# Test libllama tokenizer == AutoTokenizer. # Brute force random words/text generation. # # Sample usage: # # python3 tests/test-tokenizer-random.py ./models/ggml-vocab-llama-bpe.gguf ./models/tokenizers/llama-bpe # from __future__ import annotations import time import logging import argparse import subprocess import random import unicodedata from pathlib import Path from typing import Any, Iterator, cast from typing_extensions import Buffer import cffi from transformers import AutoTokenizer, PreTrainedTokenizer logger = logging.getLogger("test-tokenizer-random") class LibLlama: DEFAULT_PATH_LLAMA_H = "./include/llama.h" DEFAULT_PATH_INCLUDES = ["./ggml/include/", "./include/"] DEFAULT_PATH_LIBLLAMA = "./build/src/libllama.so" # CMakeLists.txt: BUILD_SHARED_LIBS ON def __init__(self, path_llama_h: str | None = None, path_includes: list[str] = [], path_libllama: str | None = None): path_llama_h = path_llama_h or self.DEFAULT_PATH_LLAMA_H path_includes = path_includes or self.DEFAULT_PATH_INCLUDES path_libllama = path_libllama or self.DEFAULT_PATH_LIBLLAMA (self.ffi, self.lib) = self._load_libllama_cffi(path_llama_h, path_includes, path_libllama) self.lib.llama_backend_init() def _load_libllama_cffi(self, path_llama_h: str, path_includes: list[str], path_libllama: str) -> tuple[cffi.FFI, Any]: cmd = ["gcc", "-O0", "-E", "-P", "-D__restrict=", "-D__attribute__(x)=", "-D__asm__(x)="] cmd += ["-I" + path for path in path_includes] + [path_llama_h] res = subprocess.run(cmd, stdout=subprocess.PIPE) assert (res.returncode == 0) source = res.stdout.decode() ffi = cffi.FFI() if True: # workarounds for pycparser source = "typedef struct { } __builtin_va_list;" + "\n" + source source = source.replace("sizeof (int)", str(ffi.sizeof("int"))) source = source.replace("sizeof (void *)", str(ffi.sizeof("void*"))) source = source.replace("sizeof (size_t)", str(ffi.sizeof("size_t"))) source = source.replace("sizeof(int32_t)", str(ffi.sizeof("int32_t"))) ffi.cdef(source, override=True) lib = ffi.dlopen(path_libllama) return (ffi, lib) def model_default_params(self, **kwargs): mparams = self.lib.llama_model_default_params() for k, v in kwargs.items(): setattr(mparams, k, v) return mparams def context_default_params(self, **kwargs): cparams = self.lib.llama_context_default_params() for k, v in kwargs.items(): setattr(cparams, k, v) return cparams class LibLlamaModel: def __init__(self, libllama: LibLlama, path_model: str, mparams={}, cparams={}): self.lib: Any = libllama.lib self.ffi = libllama.ffi if isinstance(mparams, dict): mparams = libllama.model_default_params(**mparams) self.model = self.lib.llama_model_load_from_file(path_model.encode(), mparams) if not self.model: raise RuntimeError("error: failed to load model '%s'" % path_model) if isinstance(cparams, dict): cparams = libllama.context_default_params(**cparams) self.ctx = self.lib.llama_new_context_with_model(self.model, cparams) if not self.ctx: raise RuntimeError("error: failed to create context for model '%s'" % path_model) n_tokens_max = self.lib.llama_n_ctx(self.ctx) self.token_ids = self.ffi.new("llama_token[]", n_tokens_max) self.text_buff = self.ffi.new("uint8_t[]", 1024) def free(self): if self.ctx: self.lib.llama_free(self.ctx) if self.model: self.lib.llama_model_free(self.model) self.ctx = None self.model = None self.lib = None def tokenize(self, text: str, add_special: bool = False, parse_special: bool = False) -> list[int]: encoded_text: bytes = text.encode("utf-8") num = self.lib.llama_tokenize(self.model, encoded_text, len(encoded_text), self.token_ids, len(self.token_ids), add_special, parse_special) while num < 0 and len(self.token_ids) < (16 << 20): self.token_ids = self.ffi.new("llama_token[]", -2 * num) num = self.lib.llama_tokenize(self.model, encoded_text, len(encoded_text), self.token_ids, len(self.token_ids), add_special, parse_special) return list(self.token_ids[0:num]) def detokenize(self, ids: list[int], remove_special: bool = False, unparse_special: bool = False) -> str: if len(self.token_ids) < len(ids): self.token_ids = self.ffi.new("llama_token[]", 2 * len(ids)) for i, id in enumerate(ids): self.token_ids[i] = id num = self.lib.llama_detokenize(self.model, self.token_ids, len(ids), self.text_buff, len(self.text_buff), remove_special, unparse_special) while num < 0 and len(self.text_buff) < (16 << 20): self.text_buff = self.ffi.new("uint8_t[]", -2 * num) num = self.lib.llama_detokenize(self.model, self.token_ids, len(ids), self.text_buff, len(self.text_buff), remove_special, unparse_special) return str(cast(Buffer, self.ffi.buffer(self.text_buff, num)), encoding="utf-8", errors="replace") # replace errors with '\uFFFD' class Tokenizer: def encode(self, text: str) -> list[int]: raise NotImplementedError def decode(self, ids: list[int]) -> str: raise NotImplementedError class TokenizerGroundtruth (Tokenizer): def __init__(self, dir_tokenizer: str): self.model: PreTrainedTokenizer = AutoTokenizer.from_pretrained(dir_tokenizer) # guess BOS and EOS ids = self.encode("a") assert 1 <= len(ids) <= 3 add_bos_token = len(ids) > 1 and self.model.bos_token_id == ids[0] add_eos_token = len(ids) > 1 and self.model.eos_token_id == ids[-1] self.add_bos_token = getattr(self.model, "add_bos_token", add_bos_token) self.add_eos_token = getattr(self.model, "add_eos_token", add_eos_token) # build vocab tokens = list(self.model.get_vocab().values()) self.vocab = self.model.batch_decode(tokens, skip_special_tokens=True) self.vocab = list(sorted(self.vocab)) # tokens and lists self.special_tokens = list(self.model.all_special_tokens) self.added_tokens = self.model.batch_decode(self.model.added_tokens_encoder.values(), skip_special_tokens=False) self.bos_token = self.model.bos_token self.eos_token = self.model.eos_token def encode(self, text: str) -> list[int]: return self.model.encode(text, add_special_tokens=True) def decode(self, ids: list[int]) -> str: return self.model.decode(ids, skip_special_tokens=False) class TokenizerLlamaCpp (Tokenizer): libllama: LibLlama | None = None def __init__(self, vocab_file: str): if not self.libllama: self.libllama = LibLlama() self.model = LibLlamaModel(self.libllama, vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=4096)) def encode(self, text: str) -> list[int]: return self.model.tokenize(text, add_special=True, parse_special=True) def decode(self, ids: list[int]) -> str: return self.model.detokenize(ids, remove_special=False, unparse_special=True) def generator_custom_text() -> Iterator[str]: """General tests""" yield from [ "", " ", " ", " ", "\t", "\n", "\n\n", "\n\n\n", "\t\n", "Hello world", " Hello world", "Hello World", " Hello World", " Hello World!", "Hello, world!", " Hello, world!", " this is 🦙.cpp", "w048 7tuijk dsdfhu", "нещо на Български", "កាន់តែពិសេសអាចខលចេញ", "🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)", "Hello", " Hello", " Hello", " Hello", " Hello", " Hello\n Hello", " (", "\n =", "' era", "Hello, y'all! How are you 😁 ?