// Various helper functions and utilities #pragma once #include "llama.h" #include #include #include #include // // CLI argument parsing // struct gpt_params { int32_t seed = -1; // RNG seed int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); int32_t n_predict = 128; // new tokens to predict int32_t repeat_last_n = 64; // last n tokens to penalize int32_t n_parts = -1; // amount of model parts (-1 = determine from model dimensions) int32_t n_ctx = 512; //context size // sampling parameters int32_t top_k = 40; float top_p = 0.95f; float temp = 0.80f; float repeat_penalty = 1.10f; int32_t n_batch = 8; // batch size for prompt processing std::string model = "models/lamma-7B/ggml-model.bin"; // model path std::string prompt = ""; std::vector antiprompt; // string upon seeing which more user input is prompted bool memory_f16 = false; // use f16 instead of f32 for memory kv bool random_prompt = false; // do not randomize prompt if none provided bool use_color = false; // use color to distinguish generations and inputs bool interactive = false; // interactive mode bool interactive_start = false; // wait for user input immediately bool instruct = false; // instruction mode (used for Alpaca models) bool ignore_eos = false; // do not stop generating after eos bool perplexity = false; // compute perplexity over the prompt #ifndef _WIN32 std::string listen_port = ""; // TCP port for when running in server mode #endif }; bool gpt_params_parse(int argc, char ** argv, gpt_params & params); void gpt_print_usage(int argc, char ** argv, const gpt_params & params); std::string gpt_random_prompt(std::mt19937 & rng); // // Vocab utils // std::vector llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos);