWithBytesNoCopy:ctx->all_data
|
||||
length:size_aligned
|
||||
options:MTLResourceStorageModeShared
|
||||
deallocator:nil];
|
||||
}
|
||||
|
||||
if (size_aligned > 0 && (ctx->all_data == NULL || ctx->buffers[0].metal == nil)) {
|
||||
if (ctx->all_data == NULL || ctx->buffers[0].metal == nil) {
|
||||
GGML_METAL_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_aligned / 1024.0 / 1024.0);
|
||||
free(ctx);
|
||||
ggml_backend_metal_free_device();
|
||||
@ -3315,17 +3309,14 @@ GGML_CALL ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data,
|
||||
|
||||
// the buffer fits into the max buffer size allowed by the device
|
||||
if (size_aligned <= device.maxBufferLength) {
|
||||
ctx->buffers[ctx->n_buffers].data = data;
|
||||
ctx->buffers[ctx->n_buffers].size = size;
|
||||
ctx->buffers[ctx->n_buffers].metal = nil;
|
||||
ctx->buffers[ctx->n_buffers].data = data;
|
||||
ctx->buffers[ctx->n_buffers].size = size;
|
||||
|
||||
if (size_aligned > 0) {
|
||||
ctx->buffers[ctx->n_buffers].metal = [device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil];
|
||||
ctx->buffers[ctx->n_buffers].metal = [device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil];
|
||||
|
||||
if (ctx->buffers[ctx->n_buffers].metal == nil) {
|
||||
GGML_METAL_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_aligned / 1024.0 / 1024.0);
|
||||
return false;
|
||||
}
|
||||
if (ctx->buffers[ctx->n_buffers].metal == nil) {
|
||||
GGML_METAL_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_aligned / 1024.0 / 1024.0);
|
||||
return false;
|
||||
}
|
||||
|
||||
ggml_backend_metal_log_allocated_size(device, size_aligned);
|
||||
@ -3341,17 +3332,14 @@ GGML_CALL ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data,
|
||||
for (size_t i = 0; i < size; i += size_step) {
|
||||
const size_t size_step_aligned = (i + size_view <= size) ? size_view : (size_aligned - i);
|
||||
|
||||
ctx->buffers[ctx->n_buffers].data = (void *) ((uint8_t *) data + i);
|
||||
ctx->buffers[ctx->n_buffers].size = size_step_aligned;
|
||||
ctx->buffers[ctx->n_buffers].metal = nil;
|
||||
ctx->buffers[ctx->n_buffers].data = (void *) ((uint8_t *) data + i);
|
||||
ctx->buffers[ctx->n_buffers].size = size_step_aligned;
|
||||
|
||||
if (size_step_aligned > 0) {
|
||||
ctx->buffers[ctx->n_buffers].metal = [device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil];
|
||||
ctx->buffers[ctx->n_buffers].metal = [device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil];
|
||||
|
||||
if (ctx->buffers[ctx->n_buffers].metal == nil) {
|
||||
GGML_METAL_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_step_aligned / 1024.0 / 1024.0);
|
||||
return false;
|
||||
}
|
||||
if (ctx->buffers[ctx->n_buffers].metal == nil) {
|
||||
GGML_METAL_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_step_aligned / 1024.0 / 1024.0);
|
||||
return false;
|
||||
}
|
||||
|
||||
ggml_backend_metal_log_allocated_size(device, size_step_aligned);
|
||||
|
@ -3,7 +3,6 @@
|
||||
|
||||
#include "ggml-quants.h"
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-cpu-impl.h"
|
||||
|
||||
|
||||
#include <math.h>
|
||||
@ -231,12 +230,6 @@ static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
|
||||
|
||||
return _mm_packus_epi16( bytes1, bytes2);
|
||||
}
|
||||
|
||||
static inline __m128i mul_add_epi8_sse(const __m128i x, const __m128i y) {
|
||||
const __m128i ax = _mm_sign_epi8(x, x);
|
||||
const __m128i sy = _mm_sign_epi8(y, x);
|
||||
return _mm_maddubs_epi16(ax, sy);
|
||||
}
|
||||
#endif
|
||||
#elif defined(__SSSE3__)
|
||||
// horizontally add 4x4 floats
|
||||
@ -4213,37 +4206,37 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, size_t bs, const void * r
|
||||
|
||||
sumf = hsum_float_8(acc);
|
||||
#elif defined(__AVX__)
|
||||
const __m128i mone = _mm_set1_epi16(1);
|
||||
// Initialize accumulator with zeros
|
||||
__m256 acc = _mm256_setzero_ps();
|
||||
|
||||
__m256 accum1 = _mm256_setzero_ps();
|
||||
__m256 accum2 = _mm256_setzero_ps();
|
||||
for (; ib + 1 < nb; ib += 2) {
|
||||
const __m128i q4bits_1 = _mm_loadu_si128((const __m128i *)x[ib + 0].qs);
|
||||
const __m128i q4bits_2 = _mm_loadu_si128((const __m128i *)x[ib + 1].qs);
|
||||
const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)y[ib + 0].qs);
|
||||
const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)y[ib + 0].qs + 1);
|
||||
const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs);
|
||||
const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs + 1);
|
||||
// Main loop
|
||||
for (; ib < nb; ++ib) {
|
||||
// Compute combined scale for the block
|
||||
const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d) );
|
||||
|
||||
const __m128i q4b_1_0 = _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), q4bits_1), _mm_set1_epi8(8));
|
||||
const __m128i q4b_1_1 = _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), _mm_srli_epi16(q4bits_1, 4)), _mm_set1_epi8(8));
|
||||
const __m128i q4b_2_0 = _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), q4bits_2), _mm_set1_epi8(8));
|
||||
const __m128i q4b_2_1 = _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), _mm_srli_epi16(q4bits_2, 4)), _mm_set1_epi8(8));
|
||||
const __m128i p16_1_0 = mul_add_epi8_sse(q4b_1_0, q8b_1_0);
|
||||
const __m128i p16_1_1 = mul_add_epi8_sse(q4b_1_1, q8b_1_1);
|
||||
const __m128i p16_2_0 = mul_add_epi8_sse(q4b_2_0, q8b_2_0);
|
||||
const __m128i p16_2_1 = mul_add_epi8_sse(q4b_2_1, q8b_2_1);
|
||||
const __m128i p_1_0 = _mm_madd_epi16(p16_1_0, mone);
|
||||
const __m128i p_1_1 = _mm_madd_epi16(p16_1_1, mone);
|
||||
const __m128i p_2_0 = _mm_madd_epi16(p16_2_0, mone);
|
||||
const __m128i p_2_1 = _mm_madd_epi16(p16_2_1, mone);
|
||||
accum1 = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[ib + 0].d)*GGML_FP16_TO_FP32(x[ib + 0].d)),
|
||||
_mm256_cvtepi32_ps(MM256_SET_M128I(p_1_1, p_1_0))), accum1);
|
||||
accum2 = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[ib + 1].d)*GGML_FP16_TO_FP32(x[ib + 1].d)),
|
||||
_mm256_cvtepi32_ps(MM256_SET_M128I(p_2_1, p_2_0))), accum2);
|
||||
const __m128i lowMask = _mm_set1_epi8(0xF);
|
||||
const __m128i off = _mm_set1_epi8(8);
|
||||
|
||||
const __m128i tmp = _mm_loadu_si128((const __m128i *)x[ib].qs);
|
||||
|
||||
__m128i bx_0 = _mm_and_si128(lowMask, tmp);
|
||||
__m128i by_0 = _mm_loadu_si128((const __m128i *)y[ib].qs);
|
||||
bx_0 = _mm_sub_epi8(bx_0, off);
|
||||
const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
|
||||
|
||||
bx_0 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
|
||||
by_0 = _mm_loadu_si128((const __m128i *)(y[ib].qs + 16));
|
||||
bx_0 = _mm_sub_epi8(bx_0, off);
|
||||
const __m128i i32_1 = mul_sum_i8_pairs(bx_0, by_0);
|
||||
|
||||
// Convert int32_t to float
|
||||
__m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
|
||||
|
||||
// Apply the scale, and accumulate
|
||||
acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
|
||||
}
|
||||
|
||||
sumf = hsum_float_8(_mm256_add_ps(accum1, accum2));
|
||||
sumf = hsum_float_8(acc);
|
||||
#elif defined(__SSSE3__)
|
||||
// set constants
|
||||
const __m128i lowMask = _mm_set1_epi8(0xF);
|
||||
@ -11826,6 +11819,15 @@ void ggml_vec_dot_iq3_s_q8_K (int n, float * restrict s, size_t bs, const void *
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
#if defined(__AVX__)
|
||||