我想在apple工作1314151天~", "3", "33", "333", "3333", "33333", "333333", "3333333", "33333333", "333333333", ] def generator_custom_text_edge_cases() -> Iterator[str]: """Edge cases found while debugging""" yield from [ '\x1f-a', # unicode_ranges_control, {0x00001C, 0x00001F} '¼-a', # unicode_ranges_digit, 0x00BC '½-a', # unicode_ranges_digit, 0x00BD '¾-a', # unicode_ranges_digit, 0x00BE 'a 〇b', # unicode_ranges_digit, 0x3007 'Ⅵ-a', # unicode_ranges_digit, {0x00002150, 0x0000218F} // Number Forms '\uFEFF//', # unicode_ranges_control, 0xFEFF (BOM) 'Cửa Việt', # llama-3, ignore_merges = true 'a', # Phi-3 fail '<|endoftext|>', # Phi-3 fail 'a\na', # bert fail '"`', # falcon ' \u2e4e', # falcon '\n\x0b ', # falcon 'a\xa0\xa0\x00b', # jina-v2-es 'one ', # jina-v2-es lstrip=true 'a b', # rstrip phi-3 'a b', # lstrip jina-v2 '\xa0aC', # deepseek '\u2029 \uA3E4', # deepseek-llm "a ?", 'å', # mpt '\U000ac517', # utf-8 encode error, falcon '\U000522f4', # utf-8 encode error, starcoder "abcd", " abcd", ] def generator_vocab_words(tokenizer: TokenizerGroundtruth) -> Iterator[str]: """Brute force check all vocab words""" yield from tokenizer.vocab def generator_ascii_lr_strip() -> Iterator[str]: WHITESPACES = ["", " ", " "] CHARACTERS = list(chr(i) for i in range(1, 0x80)) + [""] for char1 in CHARACTERS: for char2 in CHARACTERS: for lstrip in WHITESPACES: for rstrip in WHITESPACES: yield lstrip + char1 + char2 + rstrip yield lstrip + char1 + rstrip + char2 yield char1 + lstrip + char2 + rstrip def generator_apostrophe() -> Iterator[str]: WHITESPACES = ["", " ", " "] CHARACTERS = list(chr(i) for i in range(1, 0x80)) + [""] for char1 in CHARACTERS: for char2 in CHARACTERS: for lstrip in WHITESPACES: for rstrip in WHITESPACES: yield char1 + lstrip + "'" + rstrip + char2 yield char1 + char2 + lstrip + "'" + rstrip + "z" yield "a" + lstrip + "'" + rstrip + char1 + char2 def generator_added_lr_strip(tokenizer: TokenizerGroundtruth) -> Iterator[str]: WHITESPACES = ["", " ", " ", "\n", "\r\n", "\n\n", "\t", "\t\t"] all_tokens = list(sorted(set(tokenizer.special_tokens + tokenizer.added_tokens))) for token in all_tokens: for lstrip in WHITESPACES: for rstrip in WHITESPACES: yield lstrip + token + rstrip yield "a" + lstrip + token + rstrip yield lstrip + token + rstrip + "z" yield "a" + lstrip + token + rstrip + "z" def generator_random_added_tokens(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]: separations = [" ", "\n", "\t", "-", "!", "one", "1", "", ""] all_tokens = list(sorted(set(tokenizer.special_tokens + tokenizer.added_tokens + separations))) rand = random.Random() for m in range(iterations): rand.seed(m) words = rand.choices(all_tokens, k=500) if words and words[0] == tokenizer.bos_token: # skip spam warning of double BOS while len(words) > 1 and words[1] == tokenizer.bos_token: # leave one starting BOS words.pop(0) if tokenizer.add_bos_token: # drop all starting BOS words.pop(0) if words and words[-1] == tokenizer.eos_token: # skip spam warning of double EOS while len(words) > 1 and words[-2] == tokenizer.eos_token: # leave one trailing EOS words.pop(-1) if tokenizer.add_bos_token: # drop all trailing EOS words.pop(-1) yield "".join(words) def generator_random_chars(iterations=100) -> Iterator[str]: """Brute force random text with simple characters""" NUM_WORDS = 400 WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5) CHARS = list(sorted(set(""" ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz ÁÉÍÓÚÀÈÌÒÙÂÊÎÔÛÄËÏÖÜ áéíóúàèìòùâêîôûäëïöü .-,*/-+ª!"·$%&/()=?