#include "common.h" #include "llama.h" #include "build-info.h" #ifndef NDEBUG // crash the server in debug mode, otherwise send an http 500 error #define CPPHTTPLIB_NO_EXCEPTIONS 1 #endif #include "httplib.h" #include "json.hpp" // auto generated files (update with ./deps.sh) #include "index.html.hpp" #include "index.js.hpp" #include "completion.js.hpp" #ifndef SERVER_VERBOSE #define SERVER_VERBOSE 1 #endif using namespace httplib; using json = nlohmann::json; using ordered_json = nlohmann::ordered_json; struct server_params { std::string hostname = "127.0.0.1"; std::string public_path = "examples/server/public"; int32_t port = 8080; int32_t read_timeout = 600; int32_t write_timeout = 600; }; // completion token output with probabilities struct completion_token_output { struct token_prob { llama_token tok; float prob; }; std::vector probs; llama_token tok; }; static size_t common_part(const std::vector & a, const std::vector & b) { size_t i; for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {} return i; } enum stop_type { STOP_FULL, STOP_PARTIAL, }; static bool ends_with(const std::string & str, const std::string & suffix) { return str.size() >= suffix.size() && 0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix); } static size_t find_partial_stop_string(const std::string & stop, const std::string & text) { if (!text.empty() && !stop.empty()) { const char text_last_char = text.back(); for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) { if (stop[char_index] == text_last_char) { const std::string current_partial = stop.substr(0, char_index + 1); if (ends_with(text, current_partial)) { return text.size() - char_index - 1; } } } } return std::string::npos; } template static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) { std::string ret; for (; begin != end; ++begin) { ret += llama_token_to_str(ctx, *begin); } return ret; } #define SERVER_LOG_PRETTY 0 static void server_log(const char * level, const char * function, int line, const char * message, const ordered_json & extra) { #if SERVER_LOG_PRETTY == 1 fprintf(stdout, ANSI_COLOR_MAGENTA ANSI_BOLD "[%s] " ANSI_COLOR_RESET " %s@%d: %s\n", level, function, line, message); for (auto & it : extra.items()) { fprintf(stdout, "%s=" ANSI_COLOR_YELLOW ANSI_BOLD "%s " ANSI_COLOR_RESET, it.key().c_str(), it.value().dump().c_str()); } fprintf(stdout, "\n\n"); #else ordered_json log { { "timestamp", time(nullptr) }, { "level", level }, { "function", function }, { "line", line }, { "message", message }, }; if (!extra.empty()) { log.merge_patch(extra); } const std::string str = log.dump(-1, ' ', false, json::error_handler_t::replace); fprintf(stdout, "%.*s\n", (int)str.size(), str.data()); #endif fflush(stdout); } // format incomplete utf-8 multibyte character for output static std::string tokens_to_output_formatted_string(const llama_context * ctx, const llama_token token) { std::string out = token == -1 ? "" : llama_token_to_str(ctx, token); // if first bit is 1, meaning it's a partial character if (out.size() > 0 && (out[0] & 0x80) == 0x80) { std::stringstream ss; ss << std::hex << (out[0] & 0xff); std::string res(ss.str()); out = "byte: \\x" + res; } return out; } // convert a vector of completion_token_output to json static json probs_vector_to_json(const llama_context * ctx, const std::vector probs) { json out = json::array(); for (const auto & prob : probs) { json probs_for_token = json::array(); for (const auto & p : prob.probs) { std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok); probs_for_token.push_back(json { { "tok_str", tok_str }, { "prob", p.prob }, }); } std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok); out.push_back(json { { "content", tok_str }, { "probs", probs_for_token }, }); } return out; } static bool server_verbose = false; #if SERVER_VERBOSE != 1 # define LOG_VERBOSE(MSG, ...) #else # define LOG_VERBOSE(MSG, ...) \ do { \ if (server_verbose) { \ server_log("VERBOSE", __func__, __LINE__, MSG, __VA_ARGS__); \ } \ } while (0) #endif #define LOG_ERROR(MSG, ...) server_log("ERROR", __func__, __LINE__, MSG, __VA_ARGS__) #define LOG_WARNING(MSG, ...) server_log("WARNING", __func__, __LINE__, MSG, __VA_ARGS__) #define LOG_INFO(MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__) // helper class to manage prompt loading and truncation struct prompt_evaluator { llama_context * ctx; size_t n_ctx = 0; std::vector embd; std::vector last_n_tokens; size_t num_prompt_tokens = 0; size_t repeat_last_n = 0; size_t n_past = 0; size_t n_keep = 0; bool truncated = false; void set_context(llama_context * ctx) { this->ctx = ctx; this->n_ctx = llama_n_ctx(ctx); } ~prompt_evaluator() { if (ctx) { llama_free(ctx); ctx = nullptr; } } void rewind() { num_prompt_tokens = 0; //num_tokens_predicted = 0; truncated = false; //n_remain = 0; n_past = 0; } void load_prompt(std::string &prompt, int keep, size_t n_last) { prompt.insert(0, 1, ' '); // always add a first space std::vector prompt_tokens = ::llama_tokenize(ctx, prompt, true); num_prompt_tokens = prompt_tokens.size(); if (keep < 0) { keep = (int)num_prompt_tokens; } n_keep = std::min(n_ctx - 4, (size_t)keep); // if input prompt is too big, truncate like normal if (num_prompt_tokens >= n_ctx) { const size_t n_left = (n_ctx - n_keep) / 2; std::vector new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + n_keep); const size_t erased_blocks = (num_prompt_tokens - n_keep - n_left - 1) / n_left; new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + n_keep + erased_blocks * n_left, prompt_tokens.end()); LOG_VERBOSE("input truncated", { { "n_ctx", n_ctx }, { "n_keep", n_keep }, { "n_left", n_left }, { "new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend()) }, }); truncated = true; prompt_tokens = new_tokens; } // fill the last n tokens from the input even if context is truncated repeat_last_n = n_last; last_n_tokens.clear(); if (n_last > 0) { last_n_tokens.insert(last_n_tokens.begin(), std::max(prompt_tokens.begin(), prompt_tokens.end() - n_last), prompt_tokens.end()); } // compare the evaluated prompt with the new prompt n_past = common_part(embd, prompt_tokens); embd = prompt_tokens; if (n_past == num_prompt_tokens) { // we have to evaluate at least 1 token to generate logits. n_past--; } LOG_VERBOSE("prompt ingested", { { "n_past", n_past }, { "cached", tokens_to_str(ctx, embd.cbegin(), embd.cbegin() + n_past) }, { "to_eval", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend()) }, }); } bool evaluate(size_t n_threads, size_t n_batch) { if (embd.size() >= n_ctx) { // Reset context const size_t n_left = (n_ctx - n_keep) / 2; std::vector new_tokens(embd.begin(), embd.begin() + n_keep); new_tokens.insert(new_tokens.end(), embd.end() - n_left, embd.end()); embd = new_tokens; n_past = n_keep; truncated = true; LOG_VERBOSE("input truncated", { { "n_ctx", n_ctx }, { "n_keep", n_keep }, { "n_left", n_left }, { "new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend()) }, }); } while (n_past < embd.size()) { size_t n_eval = embd.size() - n_past; if (n_eval > n_batch) { n_eval = n_batch; } //LOG_VERBOSE("eval", { // { "n_eval", n_eval }, // { "n_past", n_past }, // { "n_threads", n_threads }, // { "embd", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend()) }, //}); if (llama_eval(ctx, &embd[n_past], n_eval, n_past, n_threads)) { LOG_ERROR("failed to eval", { { "n_eval", n_eval }, { "n_past", n_past }, { "n_threads", n_threads }, { "embd", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend()) }, }); return false; } n_past += n_eval; } return true; } void append_token(llama_token id) { if (repeat_last_n > 0) { if (last_n_tokens.size() >= repeat_last_n) { last_n_tokens.erase(last_n_tokens.begin()); } last_n_tokens.push_back(id); } embd.push_back(id); } }; struct llama_server_context { bool stream = false; bool has_next_token = false; std::string generated_text; std::vector generated_token_probs; size_t num_tokens_predicted = 0; int n_keep_guidance = 0; size_t n_remain = 0; bool cfg_enabled = false; llama_model * model = nullptr; llama_context * ctx = nullptr; gpt_params params; prompt_evaluator evaluator; prompt_evaluator evaluator_guidance; bool stopped_eos = false; bool stopped_word = false; bool stopped_limit = false; std::string stopping_word; int32_t multibyte_pending = 0; std::mutex mutex; std::unique_lock lock() { return std::unique_lock(mutex); } ~llama_server_context() { if (model) { llama_free_model(model); model = nullptr; } } void rewind() { params.antiprompt.clear(); num_tokens_predicted = 0; generated_text = ""; generated_text.reserve(params.n_ctx); generated_token_probs.clear(); stopped_eos = false; stopped_word = false; stopped_limit = false; stopping_word = ""; multibyte_pending = 0; n_remain = 0; cfg_enabled = false; evaluator.rewind(); evaluator_guidance.rewind(); } bool loadModel(const gpt_params & params_) { params = params_; std::tie(model, ctx) = llama_init_from_gpt_params(params); if (model == nullptr) { LOG_ERROR("unable to load model", {{ "model", params_.model }}); return false; } evaluator.set_context(ctx); struct llama_context_params lparams = llama_context_params_from_gpt_params(params); llama_context * ctx_guidance = llama_new_context_with_model(model, lparams); evaluator_guidance.set_context(ctx_guidance); return true; } void