static inline __m128i mul_add_epi8_sse(const __m128i x, const __m128i y) {
|
||||
const __m128i ax = _mm_sign_epi8(x, x);
|
||||
const __m128i sy = _mm_sign_epi8(y, x);
|
||||
return _mm_maddubs_epi16(ax, sy);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(__AVX2__)
|
||||
static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) {
|
||||
const __m256i ax = _mm256_sign_epi8(x, x);
|
||||
|
@ -469,7 +469,6 @@ static ggml_backend_buffer_i ggml_backend_rpc_buffer_interface = {
|
||||
/* .free_buffer = */ ggml_backend_rpc_buffer_free_buffer,
|
||||
/* .get_base = */ ggml_backend_rpc_buffer_get_base,
|
||||
/* .init_tensor = */ ggml_backend_rpc_buffer_init_tensor,
|
||||
/* .memset_tensor = */ NULL,
|
||||
/* .set_tensor = */ ggml_backend_rpc_buffer_set_tensor,
|
||||
/* .get_tensor = */ ggml_backend_rpc_buffer_get_tensor,
|
||||
/* .cpy_tensor = */ ggml_backend_rpc_buffer_cpy_tensor,
|
||||
|
@ -4323,7 +4323,6 @@ static struct ggml_backend_buffer_i ggml_backend_sycl_buffer_interface = {
|
||||
/* .free_buffer = */ ggml_backend_sycl_buffer_free_buffer,
|
||||
/* .get_base = */ ggml_backend_sycl_buffer_get_base,
|
||||
/* .init_tensor = */ ggml_backend_sycl_buffer_init_tensor,
|
||||
/* .memset_tensor = */ NULL,
|
||||
/* .set_tensor = */ ggml_backend_sycl_buffer_set_tensor,
|
||||
/* .get_tensor = */ ggml_backend_sycl_buffer_get_tensor,
|
||||
/* .cpy_tensor = */ ggml_backend_sycl_buffer_cpy_tensor,
|
||||
@ -4735,7 +4734,6 @@ static struct ggml_backend_buffer_i ggml_backend_sycl_split_buffer_interface = {
|
||||
/* .free_buffer = */ ggml_backend_sycl_split_buffer_free_buffer,
|
||||
/* .get_base = */ ggml_backend_sycl_split_buffer_get_base,
|
||||
/* .init_tensor = */ ggml_backend_sycl_split_buffer_init_tensor,
|
||||
/* .memset_tensor = */ NULL,
|
||||
/* .set_tensor = */ ggml_backend_sycl_split_buffer_set_tensor,
|
||||
/* .get_tensor = */ ggml_backend_sycl_split_buffer_get_tensor,
|
||||
/* .cpy_tensor = */ NULL,
|
||||
|
@ -6246,7 +6246,6 @@ static ggml_backend_buffer_i ggml_backend_vk_buffer_interface = {
|
||||
/* .free_buffer = */ ggml_backend_vk_buffer_free_buffer,
|
||||
/* .get_base = */ ggml_backend_vk_buffer_get_base,
|
||||
/* .init_tensor = */ ggml_backend_vk_buffer_init_tensor,
|
||||
/* .memset_tensor = */ NULL,
|
||||
/* .set_tensor = */ ggml_backend_vk_buffer_set_tensor,
|
||||
/* .get_tensor = */ ggml_backend_vk_buffer_get_tensor,
|
||||
/* .cpy_tensor = */ ggml_backend_vk_buffer_cpy_tensor,
|
||||
|
554
ggml/src/ggml.c
554
ggml/src/ggml.c
File diff suppressed because it is too large
Load Diff
@ -50,7 +50,6 @@
|
||||
|
||||
#include "sgemm.h"
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-cpu-impl.h"
|
||||
#include "ggml-quants.h"
|
||||
|
||||
#ifdef _MSC_VER
|
||||
@ -236,14 +235,6 @@ template <> inline __m512 load(const ggml_fp16_t *p) {
|
||||
}
|
||||
#endif // __AVX512F__
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// CONSTANTS
|
||||
|
||||
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
|
||||
static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
|
||||
static const __m128i iq4nlt = _mm_loadu_si128((const __m128i *) kvalues_iq4nl);
|
||||
#endif
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// FLOATING POINT MATRIX MULTIPLICATION
|
||||
|
||||
@ -942,20 +933,6 @@ class tinyBLAS_Q0_AVX {
|
||||
return _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), _mm_srli_epi16(x, 4)), _mm_set1_epi8(8));
|
||||
}
|
||||
|
||||
inline __m256i load(const block_iq4_nl *b) {
|
||||
return MM256_SET_M128I(load1(b), load0(b));
|
||||
}
|
||||
|
||||
inline __m128i load0(const block_iq4_nl *b) {
|
||||
const __m128i x = _mm_loadu_si128((const __m128i *)(b->qs));
|
||||
return _mm_shuffle_epi8(iq4nlt, _mm_and_si128(_mm_set1_epi8(15), x));
|
||||
}
|
||||
|
||||
inline __m128i load1(const block_iq4_nl *b) {
|
||||
const __m128i x = _mm_loadu_si128((const __m128i *)(b->qs));
|
||||
return _mm_shuffle_epi8(iq4nlt, _mm_and_si128(_mm_set1_epi8(15), _mm_srli_epi16(x, 4)));
|
||||
}
|
||||
|
||||
inline __m256 updot(__m256i u, __m256i s) {
|
||||
__m256i res;
|
||||
#if defined(__AVXVNNI__) || (defined(__AVX512VNNI__) && defined(__AVX512VL__))
|
||||
@ -1182,22 +1159,6 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
|
||||
#endif
|
||||
}
|
||||
|
||||
case GGML_TYPE_IQ4_NL: {
|
||||
if (Btype != GGML_TYPE_Q8_0)
|
||||
return false;
|
||||
#if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__)
|
||||
tinyBLAS_Q0_AVX<block_iq4_nl, block_q8_0, float> tb{
|
||||
k, (const block_iq4_nl *)A, lda,
|
||||
(const block_q8_0 *)B, ldb,
|
||||
(float *)C, ldc,
|
||||
ith, nth};
|
||||
tb.matmul(m, n);
|
||||
return true;
|
||||
#else
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
|
@ -97,8 +97,6 @@ class Keys:
|
||||
RESCALE_EVERY_N_LAYERS = "{arch}.rescale_every_n_layers"
|
||||
TIME_MIX_EXTRA_DIM = "{arch}.time_mix_extra_dim"
|
||||
TIME_DECAY_EXTRA_DIM = "{arch}.time_decay_extra_dim"
|
||||
RESIDUAL_SCALE = "{arch}.residual_scale"
|
||||
EMBEDDING_SCALE = "{arch}.embedding_scale"
|
||||
|
||||
class Attention:
|
||||
HEAD_COUNT = "{arch}.attention.head_count"
|
||||
@ -114,7 +112,6 @@ class Keys:
|
||||
KV_LORA_RANK = "{arch}.attention.kv_lora_rank"
|
||||
REL_BUCKETS_COUNT = "{arch}.attention.relative_buckets_count"
|
||||
SLIDING_WINDOW = "{arch}.attention.sliding_window"
|
||||
SCALE = "{arch}.attention.scale"
|
||||
|
||||
class Rope:
|
||||
DIMENSION_COUNT = "{arch}.rope.dimension_count"
|
||||
@ -213,7 +210,6 @@ class MODEL_ARCH(IntEnum):
|
||||
ORION = auto()
|
||||
INTERNLM2 = auto()
|
||||
MINICPM = auto()
|
||||
MINICPM3 = auto()
|
||||
GEMMA = auto()
|
||||
GEMMA2 = auto()
|
||||
STARCODER2 = auto()
|
||||
@ -223,7 +219,6 @@ class MODEL_ARCH(IntEnum):
|
||||
COMMAND_R = auto()
|
||||
DBRX = auto()
|
||||
OLMO = auto()
|
||||
OLMOE = auto()
|
||||
OPENELM = auto()
|
||||
ARCTIC = auto()
|
||||
DEEPSEEK2 = auto()
|
||||
@ -234,7 +229,6 @@ class MODEL_ARCH(IntEnum):
|
||||
JAIS = auto()
|
||||
NEMOTRON = auto()
|
||||
EXAONE = auto()
|
||||
GRANITE = auto()
|
||||
|
||||
|
||||
class MODEL_TENSOR(IntEnum):
|
||||
@ -370,7 +364,6 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||
MODEL_ARCH.ORION: "orion",
|
||||
MODEL_ARCH.INTERNLM2: "internlm2",
|
||||
MODEL_ARCH.MINICPM: "minicpm",
|
||||
MODEL_ARCH.MINICPM3: "minicpm3",
|
||||
MODEL_ARCH.GEMMA: "gemma",
|
||||
MODEL_ARCH.GEMMA2: "gemma2",
|
||||
MODEL_ARCH.STARCODER2: "starcoder2",
|
||||
@ -380,7 +373,6 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||
MODEL_ARCH.COMMAND_R: "command-r",
|
||||
MODEL_ARCH.DBRX: "dbrx",
|
||||
MODEL_ARCH.OLMO: "olmo",
|
||||
MODEL_ARCH.OLMOE: "olmoe",
|
||||
MODEL_ARCH.OPENELM: "openelm",
|
||||
MODEL_ARCH.ARCTIC: "arctic",
|
||||
MODEL_ARCH.DEEPSEEK2: "deepseek2",
|
||||
@ -391,7 +383,6 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||
MODEL_ARCH.JAIS: "jais",
|
||||
MODEL_ARCH.NEMOTRON: "nemotron",
|
||||
MODEL_ARCH.EXAONE: "exaone",
|
||||
MODEL_ARCH.GRANITE: "granite",
|
||||
}
|
||||
|
||||
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
||||
@ -876,23 +867,6 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
],
|
||||
MODEL_ARCH.MINICPM3: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q_A,
|
||||
MODEL_TENSOR.ATTN_Q_B,
|
||||
MODEL_TENSOR.ATTN_KV_A_MQA,
|
||||
MODEL_TENSOR.ATTN_KV_B,
|
||||