¿[]{}<>\\|@#~½¬~;:_ """))) rand = random.Random() for m in range(iterations): rand.seed(m) text = [] for _ in range(NUM_WORDS): k = rand.randint(1, 7) word = rand.choices(CHARS, k=k) word.append(rand.choice(WHITESPACES)) text.append("".join(word)) yield "".join(text) def generator_unicodes() -> Iterator[str]: """Iterate unicode characters""" MAX_CODEPOINTS = 0x30000 # 0x110000 def _valid(cpt): if cpt >= 0x30000: # unassigned and supplement­ary return False # if cpt == 0x2029: # deepseek-llm # return False if unicodedata.category(chr(cpt)) in ("Cn", "Cs", "Co"): # undefined, surrogates, private return False return True characters = [chr(cpt) for cpt in range(0, MAX_CODEPOINTS) if _valid(cpt)] yield from characters def generator_random_unicodes(iterations=100) -> Iterator[str]: """Brute force random text with unicode characters""" NUM_WORDS = 200 WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5) characters = list(generator_unicodes()) rand = random.Random() for m in range(iterations): rand.seed(m) text = [] for _ in range(NUM_WORDS): k = rand.randint(1, 7) word = rand.choices(characters, k=k) word.append(rand.choice(WHITESPACES)) text.append("".join(word)) yield "".join(text) def generator_random_vocab_chars(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]: """Brute force random text with vocab characters""" vocab_chars = set() for word in tokenizer.vocab: vocab_chars.update(word) vocab_chars = list(sorted(vocab_chars)) rand = random.Random() for m in range(iterations): rand.seed(m) text = rand.choices(vocab_chars, k=1024) yield "".join(text) def generator_random_vocab_words(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]: """Brute force random text from vocab words""" vocab = [w.strip() for w in tokenizer.vocab] yield from vocab rand = random.Random() for m in range(iterations): rand.seed(m) text = [] num_words = rand.randint(300, 400) for i in range(num_words): k = rand.randint(1, 3) words = rand.choices(vocab, k=k) sep = rand.choice(" \n\r\t") text.append("".join(words) + sep) yield "".join(text) def compare_tokenizers(tokenizer1: TokenizerGroundtruth, tokenizer2: TokenizerLlamaCpp, generator: Iterator[str]): def find_first_mismatch(ids1: list[int] | str, ids2: list[int] | str): for i, (a, b) in enumerate(zip(ids1, ids2)): if a != b: return i if len(ids1) == len(ids2): return -1 return min(len(ids1), len(ids2)) def check_detokenizer(text: str, text1: str, text2: str) -> bool: if text1 == text2: # equal to TokenizerGroundtruth? return True # equal to source text? if tokenizer1.add_bos_token: # remove BOS if text2.startswith(tokenizer1.bos_token): text2 = text2[len(tokenizer1.bos_token):] if tokenizer1.add_eos_token: # remove EOS if text2.endswith(tokenizer1.eos_token): text2 = text2[:-len(tokenizer1.eos_token)] return text == text2 t_encode1 = 0 t_encode2 = 0 t_decode1 = 0 t_decode2 = 0 t_start = time.perf_counter() encode_errors = 0 decode_errors = 0 MAX_ERRORS = 10 logger.info("%s: %s" % (generator.__qualname__, "ini")) for text in generator: # print(repr(text), text.encode()) # print(repr(text), hex(ord(text[0])), text.encode()) t0 = time.perf_counter() ids1 = tokenizer1.encode(text) t1 = time.perf_counter() ids2 = tokenizer2.encode(text) t2 = time.perf_counter() text1 = tokenizer1.decode(ids1) t3 = time.perf_counter() text2 = tokenizer2.decode(ids1) t4 = time.perf_counter() t_encode1 += t1 - t0 t_encode2 += t2 - t1 t_decode1 += t3 - t2 t_decode2 += t4 - t3 if encode_errors < MAX_ERRORS and ids1 != ids2: i = find_first_mismatch(ids1, ids2) ids1 = list(ids1)[max(0, i - 2) : i + 5 + 1] ids2 = list(ids2)[max(0, i - 2) : i + 5 + 1] logger.error(" Expected: " + str(ids1)) logger.error(" Result: " + str(ids2)) encode_errors += 1 logger.error(f" {encode_errors=}") if decode_errors < MAX_ERRORS and not check_detokenizer(text, text1, text2): i = find_first_mismatch(text1, text2) text1 = list(text1[max(0, i - 2) : i + 5 + 1]) text2 = list(text2[max(0, i - 2) : i + 5 + 1]) logger.error(" Expected: " + " ".join(hex(ord(x)) for x in text1)) logger.error(" Result: " + " ".join(hex(ord(x)) for x in text2)) decode_errors += 1 logger.error(f" {decode_errors=}") if encode_errors >= MAX_ERRORS and decode_errors >= MAX_ERRORS: logger.error(f" EXIT: {encode_errors=} {decode_errors=}") # raise Exception() break t_total = time.perf_counter() - t_start logger.info(f"{generator.__qualname__}: end, {t_encode1=:.3f} {t_encode2=:.3f} {t_decode1=:.3f} {t_decode2=:.3f} {t_total=:.3f}") def main(argv: list[str] | None = None): parser = argparse.ArgumentParser() parser.add_argument("vocab_file", type=str, help="path to vocab 'gguf' file") parser.add_argument("dir_tokenizer", type=str, help="directory containing 'tokenizer.model' file") parser.add_argument("--verbose", action="store_true", help="increase output verbosity") args = parser.parse_args(argv) logging.basicConfig(level = logging.DEBUG if args.verbose else logging.INFO) logger.info(f"VOCABFILE: '{args.vocab_file}'") tokenizer1 = TokenizerGroundtruth(args.dir_tokenizer) tokenizer2 = TokenizerLlamaCpp(args.vocab_file) # compare_tokenizers(tokenizer1, tokenizer2, generator_custom_text()) # compare_tokenizers(tokenizer1, tokenizer2, generator_custom_text_edge_cases()) compare_tokenizers(tokenizer1, tokenizer2, generator_ascii_lr_strip()) compare_tokenizers(tokenizer1, tokenizer2, generator_apostrophe()) compare_tokenizers(tokenizer1, tokenizer2, generator_unicodes()) compare_tokenizers(tokenizer1, tokenizer2, generator_vocab_words(tokenizer1)) compare_tokenizers(tokenizer1, tokenizer2, generator_added_lr_strip(tokenizer1)) # compare_tokenizers(tokenizer1, tokenizer2, generator_random_added_tokens(tokenizer1, 10_000)) # compare_tokenizers(tokenizer1, tokenizer2, generator_random_chars(10_000)) # compare_tokenizers(tokenizer1, tokenizer2, generator_random_unicodes(10_000)) # compare_tokenizers(tokenizer1, tokenizer2, generator_random_vocab_chars(tokenizer1, 10_000)) # compare_tokenizers(tokenizer1, tokenizer2, generator_random_vocab_words(tokenizer1, 5_000)) tokenizer2.model.free() if __name__ == "__main__": # main() if True: logging.basicConfig( level = logging.DEBUG, format = "%(asctime)s.%(msecs)03d %(name)s %(levelname)s %(message)s", datefmt = "%Y-%m-%d %H:%M:%S", filename = logger.name + ".log", filemode = "a" ) logging.basicConfig( level = logging.DEBUG, format = "%(levelname)s %(message)s", ) path_tokenizers = Path("./models/tokenizers/") path_vocab_format = "./models/ggml-vocab-%s.gguf" tokenizers = [ "llama-spm", # SPM "phi-3", # SPM "gemma", # SPM "gemma-2", # SPM "baichuan", # SPM "bert-bge", # WPM "jina-v2-en", # WPM "llama-bpe", # BPE "phi-2", # BPE "deepseek-llm", # BPE "deepseek-coder", # BPE "falcon", # BPE "mpt", # BPE "starcoder", # BPE "gpt-2", # BPE "stablelm2", # BPE "refact", # BPE "qwen2", # BPE "olmo", # BPE "jina-v2-es", # BPE "jina-v2-de", # BPE "smaug-bpe", # BPE "poro-chat", # BPE "jina-v2-code", # BPE "viking", # BPE "jais", # BPE ] logger.info("=" * 50) for tokenizer in tokenizers: logger.info("-" * 50) logger.info(f"TOKENIZER: '{tokenizer}'") vocab_file = Path(path_vocab_format % tokenizer) dir_tokenizer = path_tokenizers / tokenizer main([str(vocab_file), str(dir_tokenizer), "--verbose"])