import Foundation import llama let arguments = CommandLine.arguments // Check that we have at least one argument (the model path) guard arguments.count > 1 else { print("Usage: swift MODEL_PATH [PROMPT] [PARALLEL]") exit(1) } let modelPath: String = arguments[1] let prompt: String = arguments.count > 2 ? arguments[2] : "Hello my name is" let n_parallel: Int = arguments.count > 3 && Int(arguments[3]) != nil ? Int(arguments[3])! : 1 // total length of the sequences including the prompt let n_len: Int = 32 // init LLM llama_backend_init() defer { llama_backend_free() } let model_params = llama_model_default_params() guard let model = llama_load_model_from_file(modelPath.cString(using: .utf8), model_params) else { print("Failed to load model") exit(1) } defer { llama_free_model(model) } var tokens = tokenize(text: prompt, add_bos: true) let n_kv_req = UInt32(tokens.count) + UInt32((n_len - Int(tokens.count)) * n_parallel) var context_params = llama_context_default_params() context_params.seed = 1234 context_params.kv_size = n_kv_req context_params.n_batch = UInt32(max(n_len, n_parallel)) context_params.n_threads = 8 context_params.n_threads_batch = 8 let context = llama_new_context_with_model(model, context_params) guard context != nil else { print("Failed to initialize context") exit(1) } defer { llama_free(context) } let kv_size = llama_kv_size(context) print("\nn_len = \(n_len), kv_size = \(kv_size), n_batch = \(context_params.n_batch), n_parallel = \(n_parallel), n_kv_req = \(n_kv_req)\n") if n_kv_req > kv_size { print("error: n_kv_req (%d) > kv_size, the required KV cache size is not big enough\n", n_kv_req) exit(1) } var buffer: [CChar] = [] for id: llama_token in tokens { print(token_to_piece(token: id, buffer: &buffer) ?? "", terminator: "") } print("\n") var batch = llama_batch_init(max(Int32(tokens.count), Int32(n_parallel)), 0, 1) defer { llama_batch_free(batch) } // evaluate the initial prompt batch.n_tokens = Int32(tokens.count) for (i, token) in tokens.enumerated() { batch.token[i] = token batch.pos[i] = Int32(i) batch.n_seq_id[i] = 1 // batch.seq_id[i][0] = 0 // TODO: is this the proper way to do this? if let seq_id = batch.seq_id[i] { seq_id[0] = 0 } batch.logits[i] = 0 } // llama_decode will output logits only for the last token of the prompt batch.logits[Int(batch.n_tokens) - 1] = 1 if llama_decode(context, batch) != 0 { print("llama_decode() failed") exit(1) } for i in 1 ..< n_parallel { llama_kv_cache_seq_cp(context, 0, Int32(i), 0, batch.n_tokens) } if n_parallel > 1 { print("generating \(n_parallel) sequences ...\n") } var streams: [String] = .init(repeating: "", count: n_parallel) var streamBuffers: [[CChar]] = .init(repeating: [], count: n_parallel) var i_batch = [Int32](repeating: batch.n_tokens - 1, count: n_parallel) var n_cur = batch.n_tokens var n_decode = 0 let t_main_start = ggml_time_us() while n_cur <= n_len { // prepare the next batch batch.n_tokens = 0 // sample the next token for each parallel sequence / stream for i in 0 ..< n_parallel { if i_batch[i] < 0 { // the stream has already finished continue } var n_vocab = llama_n_vocab(model) var logits = llama_get_logits_ith(context, i_batch[i]) var candidates: [llama_token_data] = .init(repeating: llama_token_data(), count: Int(n_vocab)) for token_id in 0 ..< n_vocab { candidates.append(llama_token_data(id: token_id, logit: logits![Int(token_id)], p: 0.0)) } var candidates_p: llama_token_data_array = .init( data: &candidates, size: candidates.count, sorted: false ) let top_k: Int32 = 40 let top_p: Float = 0.9 let temp: Float = 0.4 llama_sample_top_k(context, &candidates_p, top_k, 1) llama_sample_top_p(context, &candidates_p, top_p, 1) llama_sample_temp(context, &candidates_p, temp) let new_token_id = llama_sample_token(context, &candidates_p) // const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p); // is it an end of stream? -> mark the stream as finished if new_token_id == llama_token_eos(model) || n_cur == n_len { i_batch[i] = -1 // print("") if n_parallel > 1 { print("stream \(i) finished at n_cur = \(n_cur)") } continue } let nextStringPiece = token_to_piece(token: new_token_id, buffer: &streamBuffers[i]) ?? "" // if there is only one stream, we print immediately to stdout if n_parallel == 1 { print(nextStringPiece, terminator: "") } streams[i] += nextStringPiece // push this new token for next evaluation batch.token[Int(batch.n_tokens)] = new_token_id batch.pos[Int(batch.n_tokens)] = n_cur batch.n_seq_id[Int(batch.n_tokens)] = 1 if let seq_id = batch.seq_id[Int(batch.n_tokens)] { seq_id[0] = Int32(i) } batch.logits[Int(batch.n_tokens)] = 1 i_batch[i] = batch.n_tokens batch.n_tokens += 1 n_decode += 1 } // all streams are finished if batch.n_tokens == 0 { break } n_cur += 1 // evaluate the current batch with the transformer model if llama_decode(context, batch) != 0 { print("llama_decode() failed") exit(1) } } if n_parallel > 1 { print("\n") for (i, stream) in streams.enumerated() { print("sequence \(i):\n\n\(prompt)\(stream)\n") } } let t_main_end = ggml_time_us() print("decoded \(n_decode) tokens in \(String(format: "%.2f", Double(t_main_end - t_main_start) / 1_000_000.0)) s, speed: \(String(format: "%.2f", Double(n_decode) / (Double(t_main_end - t_main_start) / 1_000_000.0))) t/s\n") llama_print_timings(context) private func tokenize(text: String, add_bos: Bool) -> [llama_token] { let utf8Count = text.utf8.count let n_tokens = utf8Count + (add_bos ? 1 : 0) let tokens = UnsafeMutablePointer.allocate(capacity: n_tokens) let tokenCount = llama_tokenize(model, text, Int32(utf8Count), tokens, Int32(n_tokens), add_bos, /*special tokens*/ false) var swiftTokens: [llama_token] = [] for i in 0 ..< tokenCount { swiftTokens.append(tokens[Int(i)]) } tokens.deallocate() return swiftTokens } private func token_to_piece(token: llama_token, buffer: inout [CChar]) -> String? { var result = [CChar](repeating: 0, count: 8) let nTokens = llama_token_to_piece(model, token, &result, Int32(result.count)) if nTokens < 0 { let actualTokensCount = -Int(nTokens) result = .init(repeating: 0, count: actualTokensCount) let check = llama_token_to_piece( model, token, &result, Int32(result.count) ) assert(check == actualTokensCount) } else { result.removeLast(result.count - Int(nTokens)) } if buffer.isEmpty, let utfString = String(cString: result + [0], encoding: .utf8) { return utfString } else { buffer.append(contentsOf: result) let data = Data(buffer.map { UInt8(bitPattern: $0) }) if buffer.count >= 4 { // 4 bytes is the max length of a utf8 character so if we're here we need to reset the buffer buffer = [] } guard let bufferString = String(data: data, encoding: .utf8) else { return nil } buffer = [] return bufferString } }