MODEL_TENSOR.ATTN_Q_A_NORM,
|
||||
MODEL_TENSOR.ATTN_KV_A_NORM,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.GEMMA: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
@ -1034,23 +1008,6 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.OLMOE: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q_NORM,
|
||||
MODEL_TENSOR.ATTN_K_NORM,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE_INP,
|
||||
MODEL_TENSOR.FFN_GATE_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
],
|
||||
MODEL_ARCH.OPENELM: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
@ -1229,19 +1186,6 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.GRANITE: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
# TODO
|
||||
}
|
||||
|
||||
|
@ -679,12 +679,6 @@ class GGUFWriter:
|
||||
def add_time_decay_extra_dim(self, dim: int) -> None:
|
||||
self.add_uint32(Keys.LLM.TIME_DECAY_EXTRA_DIM.format(arch=self.arch), dim)
|
||||
|
||||
def add_residual_scale(self, value: float) -> None:
|
||||
self.add_float32(Keys.LLM.RESIDUAL_SCALE.format(arch=self.arch), value)
|
||||
|
||||
def add_embedding_scale(self, value: float) -> None:
|
||||
self.add_float32(Keys.LLM.EMBEDDING_SCALE.format(arch=self.arch), value)
|
||||
|
||||
def add_wkv_head_size(self, size: int) -> None:
|
||||
self.add_uint32(Keys.WKV.HEAD_SIZE.format(arch=self.arch), size)
|
||||
|
||||
@ -709,9 +703,6 @@ class GGUFWriter:
|
||||
def add_sliding_window(self, value: int) -> None:
|
||||
self.add_uint32(Keys.Attention.SLIDING_WINDOW.format(arch=self.arch), value)
|
||||
|
||||
def add_attention_scale(self, value: float) -> None:
|
||||
self.add_float32(Keys.Attention.SCALE.format(arch=self.arch), value)
|
||||
|
||||
def add_pooling_type(self, value: PoolingType) -> None:
|
||||
self.add_uint32(Keys.LLM.POOLING_TYPE.format(arch=self.arch), value.value)
|
||||
|
||||
|
@ -13,7 +13,7 @@ class TensorNameMap:
|
||||
"transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
|
||||
"transformer.word_embeddings", # falcon
|
||||
"word_embeddings", # bloom
|
||||
"model.embed_tokens", # llama-hf nemotron olmoe
|
||||
"model.embed_tokens", # llama-hf nemotron
|
||||
"tok_embeddings", # llama-pth
|
||||
"embeddings.word_embeddings", # bert nomic-bert
|
||||
"language_model.embedding.word_embeddings", # persimmon
|
||||
@ -54,7 +54,7 @@ class TensorNameMap:
|
||||
# Output
|
||||
MODEL_TENSOR.OUTPUT: (
|
||||
"embed_out", # gptneox
|
||||
"lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe
|
||||
"lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone
|
||||
"output", # llama-pth bloom internlm2
|
||||
"word_embeddings_for_head", # persimmon
|
||||
"lm_head.linear", # phi2
|
||||
@ -66,7 +66,7 @@ class TensorNameMap:
|
||||
MODEL_TENSOR.OUTPUT_NORM: (
|
||||
"gpt_neox.final_layer_norm", # gptneox
|
||||
"transformer.ln_f", # gpt2 gpt-j falcon jais exaone
|
||||
"model.norm", # llama-hf baichuan internlm2 olmoe
|
||||
"model.norm", # llama-hf baichuan internlm2
|
||||
"norm", # llama-pth
|
||||
"transformer.norm_f", # mpt dbrx
|
||||
"ln_f", # refact bloom qwen gpt2
|
||||
@ -98,7 +98,7 @@ class TensorNameMap:
|
||||
"transformer.h.{bid}.input_layernorm", # falcon7b
|
||||
"h.{bid}.input_layernorm", # bloom
|
||||
"transformer.h.{bid}.ln_mlp", # falcon40b
|
||||
"model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe
|
||||
"model.layers.{bid}.input_layernorm", # llama-hf nemotron
|
||||
"layers.{bid}.attention_norm", # llama-pth
|
||||
"language_model.encoder.layers.{bid}.input_layernorm", # persimmon
|
||||
"model.layers.{bid}.ln1", # yi
|
||||
@ -142,7 +142,7 @@ class TensorNameMap:
|
||||
|
||||
# Attention query
|
||||
MODEL_TENSOR.ATTN_Q: (
|
||||
"model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe
|
||||
"model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron
|
||||
"layers.{bid}.attention.wq", # llama-pth
|
||||
"encoder.layer.{bid}.attention.self.query", # bert
|
||||
"transformer.h.{bid}.attn.q_proj", # gpt-j
|
||||
@ -154,7 +154,7 @@ class TensorNameMap:
|
||||
|
||||
# Attention key
|
||||
MODEL_TENSOR.ATTN_K: (
|
||||
"model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe
|
||||
"model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron
|
||||
"layers.{bid}.attention.wk", # llama-pth
|
||||
"encoder.layer.{bid}.attention.self.key", # bert
|
||||
"transformer.h.{bid}.attn.k_proj", # gpt-j
|
||||
@ -167,7 +167,7 @@ class TensorNameMap:
|
||||
|
||||
# Attention value
|
||||
MODEL_TENSOR.ATTN_V: (
|
||||
"model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe
|
||||
"model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron
|
||||
"layers.{bid}.attention.wv", # llama-pth
|
||||
"encoder.layer.{bid}.attention.self.value", # bert
|
||||
"transformer.h.{bid}.attn.v_proj", # gpt-j
|
||||
@ -185,7 +185,7 @@ class TensorNameMap:
|
||||
"transformer.blocks.{bid}.attn.out_proj", # mpt
|
||||
"transformer.h.{bid}.self_attention.dense", # falcon
|
||||
"h.{bid}.self_attention.dense", # bloom
|
||||
"model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe
|
||||
"model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron
|
||||
"layers.{bid}.attention.wo", # llama-pth
|
||||
"encoder.layer.{bid}.attention.output.dense", # bert
|
||||
"transformer.h.{bid}.attn.out_proj", # gpt-j
|
||||
@ -229,7 +229,7 @@ class TensorNameMap:
|
||||
"transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
|
||||
"h.{bid}.post_attention_layernorm", # bloom
|
||||
"transformer.blocks.{bid}.norm_2", # mpt
|
||||
"model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe
|
||||
"model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron
|
||||
"layers.{bid}.ffn_norm", # llama-pth
|
||||
"language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
|
||||
"model.layers.{bid}.ln2", # yi
|
||||
@ -253,7 +253,7 @@ class TensorNameMap:
|
||||
MODEL_TENSOR.FFN_GATE_INP: (
|
||||
"layers.{bid}.feed_forward.gate", # mixtral
|
||||
"model.layers.{bid}.block_sparse_moe.gate", # mixtral
|
||||
"model.layers.{bid}.mlp.gate", # qwen2moe olmoe
|
||||
"model.layers.{bid}.mlp.gate", # qwen2moe
|
||||
"transformer.decoder_layer.{bid}.router", # Grok
|
||||
"transformer.blocks.{bid}.ffn.router.layer", # dbrx
|
||||
),
|
||||
@ -295,7 +295,7 @@ class TensorNameMap:
|
||||
"layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
|
||||
"transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
|
||||
"transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
|
||||
"model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged)
|
||||
"model.layers.{bid}.mlp.experts.up_proj", # qwen2moe (merged)
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_UP_SHEXP: (
|
||||
@ -327,7 +327,7 @@ class TensorNameMap:
|
||||
"layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
|
||||
"transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
|
||||
"transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
|
||||
"model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged)
|
||||
"model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe (merged)
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_GATE_SHEXP: (
|
||||
@ -367,7 +367,7 @@ class TensorNameMap:
|
||||
"layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
|
||||
"transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
|
||||
"transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
|
||||
"model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged)
|
||||
"model.layers.{bid}.mlp.experts.down_proj", # qwen2moe (merged)
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_DOWN_SHEXP: (
|
||||
@ -378,7 +378,7 @@ class TensorNameMap:
|
||||
MODEL_TENSOR.ATTN_Q_NORM: (
|
||||
"language_model.encoder.layers.{bid}.self_attention.q_layernorm",
|
||||
"model.layers.{bid}.self_attn.q_layernorm", # persimmon
|
||||
"model.layers.{bid}.self_attn.q_norm", # cohere olmoe
|
||||
"model.layers.{bid}.self_attn.q_norm", # cohere
|
||||
"transformer.blocks.{bid}.attn.q_ln", # sea-lion
|
||||
"encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
|
||||
"transformer.layers.{bid}.attn.q_norm", # openelm
|
||||
@ -387,7 +387,7 @@ class TensorNameMap:
|
||||
MODEL_TENSOR.ATTN_K_NORM: (
|
||||
"language_model.encoder.layers.{bid}.self_attention.k_layernorm",
|
||||
"model.layers.{bid}.self_attn.k_layernorm", # persimmon
|
||||
"model.layers.{bid}.self_attn.k_norm", # cohere olmoe
|
||||
"model.layers.{bid}.self_attn.k_norm", # cohere
|
||||
"transformer.blocks.{bid}.attn.k_ln", # sea-lion
|
||||
"encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
|
||||
"transformer.layers.{bid}.attn.k_norm", # openelm
|
||||
|
@ -120,7 +120,7 @@ You can use GBNF grammars:
|
||||
|
||||
- In [llama-server](../examples/server):
|
||||
- For any completion endpoints, passed as the `json_schema` body field
|
||||
- For the `/chat/completions` endpoint, passed inside the `response_format` body field (e.g. `{"type", "json_object", "schema": {"items": {}}}` or `{ type: "json_schema", json_schema: {"schema": ...} }`)
|
||||
- For the `/chat/completions` endpoint, passed inside the `response_format` body field (e.g. `{"type", "json_object", "schema": {"items": {}}}`)
|
||||
- In [llama-cli](../examples/main), passed as the `--json` / `-j` flag
|
||||
- To convert to a grammar ahead of time:
|
||||
- in CLI, with [examples/json_schema_to_grammar.py](../examples/json_schema_to_grammar.py)
|
||||
|
@ -343,7 +343,7 @@ extern "C" {
|
||||
bool embeddings; // if true, extract embeddings (together with logits)
|
||||
bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
|
||||
bool flash_attn; // whether to use flash attention [EXPERIMENTAL]
|
||||
bool no_perf; // whether to measure performance timings
|
||||
//bool no_perf; // whether to measure performance timings, TODO: implement
|
||||
|
||||
// Abort callback
|
||||
// if it returns true, execution of llama_decode() will be aborted
|
||||
@ -441,7 +441,6 @@ extern "C" {
|
||||
LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
|
||||
LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
|
||||
LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
|
||||
LLAMA_API int32_t llama_n_head (const struct llama_model * model);
|
||||
|
||||
LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
|
||||
|
||||
@ -1057,9 +1056,6 @@ extern "C" {
|
||||
LLAMA_API struct llama_sampler * llama_sampler_chain_get(const struct llama_sampler * chain, int32_t i);
|
||||
LLAMA_API int llama_sampler_chain_n (const struct llama_sampler * chain);
|
||||
|
||||
// after removing a sampler, the chain will no longer own it, and it will not be freed when the chain is freed
|
||||
LLAMA_API struct llama_sampler * llama_sampler_chain_remove( struct llama_sampler * chain, int32_t i);
|
||||
|
||||
// available samplers:
|
||||
|
||||
LLAMA_API struct llama_sampler * llama_sampler_init_greedy (void);
|
||||
@ -1177,30 +1173,13 @@ extern "C" {
|
||||
// NOTE: Used by llama.cpp examples, avoid using in third-party apps. Instead, do your own performance measurements.
