#include "common.h" #include "llama.h" #include #include #include #include #include #include #include #include #include #include #include #include #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif struct results_perplexity { std::vector tokens; double ppl_value; std::vector logits; std::vector probs; }; struct results_log_softmax { double log_softmax; float logit; float prob; }; static void write_logfile( const llama_context * ctx, const gpt_params & params, const llama_model * model, const struct results_perplexity & results ) { if (params.logdir.empty()) { return; } if (params.hellaswag) { fprintf(stderr, "%s: warning: logging results is not implemented for HellaSwag. No files will be written.\n", __func__); return; } const std::string timestamp = get_sortable_timestamp(); const bool success = create_directory_with_parents(params.logdir); if (!success) { fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n", __func__, params.logdir.c_str()); return; } const std::string logfile_path = params.logdir + timestamp + ".yml"; FILE * logfile = fopen(logfile_path.c_str(), "w"); if (logfile == NULL) { fprintf(stderr, "%s: failed to open logfile %s\n", __func__, logfile_path.c_str()); return; } fprintf(logfile, "binary: main\n"); char model_desc[128]; llama_model_desc(model, model_desc, sizeof(model_desc)); dump_non_result_info_yaml(logfile, params, ctx, timestamp, results.tokens, model_desc); fprintf(logfile, "\n"); fprintf(logfile, "######################\n"); fprintf(logfile, "# Perplexity Results #\n"); fprintf(logfile, "######################\n"); fprintf(logfile, "\n"); dump_vector_float_yaml(logfile, "logits", results.logits); fprintf(logfile, "ppl_value: %f\n", results.ppl_value); dump_vector_float_yaml(logfile, "probs", results.probs); llama_dump_timing_info_yaml(logfile, ctx); fclose(logfile); } static std::vector softmax(const std::vector& logits) { std::vector probs(logits.size()); float max_logit = logits[0]; for (float v : logits) { max_logit = std::max(max_logit, v); } double sum_exp = 0.0; for (size_t i = 0; i < logits.size(); i++) { // Subtract the maximum logit value from the current logit value for numerical stability const float logit = logits[i] - max_logit; const float exp_logit = expf(logit); sum_exp += exp_logit; probs[i] = exp_logit; } for (size_t i = 0; i < probs.size(); i++) { probs[i] /= sum_exp; } return probs; } static results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) { float max_logit = logits[0]; for (int i = 1; i < n_vocab; ++i) { max_logit = std::max(max_logit, logits[i]); } double sum_exp = 0.0; for (int i = 0; i < n_vocab; ++i) { sum_exp += expf(logits[i] - max_logit); } return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp}; } static inline int nearest_int(float fval) { //assert(fval <= 4194303.f); float val = fval + 12582912.f; int i; memcpy(&i, &val, sizeof(int)); return (i & 0x007fffff) - 0x00400000; } static double log_softmax(int n_vocab, const float * logits, uint16_t * log_prob, int tok) { float max_logit = logits[0]; float min_logit = logits[0]; for (int i = 1; i < n_vocab; ++i) { max_logit = std::max(max_logit, logits[i]); min_logit = std::min(min_logit, logits[i]); } min_logit = std::max(min_logit, max_logit - 16); double sum_exp = 0.0; for (int i = 0; i < n_vocab; ++i) { sum_exp += expf(logits[i] - max_logit); } const float log_sum_exp = log(sum_exp); const float min_log_prob = min_logit - max_logit - log_sum_exp; const float scale = (max_logit - min_logit)/65535.f; float * d = (float *)log_prob; d[0] = scale; d[1] = min_log_prob; log_prob += 4; if (scale) { const float inv_scale = 1/scale; for (int i = 0; i < n_vocab; ++i) { log_prob[i] = logits[i] > min_logit ? nearest_int(inv_scale*(logits[i] - min_logit)) : 0; } } else { std::memset(log_prob, 0, n_vocab*sizeof(uint16_t)); } return max_logit + log_sum_exp - logits[tok]; } static void process_logits( int n_vocab, const float * logits, const int * tokens, int n_token, std::vector & workers, double & nll, double & nll2, float * logit_history, float * prob_history ) { std::mutex mutex; int counter = 0; auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () { double local_nll = 0; double local_nll2 = 0; while (true) { std::unique_lock lock(mutex); int i = counter++; if (i >= n_token) { nll += local_nll; nll2 += local_nll2; break; } lock.unlock(); const results_log_softmax results = log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]); const double v = -results.log_softmax; local_nll += v; local_nll2 += v*v; logit_history[i] = results.logit; prob_history[i] = results.prob; } }; for (auto & w : workers) { w = std::thread(compute); } compute(); for (auto & w : workers) { w.join(); } } static void process_logits(std::ostream& out, int n_vocab, const float * logits, const int * tokens, int n_token, std::vector & workers, std::vector & log_probs, double & nll, double & nll2) { std::mutex mutex; const int nv = 2*((n_vocab + 1)/2) + 4; int counter = 0; auto compute = [&mutex, &counter, &log_probs, &nll, &nll2, n_vocab, logits, tokens, n_token, nv] () { double local_nll = 0; double local_nll2 = 0; while (true) { std::unique_lock lock(mutex); int i = counter++; if (i >= n_token) { nll += local_nll; nll2 += local_nll2; break; } lock.unlock(); const double v = log_softmax(n_vocab, logits + i*n_vocab, log_probs.data() + i*nv, tokens[i+1]); local_nll += v; local_nll2 += v*v; } }; for (auto & w : workers) { w = std::thread(compute); } compute(); for (auto & w : workers) { w.join(); } out.write((const char *)log_probs.data(), n_token*nv*sizeof(uint16_t)); } struct kl_divergence_result { double sum_nll = 0; double sum_nll2 = 0; double sum_kld = 0; double sum_kld2 = 0; double sum_nll_diff = 0; double sum_nll_diff2 = 0; size_t n_same_top = 0; size_t count = 0; }; static double log_softmax(int n_vocab, const float * logits, const uint16_t * base_log_prob, int tok, kl_divergence_result & kld) { float max_logit = logits[0]; int imax = 0; for (int i = 1; i < n_vocab; ++i) { if (logits[i] > max_logit) { max_logit = logits[i]; imax = i; } } double sum_exp = 0.0; for (int i = 0; i < n_vocab; ++i) { sum_exp += expf(logits[i] - max_logit); } const float log_sum_exp = log(sum_exp); const float * d = (const float *)base_log_prob; const float scale = d[0]; const float min_log_prob = d[1]; base_log_prob += 4; float nll = max_logit + log_sum_exp - logits[tok]; kld.sum_nll += nll; kld.sum_nll2 += nll*nll; nll += (scale*base_log_prob[tok] + min_log_prob); kld.sum_nll_diff += nll; kld.sum_nll_diff2 += nll*nll; max_logit += log_sum_exp; double sum = 0; int imax_base = -1; float p_log_base_max = 0; for (int i = 0; i < n_vocab; ++i) { const float p_log_base = scale*base_log_prob[i] + min_log_prob; if (i == 0 || p_log_base > p_log_base_max) { p_log_base_max = p_log_base; imax_base = i; } if (p_log_base > -16.f) { const float p_base = expf(p_log_base); sum += p_base * (p_log_base - logits[i] + max_logit); } } kld.sum_kld += sum; kld.sum_kld2 += sum*sum; ++kld.count; if (imax == imax_base) ++kld.n_same_top; return sum; } static void process_logits(int n_vocab, const float * logits, const int * tokens, int n_token, std::vector & workers, const std::vector & base_log_probs, kl_divergence_result & kld, float * kld_values) { std::mutex mutex; const int nv = 2*((n_vocab + 1)/2) + 4; int counter = 0; auto compute = [&mutex, &counter, &base_log_probs, &kld, n_vocab, logits, tokens, n_token, nv, kld_values] () { kl_divergence_result local_kld; while (true) { std::unique_lock lock(mutex); int i = counter++; if (i >= n_token) { kld.sum_nll += local_kld.sum_nll; kld.sum_nll2 += local_kld.sum_nll2; kld.sum_kld += local_kld.sum_kld; kld.sum_kld2 += local_kld.sum_kld2; kld.sum_nll_diff += local_kld.sum_nll_diff; kld.sum_nll_diff2 += local_kld.sum_nll_diff2; kld.n_same_top += local_kld.n_same_top; kld.count += local_kld.count; break; } lock.unlock(); double v = log_softmax(n_vocab, logits + i*n_vocab, base_log_probs.data() + i*nv, tokens[i+1], local_kld); kld_values[i] = (float)v; } }; for (auto & w : workers) { w = std::thread(compute); } compute(); for (auto & w : workers) { w.join(); } } static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params & params) { // Download: https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw` // Output: `perplexity: 13.5106 [114/114]` // BOS tokens will be added for each chunk before eval const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx)); fprintf(stderr, "%s: tokenizing the input ..\n", __func__); std::vector tokens = ::llama_tokenize(ctx, params.prompt, add_bos); const int kv_size = llama_kv_size(ctx); if (int(tokens.size()) < 2*kv_size) { fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n", __func__, 2 * kv_size, kv_size); fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size()); return {std::move(tokens), 0., {}, {}}; } std::vector logit_history; std::vector prob_history; logit_history.resize(tokens.size()); prob_history.resize(tokens.size()); if (params.ppl_stride <= 0) { fprintf(stderr, "%s: stride is %d but must be greater than zero!\n",__func__,params.ppl_stride); return {tokens, -1, logit_history, prob_history}; } const int calc_chunk = kv_size; fprintf(stderr, "%s: have %zu tokens. Calculation chunk = %d\n", __func__, tokens.size(), calc_chunk); if (int(tokens.size()) <= calc_chunk) { fprintf(stderr, "%s: there are only %zu tokens, this is not enough for a context size of %d and stride %d\n", __func__, tokens.size(), kv_size, params.ppl_stride); return {tokens, -1, logit_history, prob_history}; } const int n_chunk_max = (tokens.size() - calc_chunk + params.ppl_stride - 1) / params.ppl_stride; const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max); const int n_vocab = llama_n_vocab(llama_get_model(ctx)); const int n_batch = params.n_batch; int count = 0; double nll = 0.0; fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch); for (int i = 0; i < n_chunk; ++i) { const int start = i * params.ppl_stride; const int end = start + calc_chunk; const int num_batches = (calc_chunk + n_batch - 1) / n_batch; //fprintf(stderr, "%s: evaluating %d...%d using %d batches\n", __func__, start, end, num_batches); std::vector logits; const auto t_start = std::chrono::high_resolution_clock::now(); // clear the KV cache llama_kv_cache_clear(ctx); for (int j = 0; j < num_batches; ++j) { const int batch_start = start + j * n_batch; const int batch_size = std::min(end - batch_start, n_batch); //fprintf(stderr, " Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch); if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) { //fprintf(stderr, "%s : failed to eval\n", __func__); return {tokens, -1, logit_history, prob_history}; } // save original token and restore it after eval const auto token_org = tokens[batch_start]; // add BOS token for the first batch of each chunk if (add_bos && j == 0) { tokens[batch_start] = llama_token_bos(llama_get_model(ctx)); } const auto batch_logits = llama_get_logits(ctx); logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab); if (j == 0) { tokens[batch_start] = token_org; } } const auto t_end = std::chrono::high_resolution_clock::now(); if (i == 0) { const float t_total = std::chrono::duration(t_end - t_start).count(); fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total); int total_seconds = (int)(t_total * n_chunk); if (total_seconds >= 60*60) { fprintf(stderr, "%d hours ", total_seconds / (60*60)); total_seconds = total_seconds % (60*60); } fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0); } //fprintf(stderr, "%s: using tokens %d...%d\n",__func__,params.kv_size - params.ppl_stride + start, params.kv_size + start); for (int j = kv_size - params.ppl_stride - 1; j < kv_size - 1; ++j) { // Calculate probability of next token, given the previous ones. const std::vector tok_logits( logits.begin() + (j + 0) * n_vocab, logits.begin() + (j + 1) * n_vocab); const float prob = softmax(tok_logits)[tokens[start + j + 1]]; logit_history[start + j + 1] = tok_logits[tokens[start + j + 1]]; prob_history[start + j + 1] = prob; nll += -std::log(prob); ++count; } // perplexity is e^(average negative log-likelihood) if (params.ppl_output_type == 0) { printf("[%d]%.4lf,", i + 1, std::exp(nll / count)); } else { printf("%8d %.4lf\n", i*params.ppl_stride, std::exp(nll / count)); } fflush(stdout); } printf("\n"); return {tokens, std::exp(nll / count), logit_history, prob_history}; } static results_perplexity perplexity(llama_context * ctx, const gpt_params & params) { if (params.ppl_stride > 0) { return perplexity_v2(ctx, params); } // Download: https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw` // Output: `perplexity: 13.5106 [114/114]` // BOS tokens will be added for each chunk before eval const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx)); const int kv_size = llama_kv_size(ctx); std::ofstream logits_stream; if (!params.logits_file.empty()) { logits_stream.open(params.logits_file.c_str(), std::ios::binary); if (!logits_stream.is_open()) { fprintf(stderr, "%s: failed to open %s for writing\n", __func__, params.logits_file.c_str()); return {}; } fprintf(stderr, "%s: saving all logits to %s\n", __func__, params.logits_file.c_str()); logits_stream.write("_logits_", 8); logits_stream.write(reinterpret_cast(&kv_size), sizeof(kv_size)); } auto tim1 = std::chrono::high_resolution_clock::now(); fprintf(stderr, "%s: tokenizing the input ..