loadPrompt() { evaluator.load_prompt(params.prompt, params.n_keep, params.repeat_last_n); has_next_token = true; } void loadGuidancePrompt() { evaluator_guidance.load_prompt(params.cfg_negative_prompt, n_keep_guidance, 0); } void beginCompletion() { // number of tokens to keep when resetting context n_remain = params.n_predict; llama_set_rng_seed(ctx, params.seed); } completion_token_output nextToken() { completion_token_output result; result.tok = -1; evaluator.evaluate(params.n_threads, params.n_batch); if (cfg_enabled) { evaluator_guidance.evaluate(params.n_threads, params.n_batch); } if (params.n_predict == 0) { has_next_token = false; return result; } // out of user input, sample next token const float temp = params.temp; const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k; const float top_p = params.top_p; const float tfs_z = params.tfs_z; const float typical_p = params.typical_p; const float repeat_penalty = params.repeat_penalty; const float alpha_presence = params.presence_penalty; const float alpha_frequency = params.frequency_penalty; const int mirostat = params.mirostat; const float mirostat_tau = params.mirostat_tau; const float mirostat_eta = params.mirostat_eta; const bool penalize_nl = params.penalize_nl; const int32_t n_probs = params.n_probs; { auto logits = llama_get_logits(ctx); auto n_vocab = llama_n_vocab(ctx); // Apply params.logit_bias map for (const auto & it : params.logit_bias) { logits[it.first] += it.second; } std::vector candidates; candidates.reserve(n_vocab); for (llama_token token_id = 0; token_id < n_vocab; token_id++) { candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f }); } llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; if (cfg_enabled) { llama_sample_classifier_free_guidance( ctx, &candidates_p, evaluator_guidance.ctx, params.cfg_scale); } // Apply penalties float nl_logit = logits[llama_token_nl()]; llama_sample_repetition_penalty(ctx, &candidates_p, evaluator.last_n_tokens.data(), evaluator.last_n_tokens.size(), repeat_penalty); llama_sample_frequency_and_presence_penalties(ctx, &candidates_p, evaluator.last_n_tokens.data(), evaluator.last_n_tokens.size(), alpha_frequency, alpha_presence); if (!penalize_nl) { logits[llama_token_nl()] = nl_logit; } if (temp <= 0) { // Greedy sampling result.tok = llama_sample_token_greedy(ctx, &candidates_p); if (n_probs > 0) { llama_sample_softmax(ctx, &candidates_p); } } else { if (mirostat == 1) { static float mirostat_mu = 2.0f * mirostat_tau; const int mirostat_m = 100; llama_sample_temperature(ctx, &candidates_p, temp); result.tok = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu); } else if (mirostat == 2) { static float mirostat_mu = 2.0f * mirostat_tau; llama_sample_temperature(ctx, &candidates_p, temp); result.tok = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu); } else { // Temperature sampling size_t min_keep = std::max(1, n_probs); llama_sample_top_k(ctx, &candidates_p, top_k, min_keep); llama_sample_tail_free(ctx, &candidates_p, tfs_z, min_keep); llama_sample_typical(ctx, &candidates_p, typical_p, min_keep); llama_sample_top_p(ctx, &candidates_p, top_p, min_keep); llama_sample_temperature(ctx, &candidates_p, temp); result.tok = llama_sample_token(ctx, &candidates_p); } } for (size_t i = 0; i < std::min(candidates_p.size, (size_t) n_probs); ++i) { result.probs.push_back({candidates_p.data[i].id, candidates_p.data[i].p}); } num_tokens_predicted++; } // add it to the context evaluator.append_token(result.tok); if (cfg_enabled) { evaluator_guidance.append_token(result.tok); } // decrement remaining sampling budget --n_remain; if (result.tok == llama_token_eos()) { stopping_word = ""; has_next_token = false; stopped_eos = true; LOG_VERBOSE("eos token found", {}); return result; } has_next_token = params.n_predict == -1 || n_remain != 0; return result; } size_t findStoppingStrings(const std::string & text, const size_t last_token_size, const stop_type type) { size_t stop_pos = std::string::npos; for (const std::string & word : params.antiprompt) { size_t pos; if (type == STOP_FULL) { const size_t tmp = word.size() + last_token_size; const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0; pos = text.find(word, from_pos); } else { pos = find_partial_stop_string(word, text); } if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) { if (type == STOP_FULL) { stopping_word = word; stopped_word = true; has_next_token = false; } stop_pos = pos; } } return stop_pos; } completion_token_output doCompletion() { const completion_token_output token_with_probs = nextToken(); const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_str(ctx, token_with_probs.tok); generated_text += token_text; if (params.n_probs > 0) { generated_token_probs.push_back(token_with_probs); } if (multibyte_pending > 0) { multibyte_pending -= token_text.size(); } else if (token_text.size() == 1) { const char c = token_text[0]; // 2-byte characters: 110xxxxx 10xxxxxx if ((c & 0xE0) == 0xC0) { multibyte_pending = 1; // 3-byte characters: 1110xxxx 10xxxxxx 10xxxxxx } else if ((c & 0xF0) == 0xE0) { multibyte_pending = 2; // 4-byte characters: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx } else if ((c & 0xF8) == 0xF0) { multibyte_pending = 3; } else { multibyte_pending = 0; } } if (multibyte_pending > 0 && !has_next_token) { has_next_token = true; n_remain++; } if (!has_next_token && n_remain == 0) { stopped_limit = true; } LOG_VERBOSE("next token", { { "token", token_with_probs.tok }, { "token_text", tokens_to_output_formatted_string(ctx, token_with_probs.tok) }, { "n_past", evaluator.n_past }, { "has_next_token", has_next_token }, { "n_remain", n_remain }, { "num_tokens_predicted", num_tokens_predicted }, { "stopped_eos", stopped_eos }, { "stopped_word", stopped_word }, { "stopped_limit", stopped_limit }, { "stopping_word", stopping_word }, }); return token_with_probs; } std::vector getEmbedding() { static const int n_embd = llama_n_embd(ctx); if (!params.embedding) { LOG_WARNING("embedding disabled", { { "params.embedding", params.embedding }, }); return std::vector(n_embd, 0.0f); } const float * data = llama_get_embeddings(ctx); std::vector embedding(data, data + n_embd); return embedding; } }; static void server_print_usage(const char *argv0, const gpt_params ¶ms, const server_params &sparams) { fprintf(stdout, "usage: %s [options]\n", argv0); fprintf(stdout, "\n"); fprintf(stdout, "options:\n"); fprintf(stdout, " -h, --help show this help message and exit\n"); fprintf(stdout, " -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled"); fprintf(stdout, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); fprintf(stdout, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx); fprintf(stdout, " -gqa N, --gqa N grouped-query attention factor (TEMP!!! use 8 for LLaMAv2 70B) (default: %d)\n", params.n_gqa); fprintf(stdout, " -eps N, --rms-norm-eps N rms norm eps (TEMP!!! use 1e-5 for LLaMAv2) (default: %.1e)\n", params.rms_norm_eps); fprintf(stdout, " --rope-freq-base N RoPE base frequency (default: %.1f)\n", params.rope_freq_base); fprintf(stdout, " --rope-freq-scale N RoPE frequency scaling factor (default: %g)\n", params.rope_freq_scale); fprintf(stdout, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch); fprintf(stdout, " --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n"); fprintf(stdout, " not recommended: doubles context memory required and no measurable increase in quality\n"); if (llama_mlock_supported()) { fprintf(stdout, " --mlock force system to keep model in RAM rather than swapping or compressing\n"); } if (llama_mmap_supported()) { fprintf(stdout, " --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n"); } #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD fprintf(stdout, " -ngl N, --n-gpu-layers N\n"); fprintf(stdout, " number of layers to store in VRAM\n"); fprintf(stdout, " -ts SPLIT --tensor-split SPLIT\n"); fprintf(stdout, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n"); fprintf(stdout, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n"); fprintf(stdout, " -mg i, --main-gpu i the GPU to use for scratch and small tensors\n"); fprintf(stdout, " -lv, --low-vram don't allocate VRAM scratch buffer\n"); fprintf(stdout, " -mmq, --mul-mat-q use experimental mul_mat_q CUDA kernels instead of cuBLAS. TEMP!!!\n" ); fprintf(stdout, " Reduces VRAM usage by 700/970/1430 MiB for 7b/13b/33b but prompt processing speed\n" ); fprintf(stdout, " is still suboptimal, especially q2_K, q3_K, q5_K, and q6_K.\n" ); #endif fprintf(stdout, " -m FNAME, --model FNAME\n"); fprintf(stdout, " model path (default: %s)\n", params.model.c_str()); fprintf(stdout, " -a ALIAS, --alias ALIAS\n"); fprintf(stdout, " set an alias for the model, will be added as `model` field in completion response\n"); fprintf(stdout, " --lora FNAME apply LoRA adapter (implies --no-mmap)\n"); fprintf(stdout, " --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n"); fprintf(stdout, " --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str()); fprintf(stdout, " --port PORT port to listen (default (default: %d)\n", sparams.port); fprintf(stdout, " --path PUBLIC_PATH path from which to serve static files (default %s)\n", sparams.public_path.c_str()); fprintf(stdout, " -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout); fprintf(stdout, " --embedding enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled"); fprintf(stdout, "\n"); } static void server_params_parse(int argc, char ** argv, server_params & sparams, gpt_params & params) { gpt_params default_params; server_params default_sparams; std::string arg; bool invalid_param = false; for (int i = 1; i < argc; i++) { arg = argv[i]; if (arg == "--port") { if (++i >= argc) { invalid_param = true; break; } sparams.port = std::stoi(argv[i]); } else if (arg == "--host") { if (++i >= argc) { invalid_param = true; break; } sparams.hostname = argv[i]; } else if (arg == "--path") { if (++i >= argc) { invalid_param = true; break; } sparams.public_path = argv[i]; } else if (arg == "--timeout" || arg == "-to") { if (++i >= argc) { invalid_param = true; break; } sparams.read_timeout = std::stoi(argv[i]); sparams.write_timeout = std::stoi(argv[i]); } else if (arg == "-m" || arg == "--model") { if (++i >= argc) { invalid_param = true; break; } params.model = argv[i]; } else if (arg == "-a" || arg == "--alias") { if (++i >= argc) { invalid_param = true; break; } params.model_alias = argv[i]; } else if (arg == "-h" || arg == "--help") { server_print_usage(argv[0], default_params, default_sparams); exit(0); } else if (arg == "-c" || arg == "--ctx-size" || arg == "--ctx_size") { if (++i >= argc) { invalid_param = true; break; } params.n_ctx = std::stoi(argv[i]); } else if (arg == "-gqa" || arg == "--gqa") { if (++i >= argc) { invalid_param = true; break; } params.n_gqa = std::stoi(argv[i]); } else if (arg == "-eps" || arg == "--rms-norm-eps") { if (++i >= argc) { invalid_param = true; break; } params.rms_norm_eps = std::stof(argv[i]); } else if (arg == "--rope-freq-base") { if (++i >= argc) { invalid_param = true; break; } params.rope_freq_base = std::stof(argv[i]); } else if (arg == "--rope-freq-scale") { if (++i >= argc) { invalid_param = true; break; } params.rope_freq_scale = std::stof(argv[i]); } else if (arg == "--memory-f32" || arg == "--memory_f32") { params.memory_f16 = false; } else if (arg == "--threads" || arg == "-t") { if (++i >= argc) { invalid_param = true; break; } params.n_threads = std::stoi(argv[i]); } else if (arg == "-b" || arg == "--batch-size") { if (++i >= argc) { invalid_param = true; break; } params.n_batch = std::stoi(argv[i]); params.n_batch = std::min(512, params.n_batch); } else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") { if (++i >= argc) { invalid_param = true; break; } #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD params.n_gpu_layers = std::stoi(argv[i]); #else LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. " "See main README.md for information on enabling GPU BLAS support", {{ "n_gpu_layers", params.n_gpu_layers }}); #endif } else if (arg == "--tensor-split" || arg == "-ts") { if (++i >= argc) { invalid_param = true; break; } #ifdef GGML_USE_CUBLAS std::string arg_next = argv[i]; // split string by , and / const std::regex regex{ R"([,/]+)" }; std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 }; std::vector split_arg{ it, {} }; GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES); for (size_t i_device = 0; i_device < LLAMA_MAX_DEVICES; ++i_device) { if (i_device < split_arg.size()) { params.tensor_split[i_device] = std::stof(split_arg[i_device]); } else { params.tensor_split[i_device] = 0.0f; } } #else LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n", {}); #endif // GGML_USE_CUBLAS } else if (arg == "--low-vram" || arg == "-lv") { #ifdef GGML_USE_CUBLAS params.low_vram = true; #else LOG_WARNING("warning: llama.cpp was compiled without cuBLAS. It is not possible to set lower vram usage.\n", {}); #endif // GGML_USE_CUBLAS } else if (arg == "--mul-mat-q" || arg == "-mmq") { #ifdef GGML_USE_CUBLAS params.mul_mat_q = true; #else LOG_WARNING("warning: llama.cpp was compiled without cuBLAS. It is not possible to use mul_mat_q kernels.\n", {}); #endif // GGML_USE_CUBLAS } else if (arg == "--main-gpu" || arg == "-mg") { if (++i >= argc) { invalid_param = true; break; } #ifdef GGML_USE_CUBLAS params.main_gpu = std::stoi(argv[i]); #else LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.", {}); #endif } else if (arg == "--lora") { if (++i >= argc) { invalid_param = true; break; } params.lora_adapter = argv[i]; params.use_mmap = false; } else if (arg == "--lora-base") { if (++i >= argc) { invalid_param = true; break; } params.lora_base = argv[i]; } else if (arg == "-v" || arg == "--verbose") { #if SERVER_VERBOSE != 1 LOG_WARNING("server.cpp is not built with verbose logging.", {}); #else server_verbose = true; #endif } else if (arg == "--mlock") { params.use_mlock = true; } else if (arg == "--no-mmap") { params.use_mmap = false; } else if (arg == "--embedding") { params.embedding = true; } else { fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); server_print_usage(argv[0], default_params, default_sparams); exit(1); } } if (invalid_param) { fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); server_print_usage(argv[0], default_params, default_sparams); exit(1); } } static json format_generation_settings(llama_server_context & llama) { const auto eos_bias = llama.params.logit_bias.find(llama_token_eos()); const bool ignore_eos = eos_bias != llama.params.logit_bias.end() && eos_bias->second < 0.0f && std::isinf(eos_bias->second); return json { { "seed", llama.params.seed }, { "temp", llama.params.temp }, { "top_k", llama.params.top_k }, { "top_p", llama.params.top_p }, { "tfs_z", llama.params.tfs_z }, { "typical_p", llama.params.typical_p }, { "repeat_last_n", llama.params.repeat_last_n }, { "repeat_penalty", llama.params.repeat_penalty }, { "presence_penalty", llama.params.presence_penalty }, { "frequency_penalty", llama.params.frequency_penalty }, { "mirostat", llama.params.mirostat }, { "mirostat_tau", llama.params.mirostat_tau }, { "mirostat_eta", llama.params.mirostat_eta }, { "penalize_nl", llama.params.penalize_nl }, { "stop", llama.params.antiprompt }, { "n_predict", llama.params.n_predict }, { "n_keep", llama.params.n_keep }, { "ignore_eos", ignore_eos }, { "stream", llama.stream }, { "logit_bias", llama.params.logit_bias }, { "n_probs", llama.params.n_probs }, { "cfg_scale", llama.params.cfg_scale }, { "cfg_n_keep", llama.n_keep_guidance }, }; } static json format_embedding_response(llama_server_context & llama) { return json { { "embedding", llama.getEmbedding() }, }; } static json format_timings(llama_server_context & llama) { const auto timings = llama_get_timings(llama.ctx); //assert(timings.n_eval == llama.num_tokens_predicted); return json { { "prompt_n", timings.n_eval }, { "prompt_ms", timings.t_p_eval_ms }, { "prompt_per_token_ms", timings.t_p_eval_ms / timings.n_p_eval }, { "prompt_per_second", 1e3 / timings.t_p_eval_ms * timings.n_p_eval }, { "predicted_n", timings.n_eval }, { "predicted_ms", timings.t_eval_ms }, { "predicted_per_token_ms", timings.t_eval_ms / timings.n_eval }, { "predicted_per_second", 1e3 / timings.t_eval_ms * timings.n_eval }, }; } static json format_final_response(llama_server_context & llama, const std::string & content, const std::vector & probs) { json res = json { { "content", content }, { "stop", true }, { "model", llama.params.model_alias }, { "tokens_predicted", llama.num_tokens_predicted }, { "tokens_evaluated", llama.evaluator.num_prompt_tokens }, { "generation_settings", format_generation_settings(llama) }, { "prompt", llama.params.prompt }, { "cfg_negative_prompt", llama.params.cfg_negative_prompt }, { "truncated", llama.evaluator.truncated }, { "stopped_eos", llama.stopped_eos }, { "stopped_word", llama.stopped_word }, { "stopped_limit", llama.stopped_limit }, { "stopping_word", llama.stopping_word }, { "tokens_cached", llama.evaluator.n_past }, { "timings", format_timings(llama) }, }; if (llama.params.n_probs > 0) { res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs); } return res; } static json format_partial_response(llama_server_context & llama, const std::string & content, const std::vector & probs) { json res = json { { "content", content }, { "stop", false }, }; if (llama.params.n_probs > 0) { res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs); } return res; } static json format_tokenizer_response(const std::vector & tokens) { return json { { "tokens", tokens } }; } static void parse_options_completion(const json & body, llama_server_context & llama) { gpt_params default_params; llama.stream = body.value("stream", false); llama.params.n_predict = body.value("n_predict", default_params.n_predict); llama.params.top_k = body.value("top_k", default_params.top_k); llama.params.top_p = body.value("top_p", default_params.top_p); llama.params.tfs_z = body.value("tfs_z", default_params.tfs_z); llama.params.typical_p = body.value("typical_p", default_params.typical_p); llama.params.repeat_last_n = body.value("repeat_last_n", default_params.repeat_last_n); llama.params.temp = body.value("temperature", default_params.temp); llama.params.repeat_penalty = body.value("repeat_penalty", default_params.repeat_penalty); llama.params.presence_penalty = body.value("presence_penalty", default_params.presence_penalty); llama.params.frequency_penalty = body.value("frequency_penalty", default_params.frequency_penalty); llama.params.mirostat = body.value("mirostat", default_params.mirostat); llama.params.mirostat_tau = body.value("mirostat_tau", default_params.mirostat_tau); llama.params.mirostat_eta = body.value("mirostat_eta", default_params.mirostat_eta); llama.params.penalize_nl = body.value("penalize_nl", default_params.penalize_nl); llama.params.n_keep = body.value("n_keep", default_params.n_keep); llama.params.seed = body.value("seed", default_params.seed); llama.params.prompt = body.value("prompt", default_params.prompt); llama.params.cfg_negative_prompt = body.value("cfg_negative_prompt", default_params.cfg_negative_prompt); llama.params.cfg_scale = body.value("cfg_scale", default_params.cfg_scale); llama.n_keep_guidance = body.value("cfg_n_keep", 0); llama.params.n_probs = body.value("n_probs", default_params.n_probs); llama.params.logit_bias.clear(); if (body.value("ignore_eos", false)) { llama.params.logit_bias[llama_token_eos()] = -INFINITY; } const auto & logit_bias = body.find("logit_bias"); if (logit_bias != body.end() && logit_bias->is_array()) { const int n_vocab = llama_n_vocab(llama.ctx); for (const auto & el : *logit_bias) { if (el.is_array() && el.size() == 2 && el[0].is_number_integer()) { llama_token tok = el[0].get(); if (tok >= 0 && tok < n_vocab) { if (el[1].is_number()) { llama.params.logit_bias[tok] = el[1].get(); } else if (el[1].is_boolean() && !el[1].get()) { llama.params.logit_bias[tok] = -INFINITY; } } } } } llama.params.antiprompt.clear(); const auto & stop = body.find("stop"); if (stop != body.end() && stop->is_array()) { for (const auto & word : *stop) { if (!word.empty()) { llama.params.antiprompt.push_back(word); } } } LOG_VERBOSE("completion parameters parsed", format_generation_settings(llama)); } static void log_server_request(const Request & req, const Response & res) { LOG_INFO("request", { { "remote_addr", req.remote_addr }, { "remote_port", req.remote_port }, { "status", res.status }, { "method", req.method }, { "path", req.path }, { "params", req.params }, }); LOG_VERBOSE("request", { { "request", req.body }, { "response", res.body }, }); } int main(int argc, char ** argv) { // own arguments required by this example gpt_params params; server_params sparams; // struct that contains llama context and inference llama_server_context llama; server_params_parse(argc, argv, sparams, params); if (params.model_alias == "unknown") { params.model_alias = params.model; } llama_backend_init(params.numa); LOG_INFO("build info", { { "build", BUILD_NUMBER }, { "commit", BUILD_COMMIT }, }); LOG_INFO("system info", { { "n_threads", params.n_threads }, { "total_threads", std::thread::hardware_concurrency() }, { "system_info", llama_print_system_info() }, }); // load the model if (!llama.loadModel(params)) { return 1; } Server svr; svr.set_default_headers({ { "Server", "llama.cpp" }, { "Access-Control-Allow-Origin", "*" }, { "Access-Control-Allow-Headers", "content-type" }, }); // this is only called if no index.html is found in the public --path svr.Get("/", [](const Request &, Response & res) { res.set_content(reinterpret_cast(&index_html), index_html_len, "text/html"); return false; }); // this is only called if no index.js is found in the public --path svr.Get("/index.js", [](const Request &, Response & res) { res.set_content(reinterpret_cast(&index_js), index_js_len, "text/javascript"); return false; }); // this is only called if no index.html is found in the public --path svr.Get("/completion.js", [](const Request &, Response & res) { res.set_content(reinterpret_cast(&completion_js), completion_js_len, "application/javascript"); return false; }); svr.Post("/completion", [&llama](const Request & req, Response & res) { auto lock = llama.lock(); llama.rewind(); llama_reset_timings(llama.ctx); parse_options_completion(json::parse(req.body), llama); llama.loadPrompt(); llama.beginCompletion(); if (llama.params.cfg_scale > 1.0f && llama.params.cfg_negative_prompt.size() > 0) { llama.cfg_enabled = true; llama.loadGuidancePrompt(); } if (!llama.stream) { size_t stop_pos = std::string::npos; while (llama.has_next_token) { const completion_token_output token_with_probs = llama.doCompletion(); const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_str(llama.ctx, token_with_probs.tok); stop_pos = llama.findStoppingStrings(llama.generated_text, token_text.size(), STOP_FULL); } if (stop_pos == std::string::npos) { stop_pos = llama.findStoppingStrings(llama.generated_text, 0, STOP_PARTIAL); } if (stop_pos != std::string::npos) { llama.generated_text.erase(llama.generated_text.begin() + stop_pos, llama.generated_text.end()); } const json data = format_final_response(llama, llama.generated_text, llama.generated_token_probs); llama_print_timings(llama.ctx); res.set_content(data.dump(-1, ' ', false, json::error_handler_t::replace), "application/json"); } else { const auto chunked_content_provider = [&](size_t, DataSink & sink) { size_t sent_count = 0; size_t sent_token_probs_index = 0; while (llama.has_next_token) { const completion_token_output token_with_probs = llama.doCompletion(); const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_str(llama.ctx, token_with_probs.tok); if (llama.multibyte_pending > 0) { continue; } size_t pos = std::min(sent_count, llama.generated_text.size()); const std::string str_test = llama.generated_text.substr(pos); size_t stop_pos = llama.findStoppingStrings(str_test, token_text.size(), STOP_FULL); if (stop_pos != std::string::npos) { llama.generated_text.erase( llama.generated_text.begin() + pos + stop_pos, llama.generated_text.end()); pos = std::min(sent_count, llama.generated_text.size()); } else { stop_pos = llama.findStoppingStrings(str_test, token_text.size(), STOP_PARTIAL); } const std::string to_send = llama.generated_text.substr(pos, stop_pos); sent_count += to_send.size(); std::vector probs_output = {}; if (llama.params.n_probs > 0) { const std::vector to_send_toks = llama_tokenize(llama.ctx, to_send, false); size_t probs_pos = std::min(sent_token_probs_index, llama.generated_token_probs.size()); size_t probs_stop_pos = std::min(sent_token_probs_index + to_send_toks.size(), llama.generated_token_probs.size()); if (probs_pos < probs_stop_pos) { probs_output = std::vector(llama.generated_token_probs.begin() + probs_pos, llama.generated_token_probs.begin() + probs_stop_pos); } sent_token_probs_index = probs_stop_pos; } const json data = llama.has_next_token ? format_partial_response(llama, to_send, probs_output) // Generation is done, send extra information. : format_final_response(llama, to_send, llama.generated_token_probs); const std::string str = "data: " + data.dump(-1, ' ', false, json::error_handler_t::replace) + "\n\n"; LOG_VERBOSE("data stream", { { "to_send", str } }); if (!sink.write(str.data(), str.size())) { LOG_VERBOSE("stream closed", {}); llama_print_timings(llama.ctx); return false; } } llama_print_timings(llama.ctx); sink.done(); return true; }; res.set_chunked_content_provider("text/event-stream", chunked_content_provider); } }); svr.Get("/model.json", [&llama](const Request &, Response & res) { const json data = format_generation_settings(llama); return res.set_content(data.dump(), "application/json"); }); svr.Options(R"(/.*)", [](const Request &, Response & res) { return res.set_content("", "application/json"); }); svr.Post("/tokenize", [&llama](const Request & req, Response & res) { auto lock = llama.lock(); const json body = json::parse(req.body); const std::string content = body.value("content", ""); const std::vector tokens = llama_tokenize(llama.ctx, content, false); const json data = format_tokenizer_response(tokens); return res.set_content(data.dump(), "application/json"); }); svr.Post("/embedding", [&llama](const Request & req, Response & res) { auto lock = llama.lock(); const json body = json::parse(req.body); llama.rewind(); llama_reset_timings(llama.ctx); llama.params.prompt = body.value("content", ""); llama.params.n_predict = 0; llama.loadPrompt(); llama.beginCompletion(); llama.doCompletion(); const json data = format_embedding_response(llama); return res.set_content(data.dump(), "application/json"); }); svr.set_logger(log_server_request); svr.set_exception_handler([](const Request &, Response & res, std::exception_ptr ep) { const auto * fmt = "500 Internal Server Error\n%s"; char buf[BUFSIZ]; try { std::rethrow_exception(std::move(ep)); } catch (std::exception & e) { snprintf(buf, sizeof(buf), fmt, e.what()); } catch (...) { snprintf(buf, sizeof(buf), fmt, "Unknown Exception"); } res.set_content(buf, "text/plain"); res.status = 500; }); svr.set_error_handler([](const Request &, Response & res) { res.set_content("File Not Found", "text/plain"); res.status = 404; }); // set timeouts and change hostname and port svr.set_read_timeout(sparams.read_timeout); svr.set_write_timeout(sparams.write_timeout); if (!svr.bind_to_port(sparams.hostname, sparams.port)) { fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", sparams.hostname.c_str(), sparams.port); return 1; } // Set the base directory for serving static files svr.set_base_dir(sparams.public_path); // to make it ctrl+clickable: fprintf(stdout, "\nllama server listening at http://%s:%d\n\n", sparams.hostname.c_str(), sparams.port); LOG_INFO("HTTP server listening", { { "hostname", sparams.hostname }, { "port", sparams.port }, }); if (!svr.listen_after_bind()) { return 1; } llama_backend_free(); return 0; }