|
||||
//
|
||||
|
||||
struct llama_perf_context_data {
|
||||
double t_start_ms;
|
||||
double t_load_ms;
|
||||
double t_p_eval_ms;
|
||||
double t_eval_ms;
|
||||
|
||||
int32_t n_p_eval;
|
||||
int32_t n_eval;
|
||||
enum llama_perf_type {
|
||||
LLAMA_PERF_TYPE_CONTEXT = 0,
|
||||
LLAMA_PERF_TYPE_SAMPLER_CHAIN = 1,
|
||||
};
|
||||
|
||||
struct llama_perf_sampler_data {
|
||||
double t_sample_ms;
|
||||
|
||||
int32_t n_sample;
|
||||
};
|
||||
|
||||
LLAMA_API struct llama_perf_context_data llama_perf_context (const struct llama_context * ctx);
|
||||
LLAMA_API void llama_perf_context_print(const struct llama_context * ctx);
|
||||
LLAMA_API void llama_perf_context_reset( struct llama_context * ctx);
|
||||
|
||||
// NOTE: the following work only with samplers constructed via llama_sampler_chain_init
|
||||
LLAMA_API struct llama_perf_sampler_data llama_perf_sampler (const struct llama_sampler * chain);
|
||||
LLAMA_API void llama_perf_sampler_print(const struct llama_sampler * chain);
|
||||
LLAMA_API void llama_perf_sampler_reset( struct llama_sampler * chain);
|
||||
LLAMA_API void llama_perf_print(const void * ctx, enum llama_perf_type type);
|
||||
LLAMA_API void llama_perf_reset( void * ctx, enum llama_perf_type type);
|
||||
|
||||
LLAMA_API void llama_perf_dump_yaml(FILE * stream, const struct llama_context * ctx);
|
||||
|
||||
|
@ -8,9 +8,6 @@ fi
|
||||
set -e
|
||||
set -x
|
||||
|
||||
# verify at the start that the compare script has all the necessary dependencies installed
|
||||
./scripts/compare-llama-bench.py --check
|
||||
|
||||
bench_args="${@:3}"
|
||||
|
||||
rm -f llama-bench.sqlite > /dev/null
|
||||
|
@ -92,7 +92,6 @@ help_s = (
|
||||
"If the columns are manually specified, then the results for each unique combination of the "
|
||||
"specified values are averaged WITHOUT weighing by the --repetitions parameter of llama-bench."
|
||||
)
|
||||
parser.add_argument("--check", action="store_true", help="check if all required Python libraries are installed")
|
||||
parser.add_argument("-s", "--show", help=help_s)
|
||||
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
|
||||
|
||||
@ -100,10 +99,6 @@ known_args, unknown_args = parser.parse_known_args()
|
||||
|
||||
logging.basicConfig(level=logging.DEBUG if known_args.verbose else logging.INFO)
|
||||
|
||||
if known_args.check:
|
||||
# Check if all required Python libraries are installed. Would have failed earlier if not.
|
||||
sys.exit(0)
|
||||
|
||||
if unknown_args:
|
||||
logger.error(f"Received unknown args: {unknown_args}.\n")
|
||||
parser.print_help()
|
||||
|
@ -1 +1 @@
|
||||
e7b23907cb2816e9951fe9b524d7127ab777297a
|
||||
10e83a412717c20d57ba19f025248e18e43addf3
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user