\n", __func__); std::vector tokens = ::llama_tokenize(ctx, params.prompt, add_bos); auto tim2 = std::chrono::high_resolution_clock::now(); fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast(tim2-tim1).count()); if (int(tokens.size()) < 2*kv_size) { fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n", __func__, 2 * kv_size, kv_size); fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size()); return {std::move(tokens), 0., {}, {}}; } std::vector logit_history; logit_history.resize(tokens.size()); std::vector prob_history; prob_history.resize(tokens.size()); const int n_chunk_max = tokens.size() / kv_size; const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max); const int n_vocab = llama_n_vocab(llama_get_model(ctx)); const int n_batch = params.n_batch; int count = 0; double nll = 0.0; double nll2 = 0.0; const int num_batches = (kv_size + n_batch - 1) / n_batch; std::vector logits; if (num_batches > 1) { logits.reserve((size_t)kv_size * n_vocab); } fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch); std::vector workers(std::thread::hardware_concurrency() - 1); std::vector log_probs; if (!params.logits_file.empty()) { logits_stream.write((const char *)&n_vocab, sizeof(n_vocab)); logits_stream.write((const char *)&n_chunk, sizeof(n_chunk)); logits_stream.write((const char *)tokens.data(), n_chunk * kv_size * sizeof(tokens[0])); const int nv = 2*((n_vocab + 1)/2) + 4; log_probs.resize(kv_size * nv); } for (int i = 0; i < n_chunk; ++i) { const int start = i * kv_size; const int end = start + kv_size; const auto t_start = std::chrono::high_resolution_clock::now(); // clear the KV cache llama_kv_cache_clear(ctx); for (int j = 0; j < num_batches; ++j) { const int batch_start = start + j * n_batch; const int batch_size = std::min(end - batch_start, n_batch); // save original token and restore it after eval const auto token_org = tokens[batch_start]; // add BOS token for the first batch of each chunk if (add_bos && j == 0) { tokens[batch_start] = llama_token_bos(llama_get_model(ctx)); } if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) { fprintf(stderr, "%s : failed to eval\n", __func__); return {tokens, -1, logit_history, prob_history}; } // restore the original token in case it was set to BOS tokens[batch_start] = token_org; if (num_batches > 1) { const auto * batch_logits = llama_get_logits(ctx); logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab); } } const auto t_end = std::chrono::high_resolution_clock::now(); if (i == 0) { const float t_total = std::chrono::duration(t_end - t_start).count(); fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total); int total_seconds = (int)(t_total * n_chunk); if (total_seconds >= 60*60) { fprintf(stderr, "%d hours ", total_seconds / (60*60)); total_seconds = total_seconds % (60*60); } fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0); } // We get the logits for all the tokens in the context window (params.kv_size) // from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity, // calculate the perplexity over the last half of the window (so the model always has // some context to predict the token). // // We rely on the fact that attention in the forward pass only looks at previous // tokens here, so the logits returned for each token are an accurate representation // of what the model would have predicted at that point. // // Example, we have a context window of 512, we will compute perplexity for each of the // last 256 tokens. Then, we split the input up into context window size chunks to // process the entire prompt. const int first = kv_size/2; const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx); if (!params.logits_file.empty()) { process_logits(logits_stream, n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, kv_size - 1 - first, workers, log_probs, nll, nll2); } else { process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, kv_size - 1 - first, workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first); } count += kv_size - first - 1; // perplexity is e^(average negative log-likelihood) if (params.ppl_output_type == 0) { printf("[%d]%.4lf,", i + 1, std::exp(nll / count)); } else { double av = nll/count; double av2 = nll2/count - av*av; if (av2 > 0) av2 = sqrt(av2/(count-1)); printf("%8d %.4lf %4lf %4lf\n", i*kv_size, std::exp(nll / count), av, av2); } fflush(stdout); logits.clear(); } printf("\n"); nll2 /= count; nll /= count; const double ppl = exp(nll); nll2 -= nll * nll; if (nll2 > 0) { nll2 = sqrt(nll2/(count-1)); printf("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl); } else { printf("Unexpected negative standard deviation of log(prob)\n"); } return {tokens, ppl, logit_history, prob_history}; } static bool decode_helper(llama_context * ctx, llama_batch & batch, std::vector & batch_logits, int32_t n_batch, int32_t n_vocab) { for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) { const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i)); llama_batch batch_view = { n_tokens, batch.token + i, nullptr, batch.pos + i, batch.n_seq_id + i, batch.seq_id + i, batch.logits + i, 0, 0, 0, // unused }; const int ret = llama_decode(ctx, batch_view); if (ret != 0) { LOG_TEE("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret); return false; } memcpy(batch_logits.data() + i*n_vocab, llama_get_logits(ctx), n_tokens*n_vocab*sizeof(float)); } return true; } #define K_TOKEN_CHUNK 4 static void compute_logprobs(const float * batch_logits, int n_vocab, std::vector& workers, const std::vector>& eval_pairs, std::vector& eval_results) { if (eval_results.size() != eval_pairs.size()) { eval_results.resize(eval_pairs.size()); } if (eval_pairs.empty()) return; size_t max_threads = std::min((eval_pairs.size() + K_TOKEN_CHUNK - 1)/K_TOKEN_CHUNK, workers.size()); std::atomic counter(0); auto compute = [&counter, &eval_pairs, &eval_results, batch_logits, n_vocab] () { float local_logprobs[K_TOKEN_CHUNK]; while (true) { size_t first = counter.fetch_add(K_TOKEN_CHUNK, std::memory_order_relaxed); if (first >= eval_results.size()) break; size_t last = std::min(first + K_TOKEN_CHUNK, eval_results.size()); for (size_t i = first; i < last; ++i) { auto logits = batch_logits + eval_pairs[i].first * n_vocab; float max_logit = logits[0]; for (int j = 1; j < n_vocab; ++j) { max_logit = std::max(max_logit, logits[j]); } float sum_p = 0.f; for (int j = 0; j < n_vocab; ++j) { sum_p += expf(logits[j] - max_logit); } local_logprobs[i - first] = logits[eval_pairs[i].second] - max_logit - std::log(sum_p); } std::memcpy(eval_results.data() + first, local_logprobs, (last - first)*sizeof(float)); } }; for (size_t it = 0; it < max_threads; ++it) { workers[it] = std::thread(compute); } for (size_t it = 0; it < max_threads; ++it) { workers[it].join(); } } static void hellaswag_score(llama_context * ctx, const gpt_params & params) { // Calculates hellaswag score (acc_norm) from prompt // // Data extracted from the HellaSwag validation dataset (MIT license) https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl // All used data fields are preprocessed as in https://github.com/EleutherAI/lm-evaluation-harness/blob/df3da98c5405deafd519c2ddca52bb7c3fe36bef/lm_eval/tasks/hellaswag.py#L62-L68 // // All 10042 tasks should be extracted to keep the results standardized like other implementations. // // Datafile layout: // ['??'] denotes json fields // 6 lines per task: // ['activity_label'] + ": " +['ctx'] - The first part of the query, the context // ['label'] - The index the best common sense ending aka gold ending // ['endings'][0] - Endings added to the first part of the query // ['endings'][1] // ['endings'][2] // ['endings'][3] std::vector prompt_lines; std::istringstream strstream(params.prompt); std::string line; while (std::getline(strstream,line,'\n')) { prompt_lines.push_back(line); } if (prompt_lines.size() % 6 != 0) { fprintf(stderr, "%s : number of lines in prompt not a multiple of 6.\n", __func__); return; } size_t hs_task_count = prompt_lines.size()/6; fprintf(stderr, "%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count); const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM; fprintf(stderr, "================================= is_spm = %d\n", is_spm); // This is needed as usual for LLaMA models const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx)); // The tasks should be randomized so the score stabilizes quickly. bool randomize_tasks = true; // Number of tasks to use when computing the score if (params.hellaswag_tasks < hs_task_count) { hs_task_count = params.hellaswag_tasks; } // The random seed should not impact the final result if the computation is done over enough tasks, so kept hardcoded for now std::mt19937 rng(1); // Dataholder for hellaswag tasks struct hs_data_t { std::string context; size_t gold_ending_idx; std::string ending[4]; size_t ending_logprob_count[4]; double ending_logprob[4]; size_t i_batch; // starting index in the llama_batch size_t common_prefix; // max number of initial tokens that are the same in all sentences size_t required_tokens; // needed number of tokens to evaluate all 4 endings std::vector seq_tokens[4]; }; fprintf(stderr, "%s : selecting %zu %s tasks.\n", __func__, hs_task_count, (randomize_tasks?"randomized":"the first") ); // Select and read data from prompt lines std::vector hs_data(hs_task_count); for (size_t i = 0; i < hs_task_count; i++) { size_t idx = i; auto & hs_cur = hs_data[i]; // Select a random example of those left in the prompt if (randomize_tasks) { std::uniform_int_distribution dist(0, prompt_lines.size()/6-1 ) ; idx = dist(rng); } hs_cur.context = prompt_lines[idx*6]; hs_cur.gold_ending_idx = std::stoi( prompt_lines[idx*6+1] ); for (size_t j = 0; j < 4; j++) { hs_cur.ending[j] = prompt_lines[idx*6+2+j]; hs_cur.seq_tokens[j] = ::llama_tokenize(ctx, hs_cur.context + " " + hs_cur.ending[j], add_bos); } // determine the common prefix of the endings hs_cur.common_prefix = 0; for (size_t k = 0; k < hs_cur.seq_tokens[0].size(); k++) { if (hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[1][k] || hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[2][k] || hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[3][k]) { break; } hs_cur.common_prefix++; } hs_cur.required_tokens = hs_cur.common_prefix + hs_cur.seq_tokens[0].size() - hs_cur.common_prefix + hs_cur.seq_tokens[1].size() - hs_cur.common_prefix + hs_cur.seq_tokens[2].size() - hs_cur.common_prefix + hs_cur.seq_tokens[3].size() - hs_cur.common_prefix; //GGML_ASSERT(hs_cur.common_prefix >= ::llama_tokenize(ctx, hs_cur.context, add_bos).size()); // Delete the selected random example from the prompt if (randomize_tasks) { prompt_lines.erase( std::next(prompt_lines.begin(),idx*6) , std::next(prompt_lines.begin(),idx*6+6) ); } } fprintf(stderr, "%s : calculating hellaswag score over selected tasks.\n", __func__); printf("\ntask\tacc_norm\n"); double acc = 0.0f; const int n_vocab = llama_n_vocab(llama_get_model(ctx)); const int kv_size = llama_kv_size(ctx); const int n_batch = params.n_batch; const int max_tasks_per_batch = 32; const int max_seq = 4*max_tasks_per_batch; llama_batch batch = llama_batch_init(kv_size, 0, max_seq); std::vector tok_logits(n_vocab); std::vector batch_logits(n_vocab*kv_size); std::vector> eval_pairs; std::vector eval_results; std::vector workers(std::thread::hardware_concurrency()); for (size_t i0 = 0; i0 < hs_task_count; i0++) { int n_cur = 0; size_t i1 = i0; size_t i_batch = 0; // this tells us where in `llama_batch` we are currently llama_batch_clear(batch); // batch as much tasks as possible into the available context // each task has 4 unique seuqnce ids - one for each ending // the common prefix is shared among the 4 sequences to save tokens // we extract logits only from the last common token and from all ending tokens of each sequence while (n_cur + (int) hs_data[i1].required_tokens <= kv_size) { auto & hs_cur = hs_data[i1]; const int s0 = 4*(i1 - i0); if (s0 + 4 > max_seq) { break; } for (size_t i = 0; i < hs_cur.common_prefix; ++i) { llama_batch_add(batch, hs_cur.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3}, false); } batch.logits[batch.n_tokens - 1] = true; // we need logits for the last token of the common prefix for (int s = 0; s < 4; ++s) { for (size_t i = hs_cur.common_prefix; i < hs_cur.seq_tokens[s].size(); ++i) { llama_batch_add(batch, hs_cur.seq_tokens[s][i], i, { s0 + s }, true); } } hs_cur.i_batch = i_batch; i_batch += hs_cur.required_tokens; n_cur += hs_data[i1].required_tokens; if (++i1 == hs_task_count) { break; } } if (i0 == i1) { fprintf(stderr, "%s : task %zu does not fit in the context window\n", __func__, i0); return; } llama_kv_cache_clear(ctx); // decode all tasks [i0, i1) if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) { fprintf(stderr, "%s: llama_decode() failed\n", __func__); return; } // Compute log-probs in parallel // First we collect all tasks eval_pairs.clear(); for (size_t i = i0; i < i1; ++i) { auto & hs_cur = hs_data[i]; size_t li = hs_cur.common_prefix; for (int s = 0; s < 4; ++s) { for (size_t j = hs_cur.common_prefix; j < hs_cur.seq_tokens[s].size() - 1; j++) { eval_pairs.emplace_back(hs_cur.i_batch + li++, hs_cur.seq_tokens[s][j + 1]); } ++li; } } // Then we do the actual calculation compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results); size_t ir = 0; // compute the logprobs for each ending of the decoded tasks for (size_t i = i0; i < i1; ++i) { auto & hs_cur = hs_data[i]; std::memcpy(tok_logits.data(), batch_logits.data() + n_vocab*(hs_cur.i_batch + hs_cur.common_prefix - 1), n_vocab*sizeof(float)); const auto first_probs = softmax(tok_logits); for (int s = 0; s < 4; ++s) { hs_cur.ending_logprob_count[s] = 1; hs_cur.ending_logprob[s] = std::log(first_probs[hs_cur.seq_tokens[s][hs_cur.common_prefix]]); for (size_t j = hs_cur.common_prefix; j < hs_cur.seq_tokens[s].size() - 1; j++) { hs_cur.ending_logprob[s] += eval_results[ir++]; hs_cur.ending_logprob_count[s]++; } hs_cur.ending_logprob[s] /= hs_cur.ending_logprob_count[s]; } // Find the ending with maximum logprob size_t ending_logprob_max_idx = 0; double ending_logprob_max_val = hs_cur.ending_logprob[0]; for (size_t s = 1; s < 4; s++) { if (hs_cur.ending_logprob[s] > ending_logprob_max_val) { ending_logprob_max_idx = s; ending_logprob_max_val = hs_cur.ending_logprob[s]; } } //printf("max logprob ending idx %lu, gold ending idx %lu\n", ending_logprob_max_idx, hs_cur.gold_ending_idx); // If the gold ending got the maximum logprobe add one accuracy point if (ending_logprob_max_idx == hs_cur.gold_ending_idx) { acc += 1.0; } // Print the accumulated accuracy mean x 100 printf("%zu\t%.8lf\n", i + 1, acc/double(i + 1)*100.0); fflush(stdout); } i0 = i1 - 1; } llama_batch_free(batch); printf("\n"); } struct winogrande_entry { std::string first; std::string second; std::array choices; int answer; size_t i_batch; size_t common_prefix; size_t required_tokens; size_t n_base1; // number of tokens for context + choice 1 size_t n_base2; // number of tokens for context + choice 2 std::vector seq_tokens[2]; }; static std::vector load_winogrande_from_csv(const std::string& prompt) { std::vector result; std::istringstream in(prompt); std::string line; std::array comma_pos; while (true) { std::getline(in, line); if (in.fail() || in.eof()) break; int ipos = 0; bool quote_open = false; for (int i = 0; i < int(line.size()); ++i) { if (!quote_open) { if (line[i] == ',') { comma_pos[ipos++] = i; if (ipos == 4) break; } else if (line[i] == '"') { quote_open = true; } } else { if (line[i] == '"') { quote_open = false; } } } if (ipos != 4) { printf("%s: failed to find comma separators in <%s>\n", __func__, line.c_str()); continue; } auto sentence = line[comma_pos[0]+1] == '"' ? line.substr(comma_pos[0]+2, comma_pos[1] - comma_pos[0] - 3) : line.substr(comma_pos[0]+1, comma_pos[1] - comma_pos[0] - 1); auto choice1 = line.substr(comma_pos[1]+1, comma_pos[2] - comma_pos[1] - 1); auto choice2 = line.substr(comma_pos[2]+1, comma_pos[3] - comma_pos[2] - 1); auto answer = line.substr(comma_pos[3]+1, line.size() - comma_pos[3] - 1); auto index = line.substr(0, comma_pos[0]); int where = 0; for ( ; where < int(sentence.size()); ++where) { if (sentence[where] == '_') break; } if (where == int(sentence.size())) { printf("%s: no _ in <%s>\n", __func__, sentence.c_str()); continue; } std::istringstream stream(answer.c_str()); int i_answer; stream >> i_answer; if (stream.fail() || i_answer < 1 || i_answer > 2) { printf("%s: failed to parse answer <%s>\n", __func__, answer.c_str()); continue; } result.emplace_back(); auto& wg = result.back(); wg.first = sentence.substr(0, where); wg.second = sentence.substr(where + 1, sentence.size() - where - 1); wg.choices[0] = std::move(choice1); wg.choices[1] = std::move(choice2); wg.answer = i_answer; } return result; } /* * Evaluates the Winogrande score. * Uses a CSV containing task index, dentence, choice 1, choice 2, answer (1 or 2) * You can get one such dataset from e.g. https://huggingface.co/datasets/ikawrakow/winogrande-eval-for-llama.cpp * As an example, the 1st row in the above dataset is * * 0,Sarah was a much better surgeon than Maria so _ always got the easier cases.,Sarah,Maria,2 * */ static void winogrande_score(llama_context * ctx, const gpt_params & params) { constexpr int k_min_trailing_ctx = 3; auto data = load_winogrande_from_csv(params.prompt); if (data.empty()) { fprintf(stderr, "%s: no tasks\n", __func__); return; } fprintf(stderr, "%s : loaded %zu tasks from prompt.\n", __func__, data.size()); if (params.winogrande_tasks > 0 && params.winogrande_tasks < data.size()) { fprintf(stderr, "%s : selecting %zu random tasks\n", __func__, params.winogrande_tasks); std::mt19937 rng(1); std::vector aux(data.size()); for (int i = 0; i < int(data.size()); ++i) { aux[i] = i; } float scale = 1/(1.f + (float)rng.max()); std::vector selected; selected.resize(params.winogrande_tasks); for (int i = 0; i < int(params.winogrande_tasks); ++i) { int j = int(scale*rng()*aux.size()); selected[i] = std::move(data[aux[j]]); aux[j] = aux.back(); aux.pop_back(); } data = std::move(selected); } fprintf(stderr, "%s : tokenizing selected tasks\n", __func__); // This is needed as usual for LLaMA models const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx)); for (auto & task : data) { task.seq_tokens[0] = ::llama_tokenize(ctx, task.first + task.choices[0] + task.second, add_bos); task.seq_tokens[1] = ::llama_tokenize(ctx, task.first + task.choices[1] + task.second, add_bos); task.common_prefix = 0; for (size_t k = 0; k < task.seq_tokens[0].size(); k++) { if (task.seq_tokens[0][k] != task.seq_tokens[1][k]) { break; } task.common_prefix++; } task.required_tokens = task.common_prefix + task.seq_tokens[0].size() - task.common_prefix + task.seq_tokens[1].size() - task.common_prefix; task.n_base1 = ::llama_tokenize(ctx, task.first + task.choices[0], add_bos).size(); task.n_base2 = ::llama_tokenize(ctx, task.first + task.choices[1], add_bos).size(); } fprintf(stderr, "%s : calculating winogrande score over selected tasks.\n", __func__); const int n_vocab = llama_n_vocab(llama_get_model(ctx)); const int kv_size = llama_kv_size(ctx); const int n_batch = params.n_batch; const int max_tasks_per_batch = 128; const int max_seq = 2*max_tasks_per_batch; llama_batch batch = llama_batch_init(kv_size, 0, max_seq); std::vector tok_logits(n_vocab); std::vector batch_logits(n_vocab*kv_size); std::vector> eval_pairs; std::vector eval_results; std::vector workers(std::thread::hardware_concurrency()); int n_correct = 0; int n_done = 0; for (size_t i0 = 0; i0 < data.size(); i0++) { int n_cur = 0; size_t i1 = i0; size_t i_batch = 0; llama_batch_clear(batch); while (n_cur + (int) data[i1].required_tokens <= kv_size) { const int s0 = 2*(i1 - i0); if (s0 + 2 > max_seq) { break; } for (size_t i = 0; i < data[i1].common_prefix; ++i) { llama_batch_add(batch, data[i1].seq_tokens[0][i], i, { s0 + 0, s0 + 1}, false); } batch.logits[batch.n_tokens - 1] = true; for (int s = 0; s < 2; ++s) { for (size_t i = data[i1].common_prefix; i < data[i1].seq_tokens[s].size(); ++i) { llama_batch_add(batch, data[i1].seq_tokens[s][i], i, { s0 + s }, true); } } data[i1].i_batch = i_batch; i_batch += data[i1].required_tokens; n_cur += data[i1].required_tokens; if (++i1 == data.size()) { break; } } if (i0 == i1) { fprintf(stderr, "%s : task %zu does not fit in the context window\n", __func__, i0); return; } llama_kv_cache_clear(ctx); // decode all tasks [i0, i1) if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) { fprintf(stderr, "%s: llama_decode() failed\n", __func__); return; } eval_pairs.clear(); for (size_t i = i0; i < i1; ++i) { auto & task = data[i]; const bool skip_choice = task.seq_tokens[0].size() - task.common_prefix > k_min_trailing_ctx && task.seq_tokens[1].size() - task.common_prefix > k_min_trailing_ctx; const auto& n_base1 = skip_choice ? task.n_base1 : task.common_prefix; const int last_1st = task.seq_tokens[0].size() - n_base1 > 1 ? 1 : 0; size_t li = n_base1 - 1; for (size_t j = n_base1-1; j < task.seq_tokens[0].size()-1-last_1st; ++j) { eval_pairs.emplace_back(task.i_batch + li++, task.seq_tokens[0][j+1]); } const auto& n_base2 = skip_choice ? task.n_base2 : task.common_prefix; const int last_2nd = task.seq_tokens[1].size() - n_base2 > 1 ? 1 : 0; li = task.seq_tokens[0].size() - task.common_prefix + n_base2 - 1; for (size_t j = n_base2-1; j < task.seq_tokens[1].size()-1-last_2nd; ++j) { eval_pairs.emplace_back(task.i_batch + li++, task.seq_tokens[1][j+1]); } } compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results); size_t ir = 0; for (size_t i = i0; i < i1; ++i) { auto & task = data[i]; const bool skip_choice = task.seq_tokens[0].size() - task.common_prefix > k_min_trailing_ctx && task.seq_tokens[1].size() - task.common_prefix > k_min_trailing_ctx; float score_1st = 0; const auto& n_base1 = skip_choice ? task.n_base1 : task.common_prefix; const int last_1st = task.seq_tokens[0].size() - n_base1 > 1 ? 1 : 0; for (size_t j = n_base1-1; j < task.seq_tokens[0].size()-1-last_1st; ++j) { score_1st += eval_results[ir++]; } score_1st /= (task.seq_tokens[0].size() - n_base1 - last_1st); float score_2nd = 0; const auto& n_base2 = skip_choice ? task.n_base2 : task.common_prefix; const int last_2nd = task.seq_tokens[1].size() - n_base2 > 1 ? 1 : 0; for (size_t j = n_base2-1; j < task.seq_tokens[1].size()-1-last_2nd; ++j) { score_2nd += eval_results[ir++]; } score_2nd /= (task.seq_tokens[1].size() - n_base2 - last_2nd); int result = score_1st > score_2nd ? 1 : 2; if (result == task.answer) { ++n_correct; } ++n_done; // print the accumulated accuracy mean x 100 printf("%zu\t%.4lf\t%10.6f %10.6f %d %d\n", i+1, 100.0 * n_correct/n_done, score_1st, score_2nd, result, task.answer); fflush(stdout); } i0 = i1 - 1; } printf("\n"); if (n_done < 100) return; const float p = 1.f*n_correct/n_done; const float sigma = 100.f*sqrt(p*(1-p)/(n_done-1)); printf("Final Winogrande score(%d tasks): %.4lf +/- %.4lf\n", n_done, 100*p, sigma); } static bool deserialize_string(std::istream & in, std::string & str) { uint32_t size; if (!in.read((char *)&size, sizeof(size)).fail()) { str.resize(size); if (!in.read((char *)&str[0], size).fail()) return true; } return false; } struct multiple_choice_answers { std::vector answers; std::vector labels; bool deserialize(std::istream& in) { uint32_t n; in.read((char *)&n, sizeof(n)); if (in.fail() || n > 100) return false; // 100 as max. number of answers should be good enough for any practical purpose answers.resize(n); labels.resize(n); for (auto& a : answers) { if (!deserialize_string(in, a)) return false; } in.read((char *)labels.data(), n*sizeof(int)); return !in.fail(); } }; struct multiple_choice_task { std::string question; // the question (or context that needs to be continued) multiple_choice_answers mc1; // possible answers (continuations) with a single correct answer multiple_choice_answers mc2; // possible answers (continuations) with multiple correct answers - not handled yet bool deserialize(std::istream& in) { if (!deserialize_string(in, question)) return false; return mc1.deserialize(in) && mc2.deserialize(in); } // For evaluation size_t i_batch; // starting index in the llama_batch size_t common_prefix; // max number of initial tokens that are the same in all sentences size_t required_tokens; // needed number of tokens to evaluate all answers std::vector> seq_tokens; std::vector log_probs; }; static bool multiple_choice_prepare_one_task(llama_context * ctx, bool add_bos, multiple_choice_task& task, bool log_error) { if (task.question.empty() || task.mc1.answers.empty()) { if (log_error) { printf("%s: found bad task with empty question and/or answers\n", __func__); } return false; } task.seq_tokens.reserve(task.mc1.answers.size()); for (auto& answer : task.mc1.answers) { if (answer.empty()) { if (log_error) { printf("%s: found empty answer\n", __func__); } return false; } task.seq_tokens.emplace_back(::llama_tokenize(ctx, task.question + " " + answer, add_bos)); } auto min_len = task.seq_tokens.front().size(); for (auto& seq : task.seq_tokens) { min_len = std::min(min_len, seq.size()); } task.common_prefix = 0; for (size_t k = 0; k < min_len; ++k) { auto token = task.seq_tokens[0][k]; bool all_same = true; for (size_t i = 1; i < task.seq_tokens.size(); ++i) { if (task.seq_tokens[i][k] != token) { all_same = false; break; } } if (!all_same) { break; } ++task.common_prefix; } task.required_tokens = task.common_prefix; for (auto& seq : task.seq_tokens) { task.required_tokens += seq.size() - task.common_prefix; } return true; } // // Calculates score for multiple choice tasks with single correct answer from prompt. // Commonly used LLM evaluation metrics of this type are // * ARC // * HellaSwag // * MMLU // * TruthfulQA // // Validation datasets for these 4 tests can be found at // https://huggingface.co/datasets/ikawrakow/validation-datasets-for-llama.cpp // The data for these datasets was extracted from // git@hf.co:datasets/allenai/ai2_arc // https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl // git@hf.co:datasets/Stevross/mmlu // https://huggingface.co/datasets/truthful_qa // static void multiple_choice_score(llama_context * ctx, const gpt_params & params) { std::istringstream strstream(params.prompt); uint32_t n_task; strstream.read((char *)&n_task, sizeof(n_task)); if (strstream.fail() || n_task == 0) { printf("%s: no tasks\n", __func__); return; } printf("%s: there are %u tasks in prompt\n", __func__, n_task); std::vector task_pos(n_task); strstream.read((char *)task_pos.data(), task_pos.size()*sizeof(uint32_t)); if (strstream.fail()) { printf("%s: failed to raad task positions from prompt\n", __func__); return; } std::vector tasks; if (params.multiple_choice_tasks == 0 || params.multiple_choice_tasks >= (size_t)n_task) { // Use all tasks tasks.resize(n_task); printf("%s: reading tasks", __func__); int n_dot = n_task/100; int i = 0; for (auto& task : tasks) { ++i; if (!task.deserialize(strstream)) { printf("%s: failed to read task %d of %u\n", __func__, i, n_task); return; } if (i%n_dot == 0) printf("."); } printf("done\n"); } else { printf("%s: selecting %zu random tasks from %u tasks available\n", __func__, params.multiple_choice_tasks, n_task); std::mt19937 rng(1); std::vector aux(n_task); for (uint32_t i = 0; i < n_task; ++i) aux[i] = i; float scale = 1.f/(1.f + (float)std::mt19937::max()); tasks.resize(params.multiple_choice_tasks); for (auto& task : tasks) { int j = (int)(scale * rng() * aux.size()); int idx = aux[j]; aux[j] = aux.back(); aux.pop_back(); strstream.seekg(task_pos[idx], std::ios::beg); if (!task.deserialize(strstream)) { printf("%s: failed to read task %d at position %u\n", __func__, idx, task_pos[idx]); return; } } n_task = params.multiple_choice_tasks; } // This is needed as usual for LLaMA models const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx)); printf("%s: preparing task data", __func__); fflush(stdout); if (n_task > 500) { printf("..."); fflush(stdout); std::atomic counter(0); std::atomic n_bad(0); auto prepare = [&counter, &n_bad, &tasks, ctx, add_bos] () { int num_tasks = tasks.size(); int n_bad_local = 0; while (true) { int first = counter.fetch_add(K_TOKEN_CHUNK); if (first >= num_tasks) { if (n_bad_local > 0) n_bad += n_bad_local; break; } int last = std::min(first + K_TOKEN_CHUNK, num_tasks); for (int i = first; i < last; ++i) { if (!multiple_choice_prepare_one_task(ctx, add_bos, tasks[i], false)) ++n_bad_local; } } }; size_t max_thread = std::thread::hardware_concurrency(); max_thread = std::min(max_thread, (tasks.size() + K_TOKEN_CHUNK - 1)/K_TOKEN_CHUNK); std::vector workers(max_thread-1); for (auto& w : workers) w = std::thread(prepare); prepare(); for (auto& w : workers) w.join(); printf("done\n"); fflush(stdout); int nbad = n_bad; if (nbad > 0) { printf("%s: found %d malformed tasks\n", __func__, nbad); return; } } else { int n_dot = n_task/100; int i_task = 0; for (auto& task : tasks) { ++i_task; if (!multiple_choice_prepare_one_task(ctx, add_bos, task, true)) { return; } if (i_task%n_dot == 0) { printf("."); fflush(stdout); } } printf("done\n"); } printf("%s : calculating TruthfulQA score over %zu tasks.\n", __func__, tasks.size()); printf("\ntask\tacc_norm\n"); const int n_vocab = llama_n_vocab(llama_get_model(ctx)); const int kv_size = llama_kv_size(ctx); const int n_batch = params.n_batch; const int max_tasks_per_batch = 32; const int max_seq = 4*max_tasks_per_batch; llama_batch batch = llama_batch_init(kv_size, 0, max_seq); std::vector tok_logits(n_vocab); std::vector batch_logits(n_vocab*kv_size); std::vector> eval_pairs; std::vector eval_results; std::vector workers(std::thread::hardware_concurrency()); std::vector batch_indeces; int n_done = 0; int n_correct = 0; int n_tot_answers = 0; for (size_t i0 = 0; i0 < tasks.size(); i0++) { int n_cur = 0; size_t i1 = i0; size_t i_batch = 0; // this tells us where in `llama_batch` we are currently llama_batch_clear(batch); // batch as much tasks as possible into the available context // each task has 4 unique seuqnce ids - one for each ending // the common prefix is shared among the 4 sequences to save tokens // we extract logits only from the last common token and from all ending tokens of each sequence int s0 = 0; while (n_cur + (int) tasks[i1].required_tokens <= kv_size) { auto& cur_task = tasks[i1]; int num_answers = cur_task.seq_tokens.size(); if (s0 + num_answers > max_seq) { break; } if (int(batch_indeces.size()) != num_answers) { batch_indeces.resize(num_answers); } for (int s = 0; s < num_answers; ++s) batch_indeces[s] = s0 + s; for (size_t i = 0; i < cur_task.common_prefix; ++i) { //llama_batch_add(batch, cur_task.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3}, false); llama_batch_add(batch, cur_task.seq_tokens[0][i], i, batch_indeces, false); } batch.logits[batch.n_tokens - 1] = true; // we need logits for the last token of the common prefix for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) { for (size_t i = cur_task.common_prefix; i < cur_task.seq_tokens[s].size(); ++i) { llama_batch_add(batch, cur_task.seq_tokens[s][i], i, { s0 + s }, true); } } s0 += num_answers; cur_task.i_batch = i_batch; i_batch += cur_task.required_tokens; n_cur += cur_task.required_tokens; if (++i1 == tasks.size()) { break; } } if (i0 == i1) { fprintf(stderr, "%s : task %zu does not fit in the context window\n", __func__, i0); return; } llama_kv_cache_clear(ctx); // decode all tasks [i0, i1) if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) { fprintf(stderr, "%s: llama_decode() failed\n", __func__); return; } // Compute log-probs in parallel // First we collect all tasks eval_pairs.clear(); for (size_t i = i0; i < i1; ++i) { auto& cur_task = tasks[i]; size_t li = cur_task.common_prefix; for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) { for (size_t j = cur_task.common_prefix; j < cur_task.seq_tokens[s].size() - 1; j++) { eval_pairs.emplace_back(cur_task.i_batch + li++, cur_task.seq_tokens[s][j + 1]); } ++li; } } // Then we do the actual calculation compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results); size_t ir = 0; // compute the logprobs for each ending of the decoded tasks for (size_t i = i0; i < i1; ++i) { auto & cur_task = tasks[i]; //printf("==== Evaluating <%s> with correct answer ", cur_task.question.c_str()); //for (int j = 0; j < int(cur_task.mc1.labels.size()); ++j) { // if (cur_task.mc1.labels[j] == 1) { // printf("%d", j+1); // } //} //printf("\n common_prefix: %zu\n", cur_task.common_prefix); std::memcpy(tok_logits.data(), batch_logits.data() + n_vocab*(cur_task.i_batch + cur_task.common_prefix - 1), n_vocab*sizeof(float)); const auto first_probs = softmax(tok_logits); cur_task.log_probs.resize(cur_task.seq_tokens.size()); for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) { size_t count = 1; float log_prob = std::log(first_probs[cur_task.seq_tokens[s][cur_task.common_prefix]]); for (size_t j = cur_task.common_prefix; j < cur_task.seq_tokens[s].size() - 1; j++) { //printf(" %zu %g\n", ir, eval_results[ir]); ++count; log_prob += eval_results[ir++]; } cur_task.log_probs[s] = log_prob / count; //printf(" Final: %g\n", log_prob / count); //printf(" <%s> : %g\n", cur_task.mc1.answers[s].c_str(), log_prob/count); } // Find the ending with maximum logprob size_t logprob_max_idx = 0; float logprob_max_val = cur_task.log_probs[0]; for (size_t s = 1; s < cur_task.log_probs.size(); s++) { if (cur_task.log_probs[s] > logprob_max_val) { logprob_max_val = cur_task.log_probs[s]; logprob_max_idx = s; } } n_tot_answers += cur_task.log_probs.size(); if (cur_task.mc1.labels[logprob_max_idx] == 1) { ++n_correct; } ++n_done; // Print the accumulated accuracy mean x 100 printf("%d\t%.8lf\n", n_done, 100.*n_correct/n_done); fflush(stdout); } i0 = i1 - 1; } llama_batch_free(batch); if (n_done < 100) return; float p = 1.f*n_correct/n_done; float sigma = sqrt(p*(1-p)/(n_done-1)); printf("\n Final result: %.4f +/- %.4f\n", 100.f*p, 100.f*sigma); p = 1.f*n_done/n_tot_answers; sigma = sqrt(p*(1-p)/(n_done-1)); printf("Random chance: %.4f +/- %.4f\n", 100.f*p, 100.f*sigma); printf("\n"); } static void kl_divergence(llama_context * ctx, const gpt_params & params) { if (params.logits_file.empty()) { fprintf(stderr, "%s: you must provide a name of a file containing the log probabilities of the base model\n", __func__); return; } std::ifstream in(params.logits_file.c_str(), std::ios::binary); if (!in) { fprintf(stderr, "%s: failed to open %s\n", __func__, params.logits_file.c_str()); return; } { char check[9]; check[8] = 0; in.read(check, 8); if (in.fail() || strncmp("_logits_", check, 8) != 0) { fprintf(stderr, "%s: %s does not look like a file containing log-probabilities\n", __func__, params.logits_file.c_str()); return; } } uint32_t kv_size; in.read((char *)&kv_size, sizeof(kv_size)); if (kv_size > llama_kv_size(ctx)) { fprintf(stderr, "%s: %s has been computed with %u, while the current KV Cache size is %d. Increase it with -kv and retry\n", __func__, params.logits_file.c_str(), kv_size, params.kv_size); } int n_vocab, n_chunk; in.read((char *)&n_vocab, sizeof(n_vocab)); in.read((char *)&n_chunk, sizeof(n_chunk)); if (in.fail()) { fprintf(stderr, "%s: failed reading n_vocab, n_chunk from %s\n", __func__, params.logits_file.c_str()); return; } if (n_vocab != llama_n_vocab(llama_get_model(ctx))) { fprintf(stderr, "%s: inconsistent vocabulary (%d vs %d)\n", __func__, n_vocab, llama_n_vocab(llama_get_model(ctx))); } std::vector tokens(kv_size * n_chunk); if (in.read((char *)tokens.data(), tokens.size()*sizeof(tokens[0])).fail()) { fprintf(stderr, "%s: failed reading evaluation tokens from %s\n", __func__, params.logits_file.c_str()); return; } const int n_batch = params.n_batch; const int num_batches = (kv_size + n_batch - 1)/n_batch; const int nv = 2*((n_vocab + 1)/2) + 4; const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx)); std::vector log_probs_uint16(size_t(kv_size - 1 - kv_size/2) * nv); std::vector kld_values(size_t(kv_size - 1 - kv_size /2)*n_chunk); std::vector logits; if (num_batches > 1) { logits.reserve(kv_size * n_vocab); } std::vector workers(std::thread::hardware_concurrency() - 1); auto mean_and_uncertainty = [] (double sum, double sum2, size_t count) { if (count < 1) { return std::make_pair(0., 0.); } double f = sum/count; double df = sum2/count - f*f; df = df > 0 && count > 10 ? sqrt(df/(count-1)) : 0.; return std::make_pair(f, df); }; kl_divergence_result kld; auto kld_ptr = kld_values.data(); for (int i = 0; i < n_chunk; ++i) { const int start = i * kv_size; const int end = start + kv_size; const auto t_start = std::chrono::high_resolution_clock::now(); if (in.read((char *)log_probs_uint16.data(), log_probs_uint16.size()*sizeof(uint16_t)).fail()) { fprintf(stderr, "%s: failed reading log-probs for chunk %d\n", __func__, i); return; } // clear the KV cache llama_kv_cache_clear(ctx); for (int j = 0; j < num_batches; ++j) { const int batch_start = start + j * n_batch; const int batch_size = std::min(end - batch_start, n_batch); // save original token and restore it after eval const auto token_org = tokens[batch_start]; // add BOS token for the first batch of each chunk if (add_bos && j == 0) { tokens[batch_start] = llama_token_bos(llama_get_model(ctx)); } if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) { fprintf(stderr, "%s : failed to eval\n", __func__); return; } // restore the original token in case it was set to BOS tokens[batch_start] = token_org; if (num_batches > 1) { const auto * batch_logits = llama_get_logits(ctx); logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab); } } const auto t_end = std::chrono::high_resolution_clock::now(); if (i == 0) { const float t_total = std::chrono::duration(t_end - t_start).count(); fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total); int total_seconds = (int)(t_total * n_chunk); if (total_seconds >= 60*60) { fprintf(stderr, "%d hours ", total_seconds / (60*60)); total_seconds = total_seconds % (60*60); } fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0); printf("\nchunk PPL ln(PPL(Q)/PPL(base)) KL-Divergence Same top\n"); } const int first = kv_size/2; const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx); process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, kv_size - 1 - first, workers, log_probs_uint16, kld, kld_ptr); kld_ptr += kv_size - 1 - first; auto ppl = mean_and_uncertainty(kld.sum_nll, kld.sum_nll2, kld.count); auto log_ppl_ratio = mean_and_uncertainty(kld.sum_nll_diff, kld.sum_nll_diff2, kld.count); auto kl_div = mean_and_uncertainty(kld.sum_kld, kld.sum_kld2, kld.count); auto p_top = 1.*kld.n_same_top/kld.count; auto d_p_top = sqrt(p_top*(1 - p_top)/(kld.count - 1)); printf("%4d %10.4lf %10.5lf ± %10.5f %10.5f ± %10.5lf %.5f ± %.5f\n", i+1, exp(ppl.first), log_ppl_ratio.first, log_ppl_ratio.second, kl_div.first, kl_div.second, p_top, d_p_top); fflush(stdout); logits.clear(); } printf("\n"); if (kld.count < 100) return; // we do not wish to do statistics on so few values std::sort(kld_values.begin(), kld_values.end()); printf("===== KL-divergence statistics\n"); auto kl_div = mean_and_uncertainty(kld.sum_kld, kld.sum_kld2, kld.count); printf("Average: %10.6f ±%10.6lf\n", kl_div.first, kl_div.second); auto kld_median = kld_values.size()%2 == 0 ? 0.5f*(kld_values[kld_values.size()/2] + kld_values[kld_values.size()/2-1]) : kld_values[kld_values.size()/2]; printf("Median : %10.6f\n", kld_median); auto percentile = [&kld_values] (float fraction) { if (fraction <= 0) return kld_values.front(); if (fraction >= 1) return kld_values.back(); float p = fraction*(kld_values.size() - 1); size_t ip = size_t(p); p -= ip; return (1 - p)*kld_values[ip] + p*kld_values[std::min(ip+1, kld_values.size()-1)]; }; printf("Maximum: %10.6f\n", kld_values.back()); printf("KLD_99 : %10.6f\n", percentile(0.99f)); printf("KLD_95 : %10.6f\n", percentile(0.95f)); printf("KLD_90 : %10.6f\n", percentile(0.90f)); printf("Minimum: %10.6f\n", kld_values.front()); printf("KLD_01 : %10.6f\n", percentile(0.01f)); printf("KLD_05 : %10.6f\n", percentile(0.05f)); printf("KLD_10 : %10.6f\n", percentile(0.10f)); } int main(int argc, char ** argv) { gpt_params params; params.n_batch = 512; if (!gpt_params_parse(argc, argv, params)) { return 1; } params.logits_all = true; params.n_batch = std::min(params.n_batch, params.kv_size); if (params.ppl_stride > 0) { fprintf(stderr, "Will perform strided perplexity calculation -> adjusting KV size from %d to %d\n", params.kv_size, params.kv_size + params.ppl_stride / 2); params.kv_size += params.ppl_stride/2; } print_build_info(); if (params.seed == LLAMA_DEFAULT_SEED) { params.seed = time(NULL); } fprintf(stderr, "%s: seed = %u\n", __func__, params.seed); std::mt19937 rng(params.seed); if (params.random_prompt) { params.prompt = gpt_random_prompt(rng); } llama_backend_init(); llama_numa_init(params.numa); llama_model * model; llama_context * ctx; // load the model and apply lora adapter, if any std::tie(model, ctx) = llama_init_from_gpt_params(params); if (model == NULL) { fprintf(stderr, "%s: error: unable to load model\n", __func__); return 1; } const int n_ctx_train = llama_n_ctx_train(model); if (params.kv_size > n_ctx_train) { fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, params.kv_size); } // print system information { fprintf(stderr, "\n"); fprintf(stderr, "%s\n", get_system_info(params).c_str()); } struct results_perplexity results; if (params.hellaswag) { hellaswag_score(ctx, params); } else if (params.winogrande) { winogrande_score(ctx, params); } else if (params.multiple_choice) { multiple_choice_score(ctx, params); } else if (params.kl_divergence) { kl_divergence(ctx, params); } else { results = perplexity(ctx, params); } llama_print_timings(ctx); write_logfile(ctx, params, model, results); llama_free(ctx); llama_free_model(model); llama_backend_free(); return 0; }